A surgical first: Application of indocyanine green fluorescence imaging for endoscopic third ventriculostomy in an infant

Markus Lehner
Lucerne Children’s Hospital

Peter Esslinger
Lucerne Children’s Hospital

Philipp Szavay (✉ philipp.szavay@luks.ch)
Lucerne Children's Hospital

Method Article

Keywords:

Posted Date: May 4th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-2830664/v1

License: ☕️ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Introduction:

Neonatal hydrocephalus requires early recognition and appropriate surgical management to prevent long-term sequelae. Definitive surgical management includes cerebrospinal fluid (CSF) diversion through a CSF shunt insertion, or neuro-endoscopic third ventriculostomy with or without choroid plexus cauterization. Surgical decision-making and the chosen approach are based on patient age, etiology, imaging, and comorbidities. Endoscopic third ventriculostomy (ETV) has been proven to provide a reasonable treatment option for hydrocephalus in children under 12 months of age. To our knowledge we report for the first time the application of indocyanine green fluorescence imaging to visualize the basilar artery during an ETV to prevent from harming the vessel.

Patients and methods:

A 7mo old patient with a history of preterm delivery at 27 weeks of gestation and intraventricular bleeding grade 2 developed consecutive hydrocephalus due to aqueductal obstruction. Indication was made for ETV.

Results:

ETV was carried out. During the procedure indocyanine green was applied to visualize the basilar artery prior to opening the floor of the third ventricle. This provided the surgical team with a clear picture of the anatomy thus enabling ETV while safely sparing the basilar artery.

Discussion:

ETV in infants are demanding procedures. The risk of harming the basilar artery is immanent as the vessel with its known anatomical variants cannot be clearly visualized through the floor of the third ventricle. With the application of indocyanine green fluorescence imaging this can be overcome providing an increased safety during the actual ETV. To our knowledge this is the first report on the use of indocyanine green fluorescence imaging for pediatric ETV. It might offer a new range of safety while providing minimal invasive neuro-endoscopic procedures to infant patients.

Introduction

Neonatal hydrocephalus requires early recognition and appropriate surgical management to prevent long-term sequelae. Definitive surgical management includes cerebrospinal fluid (CSF) diversion through a CSF shunt insertion, or neuro-endoscopic third ventriculostomy with or without choroid plexus cauterization. Surgical decision-making and the chosen approach are based on patient age, etiology, imaging, and comorbidities. Endoscopic third ventriculostomy with or without choroid plexus cauterization (ETV/CPC) has been proven to provide a reasonable treatment option for hydrocephalus in children under 12 months of age.
The use of indocyanine green fluorescence imaging has been applied in pediatric neurosurgery so far only for tumor surgery or the surgery of vascular anomalies such as aneurysms respectively. To our knowledge we report for the first time the application of indocyanine green fluorescence imaging to visualize the basilar artery during an ETV to prevent from harming the vessel.

Patients and methods

A 7mo old patient with a history of preterm delivery at 27 weeks of gestation and intraventricular bleeding grade 2 developed consecutive hydrocephalus due to aqueductal obstruction. Indication was made for ETV with or without aqueductoplasty depending on the intraoperative findings. A flexible neuroendoscope with a diameter of 4mm and a working channel of 1.2 mm (Karl Storz Endoskopie, Tuttlingen, Germany) was used. For visualization a camera system with fluorescence technology was used to allow visualizing anatomy and blood flow (Stryker, Kalamazoo, MI, USA). A neuro-endoscopic third ventriculostomy without choroid plexus cauterization was carried out. During the procedure and prior to opening the floor of the third ventricle indocyanine green was applied intravenously in a fractured fashion with a concentration of 0.25 mg/ml dissolved in distilled water with a single dosage of 0.5-1.0 ml. This was repeated 2–3 times in order to visualize the basilar artery before and after the actual ETV. Thereafter an aqueductoplasty was carried out using a 3mm PTCA balloon (Boston Scientific, Marlborough, MA, USA). A burr hole reservoir was placed connected to a 3.5 cm Bactiseal catheter (Codman, Raynham, MA, USA) to provide access for potential emergency puncture. The procedure itself, the perioperative as well as the postoperative course were uneventful.

Results

During ventriculoscopy, a clear visualization of the basilar artery could be achieved. (Image 1) This provided the surgical team with a clear picture of the anatomy and thus enabled the surgeon to safely carry out the ETV while sparing the basilar artery. After the ETV indocyanine green was applied again to double-check the integrity of the vessel. (Image 2)

Discussion

ETV in infants are demanding procedures. The risk of harming the basilar artery is immanent as the vessel with its known anatomical variants. This includes fenestrations, duplications, and persistent fetal arteries. In addition, it cannot be clearly visualized through the floor of the third ventricle during ventriculoscopy thus making it more difficult to choose a safe spot for the opening of the floor of the third ventricle. With the application of indocyanine green fluorescence imaging this can be overcome providing an increased safety during the actual ETV.

The application of near infrared spectroscopy (NIRS) imaging in surgery is evolving rapidly. The use of indocyanine green fluorescence imaging has been established in many fields of pediatric specialties, such as oncology, urology, thoracic, hepato-biliary and bowel surgery respectively.¹ The application of
indocyanine green for pediatric applications has been proven so far to be safe and being without adverse side effects. This could be shown also for pediatric neurosurgical indications such as surgery of the brainstem in children. So far, the use of indocyanine green fluorescence imaging in pediatric neurosurgical applications has been limited to tumor surgery and to surgery of vascular malformations such as aneurysm only. To our knowledge this is the first report on the use of indocyanine green fluorescence imaging for pediatric neurosurgery. It might offer a new range of safety while providing minimal invasive neuro-endoscopic procedures to infant patients.

Declarations

Ethical Approval

Not applicable. (There was no ethical committees, or Internal Review Board respectively obtained as the study was done during a regular case while having no implications on the patient, the procedures safety or any other aspect which would require ethical approval. Therefore, a consent to participate and/or consent to publish were not obtained from the parent and/or legal guardian of the patient as this was not applicable.)

Competing interests

There are no competing interests.

Authors' contributions

Philipp Szavay and Markus Lehner were designing the study as well as writing the manuscript. Philipp Szavay and Markus Lehner were providing the images. Philipp Szavay and Markus Lehner were reviewing and approving the final version of the manuscript. Peter Esslinger was reviewing and revising the manuscript. Peter Esslinger has approved the final version of the manuscript.

Funding

(Not applicable) No funding was obtained.

Availability of data and materials

All data and materials were delivered for the submission; all data and materials can be obtained through the corresponding author.

References

1. Heba Alghoul, Farah Al Farajat, Osaid Alser, Andrea Rogers Snyr, Carroll M. Harmon, Nathan M. Novotny Intraoperative uses of near-infrared fluorescence spectroscopy in pediatric surgery: A

Figures
Figure 1

Image 1: Endoscopic view onto the floor of the third ventricle following the application of indocyanine green with the visualization of the bulbus of the basilar artery
Figure 2

Image 2: Endoscopic view onto the floor of the third ventricle following the opening of the floor and after the application of indocyanine green