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Abstract18

Understanding pathogen emergence in new host species is fundamental for developing prevention and re-19

sponse plans for human and animal health. We leveraged a large-scale surveillance dataset coordinated by20

United States Department of Agriculture, Animal and Plant Health Inspection Service and state natural21

resources agencies to quantify infection of SARS-CoV-2 in North American white-tailed deer (Odocoileus22

virginianus; WTD) using a hierarchical epidemiological model in the eastern half of the United States. Our23

model found that male deer had higher positivity than female deer, and positivity was higher in counties24

with higher human population density or deer habitat. Estimated SARS-CoV-2 local epidemiological re-25

production numbers were between 1 and 2.5 in most well-sampled counties, with local epidemics in WTD26

peaking earlier in the northeast and mid-Atlantic relative to the Midwest and Southeast. Similar peak in-27

fection prevalence times across many counties provided indirect evidence for widespread transmission via28

human-to-deer spillover, while the widespread high estimates of local epidemiological reproduction number29

suggested that sustained deer-to-deer transmission is also probable. The model estimated 10% of infected30

WTD were infected due to human infection pressure.31

1 Introduction32

Starting in 2020, SARS-CoV-2 was found in white-tailed deer [WTD; 1, 2]. By 2021, there was evidence33

of regional transmission in WTD through a combination of ongoing deer-to-deer and human-to-deer trans-34

mission [2–5]. Endemic transmission of SARS-CoV-2 in WTD could position these populations as reservoir35

hosts, posing risk for variant persistence [4, 6], evolution of new variants [7, 8], and spillback into human36

populations [7–9]. Cross-species transmission can have global health impacts during a pandemic. For exam-37

ple, pandemic H1N1 Influenza virus (H1N1pdm09) was introduced into humans from animals [10], resulting38

in ongoing animal-human transmission and viral evolution globally [11–13]. These patterns highlight the39

need to better understand drivers of zoonotic pathogens establishing and persisting in new species to inform40

science-based One Health decisions, improve risk assessment, and plan effective surveillance, early response,41

and mitigation strategies.42

Chandler et al. [1] initially documented the presence of virus neutralizing antibodies to SARS-CoV-2 in43

free-ranging WTD. Experimental infection studies demonstrated the susceptibility of WTD to SARS-CoV-244

infection, shedding of live virus primarily through oral/nasal secretions, deer-to deer transmission, and the45

persistence of neutralizing antibodies for up to several weeks following infection [14, 15]. A later study46

revealed that WTD can maintain antibodies for at least 13 months [16]. Deer-to-deer transmission may47
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occur within wild populations beyond the initial introduction period. Surveillance studies in WTD have48

shown persistence of SARS-CoV-2 alpha and gamma variants in populations 4-6 months after their peak49

circulation and extinction in the human population [4, 5, 17, 18]. These data describing susceptibility and50

transmission capabilities of SARS-CoV-2 in WTD and the fact that WTD are abundant and share a variety51

of habitats with humans across the United States [19], highlight the need to understand potential infection52

dynamics of SARS-CoV-2 in WTD across the range of the species.53

Until recently, SARS-CoV-2 surveillance in WTD has only been conducted and described at the scale of54

a single state, province, or region [1, 2, 4, 7], with sampling occurring during a 3 to 4-month window. This55

made it challenging to understand how widespread SARS-CoV-2 is in WTD, its epidemiological dynamics,56

and associated ecological drivers. Recently, the United States Department of Agriculture (USDA) has been57

working with state wildlife agencies in conducting widespread surveillance of SARS-CoV-2 in WTD to address58

these gaps [5, 17]. Here, we use data from a surveillance program of SARS-CoV-2 in WTD [17] to estimate59

the spatial distribution of true prevalence, infection rates and their relationship to specific risk factors, and60

the temporal dynamics of initial invasion into WTD across their range over 13 months.61

The national-scale surveillance data are collected by opportunistically sampling hunter-harvested deer62

and through targeted agency management. Different sub-populations are sampled unequally in space, time,63

and overall numbers (e.g., female vs. male WTD, or WTD in suburban/urban or rural human populations).64

Sample composition tends to be more challenging to account for using (descriptive) statistics, confidence65

intervals, and hypothesis tests designed for other sampling designs such as non-stratified, simple random66

sampling [20]. To address the challenges of inference from opportunistic sampling, we developed a hierarchical67

model that accounts for sample composition in estimates of population-level parameters and predictions. Our68

model used spatially and temporally correlated susceptible-infected-recovered (SIR) curves, commonly used69

for epidemiological inference [21–28], to account for trends across time, space, sample composition, and70

potential transmission from humans to deer. Our model also used county-level data as covariates to estimate71

the influence of deer habitat and human presence and infection on WTD infection risk. In particular, we72

use the model to estimate the overall proportion of WTD infected due to human infection pressure (i.e.,73

spillover). Model based methods to analyze disease surveillance data can extend the utility of surveillance74

data, for example, by allowing disease prevalence to be estimated in counties and at times when direct75

surveillance through sampling is not possible.76
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2 Results77

2.1 Description of sample composition and descriptive statistics78

From October 2021 through March 2022 there were 10,217 nasal or oral swab samples from WTD tested79

from 27 states and Washington, DC. SARS-CoV-2 viral RNA was detected in 13% (1,307) of the 10,21780

samples [17, 18]. The raw, apparent prevalence summaries are descriptive statistics that do not account for81

the opportunistic sample collection. There were similar numbers of samples collected from both sexes (males82

= 5,076, females = 5,141), but SARS-CoV-2 viral RNA was detected more often in males (15%) relative83

to females (11%). Adults (8,000 samples) were more heavily sampled than juveniles (2,217 samples), but84

detection rates were similar in both groups (13% vs. 12%). Nasal swabs (9,343 samples) were collected more85

often than oral swabs (364 samples), and 510 samples had missing data describing swab type. Infection rates86

(i.e., proportion positive) appeared higher in oral and unknown swabs (16% and 17%, respectively) relative87

to nasal swabs (12%). For management method, hunter-harvest samples were most common (4,577 samples88

with 17% positive), followed by samples collected from USDA removal and management purposes (agency89

management; 3,866 samples with 11% positive) or other mortalities (e.g., roadkill; 1,774 samples with 6%90

positive). Hunter harvest samples were collected during a shorter time window (i.e., hunting seasons), while91

agency management and other mortalities were collected more consistently throughout the full period of92

surveillance.93

2.2 Risk factors94

2.2.1 The model captures the data well95

We inferred the effects of ecological risk factors using a hierarchical model of the surveillance data that96

included a sample-level component for inferring individual infection risks pk while estimating population-97

level SARS-CoV-2 local epidemiological reproduction numbers Rℓ from the SIR component of the model.98

A calibration curve showed that pk predicted positive and negative test outcomes well (Figure 1), and that99

estimates of pk are close to apparent prevalence (observed data) with underprediction in regions with high100

predicted prevalence. The model fit builds confidence that the method can estimate prevalence in counties101

and at times when direct surveillance through sampling was not possible due to limited resources. The model102

fit also builds confidence that the method can also estimate epidemiological characteristics of SARS-CoV-2103

in WTD, such as peak prevalence and outbreak timing across counties.104
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2.2.2 Sex and management method are the only significant sample-level variables105

For sample-level factors, we found a significant interaction of sex and management method, but no significant106

effect between oral and nasal swab types or age class (Table 1). Male deer samples collected by agency107

management tended to have higher infection than female deer (Row a2 in Table 1, Figure 2; 14% positive108

males, 10% positive females from October 2021 through March 2022), but the effect was less pronounced for109

male deer harvested by hunters (Row a10 in Table 1, Figure 2; 10% positive males, 8% positive females from110

October 2021 through March 2022).111

2.2.3 Effects of inhabitable deer area are weaker than effects of human population density112

For county-level effects, there is some evidence for weak relationships between local epidemiological reproduc-113

tion rate Rℓ and covariates. The effects of deer habitat (a proxy for deer abundance) and human population114

density are positive but marginally not significant (Rows b2 and b3 in Table 1, Figure 3). Predicted prevalence115

in WTD increased from 10% when human population density was 10 people per sq. km. to 15% when human116

population density was 100 people per sq. km. from October 2021 through March 2022 (Figure 3). Predicted117

prevalence in WTD also increased from 10% when the proportion of WTD habitat is low (i.e., near 0) to118

15% when WTD habitat is high (i.e., near 1) from October 2021 through March 2022. (Figure 3). However,119

there was a substantial amount of variation in the relationships between prevalence in WTD and human120

population density or proportion of WTD habitat. Deer habitat is estimated via the Gap Analysis Project121

(GAP) species distribution model [29]. Here, we quantify deer habitat as the GAP-estimated proportion of122

a county’s land area that is inhabitable to WTD.123

2.2.4 Role of human SARS-CoV-2 infection on WTD SARS-CoV-2 infection124

The model estimates that SARS-CoV-2 prevalence in WTD tends to increase with SARS-CoV-2 infection125

in humans. The model uses the human SARS-CoV-2 death rate as a lagged, proxy-indicator for infection.126

The model estimates the odds of WTD prevalence increases by 13% for every additional 11 human deaths127

per 100,000 county residents (logistic regression parameter interpretation for row a8 in Table 1; 95% highest128

posterior density interval (HPDI) spans from 1% decrease to 31% increase). The model also estimates that,129

on average, 10% of positive deer detected were due to human infection pressure from October 2021 through130

March 2022 (95% HPDI: 0–16%).131
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2.2.5 Local epidemiological reproduction numbers greater than 1 are widespread132

Estimates of the local epidemiological reproduction number Rℓ were greater than 1 in nearly all counties in133

states where samples were collected and ranged up to 2.5 in some counties (Figure 4A). However, there is134

also large uncertainty in Rℓ estimates in states where few samples were collected such that Rℓ could have135

been less than 1 for many Mid- and South-western counties (Figure 4).136

2.2.6 Estimates of time-averaged prevalence was at least 3% in most sampled counties137

Estimates of average prevalence from October 2021 through March 2022 tended to be higher on the East coast138

than in the Mid- and South-West (i.e., time-averaged prevalence; Figure 5A). The model-based estimates139

adjust for varying sample collection rates over time. The average county-level apparent prevalence (Figure140

5B; the proportion of positive test results per county) was more extreme (i.e., higher or lower) than time-141

averaged estimates in counties with low sample sizes (Figure 5D). Importantly, uncertainty in time-averaged142

prevalence estimates (Figure 5C) was also higher in counties with low sample sizes. Predicted peak prevalence143

varied spatially across the range of WTD studied.144

2.2.7 Peak prevalence occurred earliest in counties in the northeast and mid-Atlantic145

Peak prevalence occurred later in counties in the Midwest and Southeast (Figure 6A). However, there was146

local variation across counties within a state. In New York, peak prevalence is predicted to have occurred 1–3147

months earlier in the western counties compared to the eastern counties (Figure 6A). However, uncertainty148

in predicted timing is higher in the eastern counties of New York compared to the western counties (Figure149

6B). Examination of SARS-CoV-2 prevalence in WTD over time predicted outbreak start, peak prevalence,150

and prevalence decline occurred earlier in Onondaga County, New York than in Cuyahoga County, Ohio;151

the two most intensively sampled counties in our study (Figure 7). Comparison to human death rate data152

illustrates how SARS-CoV-2 in humans is not necessarily a primary driver for SARS-CoV-2 prevalence in153

WTD, but can prolong the duration of an outbreak in WTD.154

3 Discussion155

Large-scale surveillance data provided evidence for substantial deer-to-deer transmission in addition to156

widespread spillover from human-to-deer populations [5]. High estimates for the SARS-CoV-2 local epi-157

demiological reproduction number Rℓ (i.e., up to 2.5) suggested that sustained deer-to-deer transmission158

was probable following disease introduction to local deer populations (Figure 4). Model estimates suggested159
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SARS-CoV-2 in WTD was present in most counties that can support WTD populations (i.e., WTD habitat)160

across the Conterminous United States (CONUS; Figure 5). Estimates for the time at which peak infection161

prevalence occurred are similar for many counties sampled, which provided indirect evidence for widespread162

transmission via human-to-deer spillover (Figure 6). By comparison, in the absence of spillover, disease trans-163

mission across space should primarily be driven by diffusion between neighboring counties, which would yield164

a smoother spatial pattern in disease timing [30]. Data indicates that differences between peak infection in165

humans and WTD can differ as well (Figure 7). Different timing for disease in humans and WTD might166

suggest concurrent widespread deer-to-deer transmission in addition to human-to-deer spillover.167

The number and rate of disease transmission events from humans to deer are difficult to estimate.168

Phylogenetic studies of surveillance data estimate the number and timing of spillover events within the169

dataset [2–5, 18]. However, the number and rate of disease transmission events from humans to deer can170

be difficult to estimate at a national population level because of challenges with sampling designs (i.e., both171

human and deer sampling designs are biased and deer abundances are unknown). While SIR models do172

not identify individual spillover events, the human infection proxy within the sample-level model equation173

(1) can be used to estimate feasible ranges for the relative frequency of deer-to-deer vs. human-to-deer174

transmission events. The modeling framework statistically attributes “excess infection” relative to the SIR175

model’s baseline infection process equation (2) as potential spillover pressure.176

Posterior summaries for the risk factors identified in Table 1 suggest potential implications for general177

knowledge of SARS-CoV-2 in WTD and ongoing surveillance programs. The model suggested that male178

deer were infected at higher rates than female deer. Similar sex-related differences occur for chronic wasting179

disease (CWD), bovine tuberculosis, and other infectious diseases [31–33]. Sex-related differences are often180

explained by hypotheses that male deer have different social behavior, larger home range sizes, and breeding181

season movements, leading to wider and more frequent contact with other groups of deer than females [33].182

Although descriptive summaries of the raw data suggested that prevalence differed for management183

method (i.e., Hunter vs. Agency) and swab type (i.e., Oral vs. Nasal), the model did not find strong evidence184

for this pattern once the imbalanced sampling design factors were accounted for together, suggesting that185

surveillance data collected from these different sources and methods can be analyzed together.186

Local epidemiological reproductive rate of SARS-CoV-2 in WTD appeared to weakly increase with human187

population density. This might suggest that areas with higher human density have greater opportunity for188

reverse zoonotic transmission, contributing to the force of infection in deer. The effect of human density189

was relatively small with ample variation. Our model did not consider changes to human density across190

time, which likely does not accurately reflect human movement and contact patterns with deer because we191

did not have such data. For instance, the effect of areas such as campgrounds that see pulses of human192
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density at irregular time intervals (i.e., around holidays) would not be captured by static human densities.193

Furthermore, natural areas such as parks and campgrounds that have pulses of human activity are also194

places where humans are likely to encounter a deer. Finer scale data on human mobility and human-deer195

contact frequencies in different settings would improve our understanding of this relationship and enable196

identification of additional landscape variables that could help identify how spillover is occurring and be197

included in risk mapping.198

Disease transmission pressure from humans to deer is also difficult to quantify because disease surveillance199

in humans is challenging. Surveillance of SARS-CoV-2 in humans requires extensive funding and consistent200

community participation. Surveillance is further challenging because positive at-home tests are generally201

not included in official reporting. The human death rate served as a proxy for human infection during early202

stages of the pandemic. However, the proxy becomes increasingly uninformative as effective treatments203

become available and survival increases. Future evaluation of SARS-CoV-2 in WTD may require different204

proxies for human infection.205

The model further suggested that SARS-CoV-2 local epidemiological reproductive rate increased with206

the proportion of a county’s land that supports WTD populations, albeit weakly. In lieu of using WTD207

density estimates, we used the proportion of a county’s land that WTD can inhabit (i.e., WTD habitat) to208

approximate where WTD might be more densely populated. We chose this approach because WTD density209

information is limited to small-scale studies due to the difficulty of collecting this data [34], and methods210

for state-level abundance estimation vary across states, which introduces additional variation. Increased211

habitat suitability is tied to increased incidences of CWD in WTD [35], with the supporting hypothesis that212

suitable habitat supports higher density of WTD. The effect seen here might suggest infection reproduction213

is facilitated through deer-to-deer contact. However, finer scale WTD density information or habitat data214

that more closely informs WTD density would provide further insight to this relationship.215

Quantifying disease dynamics requires intensive data distributed throughout time and space. In this216

study, we used an opportunistic sampling design, which incurred temporal and spatial data gaps. These data217

gaps propagated uncertainty in our estimates of SARS-CoV-2 prevalence in WTD (Figure 5C). Uncertainty218

in these estimates could be reduced through continued sampling in counties where long-term sampling219

has already taken place. Furthermore, new sampling in counties that do not currently have data and220

are distant from well-sampled counties (e.g., represent different values in of covariates such as proportion221

of land inhabitable to WTD, human density, human case rates, or other potential risk factors that have222

yet to be explored) would bolster the confidence of these estimates. However, requirements for reducing223

estimate uncertainty can change over time, and would be best addressed using an adaptive sampling design.224

Another limitation of this study is the spatial resolution at which disease dynamics could be described (i.e.,225
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county level). Our description of national SARS-CoV-2 dynamics in WTD would be augmented through226

the implementation of intensive sampling within specific populations with location data where samples are227

collected (i.e., a more appropriate scale understanding transmission dynamics and their risk factors). Another228

key gap is to include repeated long-term sampling at specific locations spread across different ecosystems.229

This will help to disentangle the drivers of infection dynamics and persistence both within and across230

populations - the subject of our ongoing work.231

Accurate quantification of disease dynamics and their corresponding risk factors provides a platform for232

identifying optimal strategies for risk-based surveillance, prevention, early response, and control of zoonotic233

diseases. Surveillance programs can only partially observe disease trajectories due to limited resources.234

Model-based analyses of surveillance data can use estimates of disease prevalence at all points in space and235

time to fill in data collection gaps. Prevalence estimates can be interpreted as reconstructions of disease236

trajectories. Spatially analyzing reconstructed disease trajectories can identify regions that have been heavily237

impacted by disease and are potentially at increased risk for future outbreaks.238

4 Methods239

4.1 Data240

4.1.1 Surveillance of SARS-CoV-2 in white-tailed deer241

We present a detailed epidemiological analysis of data collected from surveillance studies described in Bevins242

et al. [17] and McBride et al. [18]. From October 2021 to September 2022 there were 10,722 WTD samples243

collected from 27 states and Washington, DC (Figure 5D). WTD samples were collected postmortem from244

multiple sources, including hunter harvest samples collected by state departments of natural resources,245

management events conducted by USDA Animal and Plant Health Inspection Service (USDA-APHIS),246

Wildlife Services [described in 17], and opportunistic sampling of mortalities such as roadkill collected by all247

agencies. Management type and individual deer-specific metrics including sex and age class were recorded.248

Removal location data was collected at the county level. When available, hunters were asked to disclose the249

county of removal, but in lieu of removal county, the check station county where the sample was collected250

was used. Nasal or oral swabs were collected and tested for the presence of SARS-CoV-2 viral RNA via251

rRT-PCR as previously described [17, 18].252
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4.1.2 County-level covariates253

We estimated human density for each county using 2020 Census Bureau population data, which includes254

information about county area [36]. We divided the population of each county by the county area (km2).255

We calculated the proportion of each county’s land that can support WTD populations (i.e., WTD habitat)256

using the Gap Analysis Project (GAP) WTD species distribution model [29]. The GAP WTD distribution257

model predicts species occurrence across GAP landcover classes based on empirical occupancy and habitat258

association analyses. GAP landcover class pixels are converted to a binary based on if that pixel represents259

suitable year-round WTD habitat. We used the total area covered by WTD habitat pixels within a county260

divided by the total county area to calculate the proportion of WTD habitat in each county.261

4.1.3 County-level time-varying incidence and mortality rates for SARS-CoV-2 in humans262

We calculated the weekly new death rate of SARS-CoV-2 in humans per county (cases per 100,000 people)263

using data from The New York Times repository of SARS-CoV-2 cases. Data are based on reports from264

state and local health agencies. The New York Times aggregates daily case and death counts published on265

state and local health department websites. We grouped each county’s daily death report by week (Sunday-266

Saturday) and selected the first day of each week that data was reported. We then took the difference267

between the focal week’s cumulative count and the cumulative count from two weeks prior to a deer sample’s268

removal date to derive the case load in the two weeks prior to sampling. We divided the case load by the269

county population size [36] and multiplied this by 100,000 to derive death incidence per 100,000. The death270

rate serves as a lagged proxy for human SARS-CoV-2 infection that does not depend on human surveillance271

testing rates.272

4.2 Statistical analyses273

4.2.1 Spatially-varying SIR model274

We specify a hierarchical Bayesian model that uses sample-level test results to estimate epidemiological275

parameters, associations with potential risk factors, and prevalence over time. Spatially and temporally276

correlated, county-level susceptible-infected-recovered (SIR) compartmental models account for trends across277

time and space. The model uses both sample- and county-level covariates to influence SIR model parameters,278

identifying potential risk factors for disease transmission. We apply the model to the 2,893 counties across279

CONUS estimated to support WTD populations and focus on the weeks over which samples were collected.280

The model’s response variable Yk encodes the binary rRT-PCR test results for the kth sample such that

Yk = 1 for positive results and Yk = 0 for negative results. The model treats Yk as a Bernoulli random
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variable with probability pk of being positive. We interpret pk as the individual infection risk or prevalence

of SARS-CoV-2 for the kth animal’s group, time, and location. The model uses the regression function

specified via

logit (pk) =
∑

j

ajzkj + logit (iℓk(tk)) (1)

to link rRT-PCR test results to county-level SIR curves and sample-level covariates and external conditions281

(e.g., age, sex, human death rate). The aj and zkj terms specify sample-level coefficients and covariates that282

adjust the baseline infected compartmet iℓk(·) of the SIR curve for county ℓk at time tk based on group-level283

characteristics and external conditions for sample k (see Table 1 for detailed covariate listing).284

The SIR curve we propose models the proportion of susceptible sℓ(t), infected iℓ(t), and recovered rℓ(t)

individuals in county ℓ at time t via spatially and temporally correlated systems of differential equations.

The SIR system of differential equations for each county specified via

dsℓ(t)

dt
= −βℓiℓ(t)sℓ(t),

diℓ(t)

dt
= βℓiℓ(t)sℓ(t)− γiℓ(t),

drℓ(t)

dt
= γiℓ(t)

(2)

uses a population-level recovery parameter γ and spatially varying deer-to-deer contact rate βℓ. Each county’s285

SIR curve is modeled with a local outbreak time t0,ℓ and common initial conditions sℓ(t0,ℓ) = s∗0, iℓ(t0,ℓ) = i∗0,286

and rℓ(t0,ℓ) = r∗0 . Modeling SIR parameters and initial conditions with respect to spatial random effects and287

covariates accounts for spatial and temporal similarities in SIR curves between counties.288

We model the county-level contact rate βℓ relative to the recovery rate γ scaled by a SARS-CoV-2 local

epidemiological reproduction number Rℓ for each county, such that βℓ = γRℓ. The local epidemiological

reproduction number quantifies the number of WTD to which a single infected WTD can be expected to

transmit SARS-CoV-2 to näıve contacts. Covariates and spatially correlated random effects influence Rℓ via

g(Rℓ) =
∑

j

bjxℓj + ηℓ, (3)

to link Rℓ to county-level covariates that can influence deer-to-deer contact rates (e.g., habitable area and289

human population density). The link function g(·) is an exponentially smoothed ramp that is linear for290

0.1 < Rℓ < 10 and decays to a low of Rℓ = 0 and a high of Rℓ = 15 (additional details in Supplement). The291

bj and xℓj terms specify county-level effects and covariates, and ηℓ specifies a spatially correlated random292
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effect for each county (see Table 1 for detailed covariate listing). A conditional autoregressive (CAR) process293

model uses county adjacency reference information to model spatial connection and correlation for ηℓ [37,294

Chapter 4]. The CAR model requires a spatial precision parameter τℓ and a spatial range parameter γℓ,295

both of which are estimated from data.296

We also use a CAR process to model the local outbreak time t0,ℓ. Like ηℓ, the CAR model for t0,ℓ requires297

a spatial precision parameter τt0 and spatial range parameter γt0 . In conjunction with the other SIR curve298

parameters, the local outbreak time t0,ℓ influences the time at which peak prevalence occurs.299

All continuous covariates are scaled and shifted to have mean 0 and unit variance before model fitting.300

Standard prior distributions are assigned to unknown parameters (Supplement). Markov chain Monte Carlo301

(MCMC) methods are used to draw inference on model parameters and random effects. The model is run302

for 1,000,000 iterations, thinning to retain 10,000 samples to approximate the joint posterior distribution.303

Most of the spatial random effects for each county that support WTD populations across CONUS will not304

be precisely estimated because data is only collected from 589 of the 2,893 modeled counties. However, the305

model includes spatial random effects for all counties to inform spatial relationships between counties, and306

support risk mapping.307

4.2.2 Spatio-temporal risk evaluation and mapping308

The SIR model equation (2) can estimate spatially and temporally complete maps of SARS-CoV-2 prevalence309

for WTD after model fitting, filling in data collection gaps. Model fitting estimates SIR parameters for all310

counties ℓ and times t, so it is possible to estimate baseline prevalence iℓ(t) and other compartments at any311

point in time and space. Model fitting also estimates sample-level coefficients aj , so it is also possible to312

replace the variables zkj , ℓk, and tk in equation (1) with appropriate substitutions zGj , ℓ, and t to estimate313

prevalence pGℓt for an arbitrary demographic group and sample type G in county ℓ and time t. Within314

the Bayesian framework, composition sampling is the technical method that propagates uncertainty and315

dependence from estimates of parameters to estimates of prevalence, maps, and other features [37, p. 126].316

The prevalence pGℓt can be aggregated across both time and space, independently or together.317

The time-averaged prevalence pGℓ for demographic group and sample type G in county ℓ is the average318

of the weekly prevalences pGℓ1, pGℓ2, pGℓ3, . . . . Maps of pGℓ can illustrate where disease tended to be more319

widespread across the study period. Composition sampling, again, propagates uncertainty and dependence320

from estimates of parameters to estimates of pGℓ.321

The space-averaged prevalence pGAt for demographic group and sample type G in area A summarizes

all prevalence estimates pGℓt for G at time t in area A. The summary pGAt is a flexible weighted average
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specified via

pGAt =
∑

ℓ

wAℓpGℓt, (4)

where wAℓ is the relative weight (or contribution) of county ℓ to area A at time t. For example, we can use322

equation (4) to estimate overall prevalence in state A at time t by setting wAℓ = 0 for all counties outside323

state A. Within state A, we can set wAℓ proportional to the total area of state A’s WTD habitat that falls324

within county ℓ. So, if 20% of state A’s WTD habitat falls within county ℓ, then we set wAℓ = .2. As325

with pGℓ, composition sampling propagates uncertainty and dependence from estimates of parameters to326

estimates of pGAt.327

4.2.3 Spillover risk328

We compare prevalence estimates that are both space and time-averaged to evaluate spillover. We use329

conditional probabilities to quantify spillover as the risk that, on average, an infected deer was infected due330

to human infection pressure. Using aggregation methods described in Section 4.2.2, the sample-level model331

equation (1) can estimate pDH the time-averaged proportion of deer that were infected with SARS-CoV-2332

across CONUS. The sample-level model can also estimate pD the time-averaged proportion of deer that were333

infected with SARS-CoV-2 across CONUS in the absence of human infection pressure (i.e., through deer-334

to-deer transmission and other zoonoses). The estimate for pD uses the fitted model to predict prevalence335

with all human SARS-CoV-2 data set to 0. The sample-level model is not designed to directly estimate336

the time-averaged proportion of deer infected due to human infection pressure pH , but we assume the337

causes of infection are mutually exclusive, implying pDH = pD + pH . The conditional probability pH|DH =338

1−pD/pDH exactly quantifies spillover as we defined it earlier. Composition sampling propagates uncertainty339

and dependence from estimates of parameters to estimates of pH|DH .340
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Figure 1: Calibration curve, comparing in-sample predictions of infection risk pk (i.e., predicted prevalence)
to observed outcomes against a 1:1 reference line (dotted line). Apparent prevalence (proportion of positive
test results per group) is computed for model-fit diagnostic groups formed by binning predicted prevalence
into 10 ranges. Error bars depict standard, frequentist 95% confidence intervals for each apparent prevalence
group.
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Figure 2: Distributions of posterior estimates for time-averaged prevalence across counties from October
2021 through March 2022 for different demographic groups and management types.
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Figure 3: Estimates for time-averaged prevalence across counties plotted against ecological covariates from
October 2021 through March 2022, with empirical trend line overlaid (blue; GAM smoother). Each point in
the plot represents the time-averaged prevalence for one county.
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Figure 4: A) Estimates for local epidemiological reproduction number Rℓ and B) uncertainty (posterior
probability that Rℓ < 1). States that did not participate in the study are greyed out. Counties estimated
through the GAP WTD species distribution model to not support WTD populations are also greyed out.
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Figure 5: A) Estimates for time-averaged prevalence from October 2021 through March 2022, B) apparent
prevalence from October 2021 through March 2022, C) uncertainty for estimated prevalence (maximum
half-width of 95% highest posterior density interval), and D) number of samples collected from each county.
Grey shading is as described for Figure 4.
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Figure 6: A) Estimates for peak prevalence time with B) uncertainty (maximum half-width of 95% highest
posterior density interval). Grey shading is as described for Figure 4.

24



Figure 7: Estimated prevalence with uncertainty (maximum half-width of 95% highest posterior density
interval) in the two most intensively sampled counties, A) Onondaga County, New York (252 samples), and
B) Cuyahoga County, Ohio (609 samples). Blue time series shows the human death rate for both counties
during the same time period.
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Table 1: Parameter descriptions and posterior distribution summaries for regression effects and spatial
parameters. Posterior distribution summaries include the posterior mean, 95% highest posterior density
interval (HPDI), and posterior standard deviation (s.d.).
Component Parameter Covariate Type Post. mean 95% HPDI Post. s.d.

pk

a1 zk1 = 1 Intercept 1.95 ( 1.17, 2.69) 0.39
a2 zk2 = (Male)k Group indicator 0.59 ( 0.35, 0.85) 0.13
a3 zk3 = (Juvenile)k Group indicator 0.17 (−0.06, 0.41) 0.12
a4 zk4 = (Hunter harvest)k Group indicator −0.17 (−0.56, 0.22) 0.20
a5 zk5 = (Other management)k Group indicator −0.13 (−0.57, 0.34) 0.23
a6 zk6 = (Oral swab)k Sample indicator 0.28 (−0.41, 0.98) 0.36
a7 zk7 = (Unknown swab)k Sample indicator 1.50 ( 0.67, 2.40) 0.45
a8 zk8 = (Human death rate)k Spillover pressure proxy 0.14 ( 0.00, 0.29) 0.07
a9 zk9 = zk2zk3 Interaction (Sex/Age) −0.29 (−0.60, 0.05) 0.17
a10 zk10 = zk2zk4 Interaction (Sex/Management) −0.32 (−0.61,−0.01) 0.15
a11 zk11 = zk2zk5 Interaction (Sex/Management) −0.34 (−0.81, 0.16) 0.25
a12 zk12 = zk4zk6 Interaction (Management/Col’n.) −0.05 (−0.87, 0.80) 0.43
a13 zk13 = zk5zk6 Interaction (Management/Col’n.) −0.25 (−1.63, 1.15) 0.71
a14 zk14 = zk4zk7 Interaction (Management/Col’n.) 0.44 (−2.25, 3.42) 1.46

Rℓ

b1 xℓ1 = 1 Intercept −3.76 (−4.10,−3.32) 0.20
b2 xℓ2 = log(Human pop. density)ℓ County data 0.06 (−0.02, 0.16) 0.05
b3 xℓ3 = (Prop. WTD habitat)ℓ County data 0.10 (−0.01, 0.24) 0.06

ηℓ
τℓ N/A Spatial precision 2.23 ( 0.51, 4.54) 1.12
γℓ N/A Spatial range 1.00 ( 0.99, 1.00) 0.00

t0,ℓ
τt0 N/A Temporal precision 0.07 ( 0.04, 0.12) 0.02
γt0 N/A Temporal range 1.00 ( 0.99, 1.00) 0.00

rℓ(t) γ N/A Recovery rate 0.86 ( 0.53, 1.18) 0.17

26



Supplementary Files

This is a list of supplementary �les associated with this preprint. Click to download.

supplement.pdf

https://assets.researchsquare.com/files/rs-2842780/v1/4a9a295f2ca3a5b5d5e78154.pdf

