Detection of Falciparum Malaria Imported From Africa With a Highly Specific and Sensitive Loop-Mediated Isothermal Amplification (LAMP) Assay

Xi Chen
Kunming Medical University

Maohua Pan
Shanglin County People's Hospital

Yaming Huang
Kunming Medical University

Pien Qin
Shanglin County People's Hospital

Siqi Wang
Kunming Medical University

Yu Si
Kunming Medical University

Xinxin Li
Kunming Medical University

Weilin Zeng
Kunming Medical University

Yanrui Wu
Kunming Medical University

Mengxi Duan
Kunming Medical University

xiaosong Li
Kunming Medical University

Xun Wang
Kunming Medical University

Hui Zhao
Kunming Medical University

Jiaqi Zhang
Kunming Medical University

Yucheng Qin
Shanglin County People's Hospital

Yanmei Zhang
Research Article

Keywords: LAMP, malaria, molecular diagnosis, Plasmodium falciparum

Posted Date: March 17th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-288704/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Current malaria diagnostic tests, including microscopy and antigen-detecting rapid tests, cannot reliably detect low-density infections. Molecular methods such as polymerase chain reaction (PCR) are highly sensitive but remain too complex to be used in the field. To complement existing diagnostic methods, a new LAMP assay for the detection and identification of *Plasmodium falciparum* imported from Africa was developed.

Methods: A LAMP assay was developed to amplify the Actin I gene of *P. falciparum*. Microscopy, Nested PCR and the LAMP assay were conducted on 466 samples of suspected malaria patients imported from Africa to evaluate the new assay’s sensitivity and specificity. A plasmid construct, cultured *P. falciparum*, and the clinical samples were used to evaluate the the limit of detection (LOD).

Results: Compared to Nested PCR, the sensitivity and specificity of the novel developed LAMP were 100% (95% CI 98.54 - 100%) and 99.07% (95% CI 96.68 - 99.89%) respectively. The LAMP assay was found to be highly sensitive, with the detection limit as low as 10^2 copies/μL and 10-fold higher detection limit than single PCR when performed on serial dilutions of the plasmid construct. The LAMP assay detected 0.01 parasites/μL, when cultured *P. falciparum* was used as template. The novel LAMP assay detected 1-7 parasites/μL blood in clinical samples—which is more sensitively than the commercial product (Loopamp MALARIA Pan/Pf detection kit; Eiken Chemical Co., Tokyo, Japan) for clinical samples detection of *P. falciparum*, which detected >20 parasites/μL blood sample.

Conclusion:

For the first time, the Actin I gene of *P. falciparum* was used as target for LAMP primers to detect imported *P. falciparum* from Africa imported to China. The novel, highly specific and sensitive LAMP assay is a practical and effective diagnostic method for detecting low-density *P. falciparum* infections imported from Africa. For the first time, such LAMP primers were evaluated by using a plasmid construct, cultured *P. falciparum* and clinical samples at same work platform, which offer excellent means of assay validation and should be considered in future studies of this kind.

Background

Malaria is a major cause of morbidity and mortality, leading up to 228 million cases and 405,000 deaths in 2018 (1). With increasing international trade, malaria infection among Chinese has grown. In 2017, 2,858 of 2,861 malaria cases (99.9%) were imported from abroad, of which 822 cases (63.7%) were caused by *Plasmodium falciparum* (2), which is responsible for most malarial cases in Africa (3). *Plasmodium vivax*, *Plasmodium malariae*, *Plasmodium ovale* and *Plasmodium knowlesi* are responsible for other cases. Because different species may require distinct treatment approaches, rapid and accurate diagnosis of *P. falciparum* is not only crucial for treatment, but also important for disease control, especially for elimination of malaria.
Microscopic examination of blood smears is the most widely used diagnostic approach in the field and remains the gold standard. This low-cost method allows parasitaemia to be evaluated and permits differentiation among *Plasmodium* species. Nevertheless, the limit of detection of microscopy is in the range of 10-100 parasites/μL, depending on the health professional's skill and the quality of the smear (4). Rapid diagnostic tests (RDT) (5, 6) provide a convenient diagnostic method because no special equipment or special skills are required, and the results can be easily obtained within a short time. However, microscopy and RDTs cannot reliably detect lower-density parasitaemia (<100 parasites/μL) (7). Molecular diagnostic tools employing DNA amplification have the advantage of high accuracy and high sensitivity; of these, nested PCR is considered sensitive and specific tool for malaria diagnosis (8). Nevertheless, this method is costly and requires trained personnel for its proper implementation.

Loop-mediated isothermal amplification (LAMP), originally developed by Notomi *et al*, is a very sensitive, easy and time saving method (9). The advantages of the LAMP method include high amplification efficiency under isothermal conditions (60-65°C), visual judgment based on the turbidity or fluorescence of the reaction mixture, and no need for expensive equipment (10). The LAMP method has detected as few as 100 copies of DNA template in blood samples (equal roughly to 5 parasites/μL) (11, 12). Currently, two commercial kits are available in the market: LoopAmp malaria (Pan/Pf) detection kit (Eiken Chemical Company, Tokyo, Japan) and Illumigene malaria LAMP assay (Meridian Biosciences, Cincinnati, USA). Each detects symptomatic malaria cases with high sensitivity and specificity (13-18). However, the evaluation of specificity and sensitivity of LAMP in large Chinese population in China has barely been reported (19-22), perhaps because commercialized LAMP malaria diagnostic kits are not available in China (https://www.human.de/products/molecular-dx/malaria-lamp).

Previous work established LAMP as more sensitive than microscopy or RDT to detect low-parasitemia infections (13-18, 23-26), but some showed negative results (10, 27-29). Assays targeting 18srRNA (13-18, 30) achieve sensitivity and specificity matching or exceeding PCR. Similar sensitivity and specificity are found targeting mitochondrial genes (11), apicoplast genome (31, 32), *Plasmodium* helical interspersed sub-telomeric superfamily (*PHIST*) (33), and *Pfdhfr* gene by Yongkiettrakul *et al.* (34), for *falciparum* malaria diagnosis as well as identified drug resistance associated genetic markers in *P. falciparum*, such as PfSNP-LAMP (35-40).

The aim of this study was to develop a novel LAMP assay for screening large numbers of clinical samples for *P. falciparum*, and to evaluate its specificity, sensitivity and clinical applicability for the imported malaria from Africa with low-density infections.

Methods

Sample collection and DNA extraction

3D7 clones of *P. falciparum* and a Strain H clone of *P. knowlesi* were obtained from the Malaria Research and Reference Reagent Resource Center (MR4). At least 3 samples of *Toxoplasma gondii* and *Schistosoma*
were obtained from the Department of Pathogen Biology and Immunology, Kunming Medical University.

Recruited patients were 22 to 68 years of age who presented with fever or history of fever within the last 48 h, having symptoms suggestive of malaria, and with travel history of Africa in two weeks. These samples were obtained at the Shanglin County People's Hospital, Guangxi, China, between 2016 and 2018. Malaria infections were diagnosed by microscopic examination of Giemsa-stained thick and thin blood films. Data of all cases were recorded, including gender, ethnicity, occupation, microscopic examination results and travel history. The human subject protocol for this study was approved by the Shanglin Hospital Institutional Review Board. Written informed consents were obtained from all included participants.

5mL venous blood was collected from every patient and 200μL was used for DNA extraction. DNA was extracted from the studied parasites and blood samples were obtained by using the High Pure PCR Template Preparation Kit (Roche) following the manufacturer's instructions.

Microscopic diagnosis

Thick and thin blood smears were made and stained by Giemsa for observation. For thick smear, *Plasmodium* parasites were counted in fields totaling 200 WBCs (or 500 WBCs when the initial number of parasites was less than 99) on thick blood films. Parasite densities were recorded as the average value of parasites per 200 leukocytes as counted by 2 hospital laboratory staff (41). Parasite densities (parasite/μL whole blood) were estimated by following the World Health Organization (WHO) recommended method (number of parasites/WBC) × 8000 WBC count/μL (42).

Nested PCR assay

The species of malaria in a sample were determined by using a nested PCR assay. This assay targets the *Plasmodium* 18s rRNA gene, using previously published primers (43, 44). Briefly, for the first round, a 1μL DNA sample was used as template. For the second round, 1μL of PCR products of the first round was used as a template.

LAMP primers designed and conditions of the LAMP reactions

The full length *P. falciparum* Actin I gene (GenBank accession no. XM_001350811) is 1,131 bp; a 238 bp fragment (position 4 to 241) was selected as the target sequence for primer design and LAMP detection. Primer design was performed using LAMP Designer 1.15 (PREMIER Biosoft). The primers are listed in Table 1 (patent applying no: 201910611312.9, China). Briefly, a reaction contained 1μL of DNA template, 40 pmol each of the FIP and BIP, 5 pmol each of the F3 and B3 primers, 20 pmol each of the LoopF and LoopB, 1μL of fluorescent detection reagent (Eiken), 1μL of Bst enzyme (Eiken), 12.5μL RM (Eiken) and DDW was added to make a 25 μL reaction mix. In a thermostatic metal heating block, the mixture was incubated at 63°C for 45 min, and then the reaction was terminated by heating the mixture at 80°C for 5 min. After the reaction, the amplified products in the reaction tube were detected under visible light with
the naked eye according to the manufacturer's instructions, it changed from clear and orange to green and turbid; or under UV light the solution emitted fluorescent if it is the positive.

The assay results were observed independently by two experimenters who didn't know the PCR/microscopy results. When their evaluation conflicted, a third determination was solicited. This experiment was conducted in the laboratory of pathogen biology at Kunming Medical University.

Construction of positive control plasmid DNA

PCR products obtained following amplification of 3D7 DNA with LAMP primers F3 and B3 (Table 1) were inserted into pMD™19-T Vector (Takara). The PCR was performed at 94°C for 5 min for denaturation, followed by 35 cycles; 94°C for 30 s, 54°C for 30 s, 72°C for 1 min, and final extension 72°C for 5 min. PCR products were cloned into vector following its manufacturer's instructions. The recombinant pMD™19-T plasmid DNA cloned *P. falciparum* Actin I gene fragment was extracted by a Miniprep kit (TIANGEN) from *Escherichia coli* (DH5a strain), the concentration was measured by a spectrophotometer and copy numbers were calculated by following previously reported method (34).

Specificity and sensitivity of LAMP

The specificity of the assay was tested using genomic DNAs (gDNAs) of various parasites (*T. gondii* and *S. japonicum, P. falciparum, P. vivax, P. malariae, P. ovale* and *P. knowlesi*).

For sensitivity testing, three DNA templates were prepared. 10-fold serial dilutions of constructed plasmid DNA using as the template, the LAMP reaction was compared with the single-PCR assay using F3 and B3 primers (described above), cultivated parasites prepared as previously described (45) and 10-fold serial dilutions of gDNAs of clinical malaria patients using as the templates, the comparison was performed between the LAMP and nested PCR. For comparison, patented LAMP primers (10, 46) (target gene 18srRNA) were also employed. Each sample was assayed at least 3 times.

Clinical applicability

The clinical applicability of the LAMP was evaluated by using whole-blood samples collected from Shanglin County People's Hospital. Nested PCR was used as the reference as lab standard of sensitivity, specificity. Positive predictive value and Negative predictive value were calculated. Each sample was assayed at least 3 times.

Statistical analysis

All data were analyzed with GraphPad Prism 6.0 and MEDCALP statistical software available at https://www.medcalc.org/calc/diagnostic_test.php. Sensitivity, specificity, and positive and negative predictive values of LAMP were determined using nested PCR as the gold standard for diagnosis of malaria. The concordance response rate (percentage of responses with both positive and both negative results) and Kappa value (k) was determined to measure degree of agreements between two diagnostic
test results. Wilcoxon matched-pairs signed rank test and Chi-square test was performed. \(P \) value below 0.05 was considered statistically significant. LOD calculated by following the report(47).

Results

Evaluation of the specificity of LAMP primers

The specificity of the LAMP primers was investigated by using various parasites, including *Plasmodium* gDNAs as templates for LAMP. As shown in Figure 1, a green fluorescence was detected in *P. falciparum* gDNA (tube 1) but not when the template DNA derived from other parasite species.

Evaluation of the sensitivity of LAMP primers

To examine the sensitivity of LAMP, three detection methods were used. First, the new LAMP assay was compared to the single-PCR assay using F3 and B3 primers by amplifying 10-fold serial dilutions of plasmid DNA. As shown in Figure 2, amplification by real-time LAMP was obtained in reaction tubes containing from \(10^9 \) to \(10^2 \) copies/\(\mu \)L of the DNA template in a 45-min reaction with SYBR Green, with the limit of detection (LOD) was \(10^2 \) copies/\(\mu \)L. In contrast, the LOD for PCR using the F3 and B3 primers was \(10^3 \) copies/\(\mu \)L. Therefore, the sensitivity of the LAMP was 10-fold greater than that of the single-PCR assay.

Secondly, using DNA from cultured parasites, the LOD of nested PCR and LAMP were both 0.01 parasites/\(\mu \)L. Thirdly, LAMP and nested PCR were evaluated by using DNA from 9 clinical samples, whole blood samples as templates (Table S1). The lowest range and LOD of the nested PCR was 0.7-7 and 2.9 parasites/\(\mu \)L (95% CI 1.4 - 6.0) respectively. The lowest range and LOD of LAMP primers were 1-7 and 3.8 (95% CI 2.0 - 7.0) parasites/\(\mu \)L respectively. Both showed similar LOD (\(P=0.3466 \)). The patent primers (Japan) (10, 46) showed similar LOD (\(P=0.3466 \)).

Comparison of the sensitivity and specificity among the LAMP, nested PCR, and microscopy for malaria diagnosis in the clinical samples

A total of 466 suspected malaria clinical samples were used to evaluate the performance of this set of primers for the detection of *P. falciparum* in clinical samples. Microscopy identified parasites with the range in parasite densities of the clinical samples 114-125240 parasite/\(\mu \)L blood. The foreign travel history of these individuals, and the malaria species these identified in by nested PCR, are listed in supplemental Table 1. Among the 466 samples, microscopy identified *P. falciparum* in 202, whereas nested PCR and the LAMP assay identified the parasite in 251 and 253, respectively (Table 2). Prevalence estimates derived from the two molecular amplification methods did not differ significantly from each other, but each was significantly greater than microscopy (nested PCR vs. Microscopy \(P = 0.0013 \); LAMP vs. microscopy \(P = 0.0008 \)). The comparison of sensitivity and specificity, of microscopy, nested PCR and LAMP is shown in Table 3a, 3b and 3c: all 251 nested PCR-positive samples for *P. falciparum* were also detected by the novel LAMP (sensitivity of 100%; 95% CI: 98.54 - 100%), Kappa = 0.99, 188 were detected
by microscopy (sensitivity of 74.90%; 95% CI: 69.06 - 80.14%), Kappa = 0.66. 213 nested PCR-negative samples for *P. falciparum* were also negative by the LAMP assay (specificity of 99.07%; 95% CI: 96.68 - 99.89%), by microscopy 198 were negative (specificity of 92.09%; 95% CI: 87.64 - 95.33%). LAMP successfully detected *P. falciparum* in the 40 mixed infections.

Discussion

The risk of acquiring locally-transmitted malaria has been virtually eliminated in China, but imported malaria has grown. The diagnosis of malaria at primary clinics has traditionally been performed by microscopic examination of blood smears because of its ease and rapid application. Loop-mediated isothermal amplification (LAMP), a novel method developed by Notomi et al. is able to amplify DNA with great efficacy within an hour under isothermal conditions\(^{(9)}\); it has been widely used as a diagnostic tool for several parasitic diseases\(^{(21, 48)}\). Nevertheless, the LAMP method has not been implemented in a large Chinese clinical study \(^{(19-22)}\). In this study, we have done so, and evaluated its specificity, sensitivity and clinical applicability for the detection of *P. falciparum* imported from Africa for the first time.

Validating practical assays for detecting imported malaria diagnosis is important for China to reach the goal of malaria elimination. We successfully targeted the Actin I gene of *P. falciparum* for species identification on a large sample of clinical isolates and found it to demonstrate high sensitivity and specificity. The *P. falciparum* Actin I gene was chosen as the target region, because it is a highly-conserved housekeeping gene and differs among the 5 species of *Plasmodium*.

Compared with the patent primers (Japan), targeting of 18sRNA, our assay demonstrated a comparable LOD \((P=0.3466)\); its sensitivity and specificity were 95% and 99%, respectively \(^{(45, 49)}\). Our new assay appear more sensitive than those reported previously \(^{(19, 30)}\). Our LAMP primers showed sensitivity of 1-7 parasites/μL blood from clinical samples, a better performance in clinical patients than reported for the commercial kit, Eiken Loopamp™ MALARIA Pan/Pf detection kit (Eiken Chemical Co., Tokyo, Japan), reported LOD for that assay is >20 parasites/μL blood for *P. falciparum* \(^{(30)}\). The LOD of our LAMP was 100 copies, which was similar with Eiken Loopamp™ \(^{(10)}\). Thus the present assay and Eiken Loopamp™ perform comparably when amplifying recombinant plasmid DNA.

Ponce et al. reported that the LOD of Malaria diagnostic kit (Illumigene®) was 0.1 Parasites/μL\(^{(44)}\). They used serial dilutions of DNA extracted from cultured clones of the 3D7 and W2 strains of *P. falciparum*. We used the same dilution method with cultured parasites in the initial stage, and we also found it capable of detecting as few as 0.01 parasite/μL. Diluting cultured parasites to evaluate the sensitivity of the reaction does not, however, mirror actual conditions in clinical samples, because culture medium is likely to contain large amounts of DNA from parasites that have died. The concentration of DNA extracted, consequently, may be much higher than the concentration derived from low-parasitemia infections. Furthermore, red blood cell suspensions do not offer the same quantitative accuracy as do diluted DNA solutions.
This set of primers could reach the LOD of 10^2 copy/μL when tested with recombinant plasmid DNA, and higher than PCR with F3 and B3. Similar results were obtained by other teams (50). We believe that the recombinant plasmid DNA serves as a more precise means to define the sensitivity of such reactions. In our experiment, we used both the clinical samples and recombinant plasmid DNA as template to be used to evaluate the sensitivity; each showed similar results, high sensitivity and specificity. We strongly recommend use the two template types to aid inter-laboratory comparisons and validate clinical relevancy.

The LAMP assay in our study proved to be highly specific, and there was no nonspecific reaction to some common parasites or to other *Plasmodium* species. This set of primers presented 100% sensitivity (95% CI 98.54 - 100%) and 99.07% specificity (95% CI 96.68 - 99.89%) compared to nested PCR ($P = 0.3466$). This is as good or better than previously reported and commercially licensed assays (12, 50). Microscopy proved less reliable in cases of low parasitaemia. LAMP and PCR were discordant in two cases, wherein only the LAMP assay was positive. These two cases were confirmed by effective clinical antimalarial treatment, allowing us to conclude that these were true positives. Although this LAMP assay was carried out in the laboratory, it can be used in the field due to its simple equipment requirements and uncomplicated operating procedures. Compared with nested PCR, LAMP reaction time was only 45 minutes, which greatly improved the detection efficiency and provided timely evidence for clinical medication strategy.

Based on the results obtained, this LAMP assay offers an alternative for molecular diagnosis for *P. falciparum* infection in non-malaria-endemic regions, like China. This will strengthen the control and prevention of imported malaria in China.

Declarations

Availability of data and materials

The datasets during and/or analysed during the current study available from the corresponding author on reasonable request.

Acknowledgments

First and foremost, we thank all the patients that donated blood for volunteering to participate in the study. We thank laboratory staffs for culturing *P. falciparum* 3D7. The authors thank Dr. Benjamin M. Rosenthal for his English editing and all the patients for volunteering to participate in the study.

Funding

This study was supported by the National Science Foundation of China (31860604 and U1802286), Major science and technology projects of Yunnan Province (2018ZF0081) and International Science and Technology Cooperation-Yunnan International Science and Technology Cooperation Base.
XC, ZX and YZ were under sponsoring from the Yunnan Applied Basic Research Projects-Union Foundation (2018FE001-190; 2019FE001-015; and 2015FB034 respectively). YW was supported by the Hundred-Talent Program of Kunming Medical University (60117190439), Foundation of the Education Department of Yunnan Province (2018JS151), and the Innovation Experiment Project of Yunnan Province (202010678064) and Kunming Medical University (2020JXD014). YQ was supported by Guangxi Zhuang Autonomous Region Health Commission of Scientific Research Project (Z20190892).

Ethics approval and consent to participate

We used clinical samples obtained from the Department of Infectious Diseases in Shanglin Hospital, Shanglin County, Guangxi Province, China and from the Malaria surveillance clinic, Tengchong County, Yunnan Province, China. The clinical subjects were Chinese migrant workers returned from Africa or the China-Myanmar border. This study was originally approved by the Institutional Review Board of Shanglin Hospital and Institutional Review Board of Kunming Medical University. A written informed consent was obtained from the participants. All methods were carried out in accordance with relevant guidelines and regulations/declaration of Helsinki.

Potential conflicts of interest

All authors: No reported conflicts of interest.

Consent for publication

Not applicable.

Availability of data and materials

All data generated or analyzed during this study are included in this published article and its supplementary information file. The datasets of clinical malaria samples used and analyzed during the present study are available from the corresponding author on reasonable request.

Authors' contributions

Jiaqi Zhang: Conceptualization, Investigation, Writing - Original Draft, Visualization

Xi Chen: Methodology, Formal analysis, Supervision

Maohua Pan: Investigation, Methodology, Supervision

Yucheng Qin: Validation, Investigation

Hui Zhao: Validation, Data Curation

Siqi Wang: Validation, Data Curation
References

Tables

Table 1 LAMP Primers used in this study (patent applying no:201910611312.9)

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence (5'→ 3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>F3</td>
<td>GGAGAAGAAGATGTTCAAGC</td>
</tr>
<tr>
<td>B3</td>
<td>CCCAATTCGTAACAAATACCATG</td>
</tr>
<tr>
<td>FIP(F1c+F2)</td>
<td>AACGGAACGAGGTGATCATAT-TTGTTGACAACGGGATCAGG</td>
</tr>
<tr>
<td>BIP(B1c+B2)</td>
<td>AGTAGGAAGACCAAGAATCCAGGA-TGTGCTTCATCAACCAACAA</td>
</tr>
<tr>
<td>LoopF</td>
<td>CTCCTGCAACTCCTGCTT</td>
</tr>
<tr>
<td>LoopB</td>
<td>GTTGGTATGGAAGAGAAAGATGC</td>
</tr>
</tbody>
</table>

Table 2. The positive outcome of 466 clinical susceptible malaria cases diagnosed by three methods
<table>
<thead>
<tr>
<th>Species</th>
<th>Microscopy (M)</th>
<th>Nested PCR (N)</th>
<th>LAMP (L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. f.</td>
<td>202</td>
<td>218</td>
<td>253</td>
</tr>
<tr>
<td>P. v.</td>
<td>14</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>P. m.</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>P. o. (curtisi)</td>
<td>130</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>P. o. (wallikeri)</td>
<td></td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>Mix</td>
<td>4</td>
<td>40 (33)*</td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>113</td>
<td>75</td>
<td>213</td>
</tr>
<tr>
<td>Total</td>
<td>466</td>
<td>466</td>
<td>466</td>
</tr>
</tbody>
</table>

\[P_{\text{value}} = P_{\text{M\&N}} = 0.0013 \quad P_{\text{N\&L}} = 0.8954 \quad P_{\text{M\&L}} = 0.0008 \]

P. f.: *Plasmodium falciparum*, *P. v.*:*Plasmodium vivax*, *P. m.*:*Plasmodium malariae*,

P. o. (curtisi) : *Plasmodium ovale* (curtisi),

P. o. (wallikeri) : *Plasmodium ovale* (wallikeri)

* Mixed infections contained 33 *P. falciparum*

\(^1\) Chi-square in Diagnosis of *P. f.*

M\&N Microscopy and Nested PCR

N\&L Nested PCR and LAMP

M\&L Microscopy and LAMP

Table 3a. Comparison of diagnostic accuracy of LAMP and nested PCR for 466 suspected malaria samples.
<table>
<thead>
<tr>
<th></th>
<th>PCR +</th>
<th>PCR -</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAMP +</td>
<td>251</td>
<td>2</td>
<td>253</td>
</tr>
<tr>
<td>LAMP -</td>
<td>0</td>
<td>213</td>
<td>213</td>
</tr>
<tr>
<td>Total</td>
<td>251</td>
<td>215</td>
<td>466</td>
</tr>
</tbody>
</table>

Kappa = 0.99

- **Sensitivity**: 100 % (95% CI 98.54 - 100%)
- **Specificity**: 99.07 % (95% CI 96.68 - 99.89%)
- **Positive predictive value**: 99.21 % (95% CI 97.17 - 99.9%)
- **Negative predictive value**: 100 % (95% CI 98.28 - 100%)

Table 3b. Comparison of diagnostic accuracy of microscopy and nested PCR for 466 suspected malaria samples.

<table>
<thead>
<tr>
<th></th>
<th>PCR +</th>
<th>PCR -</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>microscopy +</td>
<td>188</td>
<td>17</td>
<td>205</td>
</tr>
<tr>
<td>microscopy -</td>
<td>63</td>
<td>198</td>
<td>261</td>
</tr>
<tr>
<td>Total</td>
<td>251</td>
<td>215</td>
<td>466</td>
</tr>
</tbody>
</table>

Kappa = 0.66

- **Sensitivity**: 74.90 % (95% CI 69.06 - 80.14%)
- **Specificity**: 92.09 % (95% CI 87.64 - 95.33%)
- **Positive predictive value**: 91.71 % (95% CI 87.05 - 95.10%)
- **Negative predictive value**: 75.86 % (95% CI 70.20 - 80.92%)

Table 3c. Comparison of diagnostic accuracy of LAMP and microscopy for 466 suspected malaria samples.
<table>
<thead>
<tr>
<th></th>
<th>microscopy +</th>
<th>microscopy -</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAMP +</td>
<td>189</td>
<td>64</td>
<td>253</td>
</tr>
<tr>
<td>LAMP -</td>
<td>16</td>
<td>197</td>
<td>213</td>
</tr>
<tr>
<td>Total</td>
<td>205</td>
<td>261</td>
<td>466</td>
</tr>
</tbody>
</table>

Kappa = 0.66

Sensitivity 92.20 % (95% CI 87.63 - 95.47%)
Specificity 75.48 % (95% CI 69.80 – 80.57%)
Positive predictive value 74.70 % (95% CI 68.88 – 79.94%)
Negative predictive value 92.49 % (95% CI 88.09 – 95.65%)

Figures
Figure 1

The LAMP results of various parasites and Plasmodium gDNAs. 1: P. f. (3D7), 2: P. v., 3: P. m., 4: P. o. (curtisi), 5: P. o. (wallikeri) 6: P. k. (Strain H) 7: Toxoplasma gondii 8: Schistosoma japonicum 9: DD\text{Water}

![Amplification Plot](image)

Figure 2

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementalTable1.docx