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Abstract
Background: Early diagnosis of type 2 diabetes mellitus (T2DM) is still di�cult. Screening of plasma
biomarkers has great signi�cance of optimizing diagnosis and predicting the complications of T2DM.

Methods: We used a special diet, Purina #5008, to induce diabetes in Zucker leptin receptor gene-de�cient
rats (fa/fa) to establish Zucker diabetic fatty (ZDF) rats, simulating the early stage of T2DM. The
differentially expressed proteins (DEP) and lipids (DEL), as potential biomarkers, were screened to
compare the plasma expression levels in ZDF rats and their basic diet-fed wild-type controls (fa/+) by
Tandem Mass Tags (TMT) and liquid chromatography-tandem mass spectrometry.

Results: These two groups had different plasma proteins and lipids pro�les consisting of 84 DEPs and,
179 DELs identi�ed in the positive ion mode and 178 DELs in the negative ion mode, respectively.
Enrichment analysis of these different indicators showed that oxidative stress, insulin resistance and
metabolic disorders of glycan and lipid played an important role in generating the difference. Some
markers can be used as candidate biomarkers in prediction and treatments of T2DM, such as
ceruloplasmin, apolipoprotein C-I, apolipoprotein C-II, apolipoprotein C-IV.

Conclusion: These plasma differences help to optimize the diagnosis and predict the complications of
T2DM, although this remains to be veri�ed in the crowd. Trace elements related-metalloproteins, such as
ceruloplasmin, and lipid metabolism and transport-related apolipoprotein C are expected to be candidate
biomarkers of T2DM and should be given more attention.

1. Background
Diabetes, one of the leading causes of death in the world, is a chronic, metabolic disease characterized by
elevated levels of blood glucose. Based on the investigation from the International Diabetes Federation
(IDF) Atlas, about 425 million adults worldwide aged 20–79 years are affected by diabetes in 2017 [1].
Most of the diabetics (90%-95%) suffering from type 2 diabetes mellitus (T2DM) could bene�t directly
from early diagnosis and treatments [2]. However, unfortunately, half of the patients may be undiagnosed
due to the lack of early detection [1]. The conventional methods based on blood glucose testing need to
be improved or supplemented with other diagnostic methods. Moreover, with the obese population and
the prevalence of T2DM growing rapidly [3-6], the necessity for prompt diagnosis or prediction of T2DM
becomes more urgent.

The development of diseases is accompanied by metabolic changes, and existing studies have shown
that biomarkers in plasma and urine can predict the occurrence of some chronic diseases [7-9]. This
helps to optimize the diagnostic method and to predict related complications. The biomarkers research
regarding diabetes nephropathy, a serious complication of diabetes, has made great progress [10, 11],
however, study of early diagnosis of T2DM is still limited [12]. To a certain extent, this is due to that the
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presence of severe metabolic disorders and signs of microvascular damage in the stage of diabetic
complications help in the selection of markers; while slight changes in blood glucose and other
metabolites in the early stages of diabetes are not likely to be discovered by epidemiological studies.
Therefore, screen potential biomarkers in diabetes animal models is an indispensable step for improving
early diagnosis of T2DM.

ZDF rats are commonly used as spontaneous T2DM animal models and are highly recognized in the
development of diabetes drugs [13-16]. Due to the defection of leptin receptor-gene, they show
characteristics such as obesity, hyperglycemia, insulin disorders and dyslipidemia in the case of special
diet induction, which closely match the pathological characteristics of T2DM patients. This diet-only
modeling method is similar to natural development of T2DM in human and does not change the
physiological state of rats which may change in experimental diabetes animal models due to drug or
surgery. This is of great signi�cance to the screening of candidate biomarkers of T2DM and provides
feasibility for our study. The liquid chromatography-tandem mass spectrometry (LC-MS/MS) technology
also provides a reliable mean for plasma proteomics and lipidomics. In preliminaries screening of plasma
differentially expressed proteins (DEP) and lipids (DEL) in Zucker diabetic fatty (ZDF) rats, this study
provides an important reference for screening and veri�cation of T2DM plasma biomarkers in the crowd.

2. Methods
2.1. Animals and groups

Zucker leptin receptor gene-de�cient rats (fa/fa) and their littermate wild-type rats (fa/+) (male, 8 weeks
of age, SPF VAF/Elite) were supplied by Charles River in Beijing, China. All animals were kept in a barrier
system. The animal room was maintained at approximately 22℃ and 50% humidity with a 12 hours
light/dark cycle. Food and drinking water were available. Purina #5008 (protein 23.5%, fat (ether extract)
6.5%, fat (acid hydrolysis) 7.5%, �ber (crude) 3.8%, nitrogen-free extract (by difference) 49.4%, ash 6.8%;
gross energy 4.15 kcal/gm. Calories provided by the calorigenic nutrients: protein 26.849%, fat (ether
extract) 16.710%, carbohydrates 56.441%.) was utilized to induce obesity and diabetes in Zucker leptin
receptor gene-de�cient rats (fa/fa). Simply, they were fed by Purina #5008, starting at 8 weeks of age, for
3 weeks. Blood glucose >11.1 mmol/L was used as the standard of successfully modeling of ZDF rats
[17]. In order to avoid the die’s effects on plasma, the ZDF rats were maintained on a basic diet (crude
protein ≥18%, crude fat ≥4%; gross energy 3.40 kcal/gm. Calories provided by the calorigenic nutrients:
protein 23.07%, fat (ether extract) 11.85%, carbohydrates 65.08%.) for one week, that was the 12th weeks.
The wild-type rats (fa/+) were kept on a basic diet all along. By the end of the 12th week, all animals were
fasted for 12 hours, anesthetized and blooded from the abdominal aorta using EDTAK2 anticoagulation
tubes. Plasma was collected after standing and centrifugation, and then stored at -80℃ until detection.
Three samples from each of the ZDF group and their basic diet-fed littermate wild-type group were
labeled with TMT to analyze the proteins in plasma by LC-MS/MS. And six from each were used to
analyze the liquids by LC-MS/MS. All animals were treated according to the NIH Guide for Care and Use
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of Laboratory Animals. All protocols were approved by the Institutional Animal Care and Use Committee
of Shandong University.

2.2. Proteomic TMT labeling and LC-MS/MS analysis

Proteomic TMT labeling technology used isotopically labeled peptides to analyze the protein levels in
groups by high-precision mass spectrometer [18]. The experimental procedures in our study included:
extraction, quanti�cation, detection, removal of peak protein, enzyme digestion and desalting [19],
labeling, fraction separation and mass spectrometry [20], etc. Reagents and procedures were described in
the Additional �le 1.

2.3. Proteins identi�cation and screening of differentially expressed proteins (DEP)

The mass data was directly imported into Proteome Discoverer 2.2 for database search. The database we
used was the Uniport (Accessed 18 January 2019, Rattus Norvegicus, 36090 sequences). Analysis
parameters were described carefully in the Additional �le 1. Peptides with a con�dence of more than 95%
were peptides spectrum matches (PSMs). Proteins containing at least one unique peptide were trusted
proteins. We screened the results and retained only the PSMs and trusted proteins. FDR validation was
also performed to remove peptides and proteins with P-value above 5%. Relative protein quanti�cation
was performed based on the peak area. The ratio of the mean quantization of the ZDF group to their
basic diet-fed littermate wild-type group was the fold change (FC). We considered FC >1.2 and P <0.05 as
DEPs.

2.4. DEPs enrichment analysis

Gene Ontology (GO), Cluster of Orthologous Groups of proteins (COG), Kyoto Encyclopedia of Genes and
Genomes (KEGG) annotations, and Inter Pro (IPR) annotations [21-25] were performed to fully understand
the functional properties of DEPs.

GO function enrichment analysis was carried out to identify the functional process of the DEPs in
biological processes (BP), cell composition (CC) and molecular function (MF) by hypergeometric
veri�cation. KEGG pathway enrichment analysis was also conducted for exploring the causes of DEPs
and the mechanisms of T2DM. P <0.05 was identi�ed as the signi�cant difference.

2.5. Protein-protein interaction (PPI) network analysis of DEPs

PPI network analysis of the DEPs was constructed from the STRING (https://string-db.org) and visualized
by Cytoscape (version 3.7.1). The Molecular Complex Detection (MCODE, version 1.31) app in Cytoscape
was used to analyze the modules in the network.

2.6. Lipidomic LC-MS/MS analysis

The LC-MS/MS technique was used for lipidomics research. The experimental procedures included: lipid
extraction, LC-MS/MS detection [26-30], etc. The reagents and procedures were detailed in the Additional
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�le 1.

2.7. Lipids identi�cation and screening of differentially expressed lipids (DEL)

Progenesis QI (Waters) was used to identify lipids and multivariate statistical analysis. Lipidmaps
(http://www.lipidmaps.org), HMDB (http://www.hmdb.ca), NIST (https://chemdata.nist.gov) and an in-
house lipid database of Novogene Bioinformatics Technology Co. Ltd were used for identi�cation.
Reagents and procedures are also described in the Additional �le 1. The multivariate statistical analyses
used to reveal the differences included principal component analysis (PCA) and partial least squares
discriminant analysis (PLS-DA). The variable importance in the projection (VIP) of the �rst principal
component of the PLS-DA model was combined with P of T-test to screen DELs. We considered VIP >1.0,
FC >2.0 and P <0.05 as DELs.

2.8. Correlation analysis of proteomics and lipidomics

According to the order of FC, we selected the top 50 DEPs and the top 20 DELs for statistical correlation
analysis of expression levels to explore the consistency of the proteomic and lipidomic data. We also
conducted KEGG pathway enrichment analysis on DELs, reviewed and compared the results of DEPs and
DELs. The pathways in which both proteins and lipids were enriched had received particular attention.

3. Results
3.1. Purina #5008 diet-induced irreversible diabetes in Zucker leptin receptor gene-de�cient rats

After fed by Purina #5008 for 3 weeks, up to 11 weeks old, Zucker leptin receptor gene-de�cient rats
(fa/fa) developed obesity and elevated blood glucose (Fig. 1). And this early diabetic state was not
corrected by one week’s basic diet, that was when they were 12 weeks old (n=10, paired T-test in 11 W and
12 W, P =0.259).

3.2. Screening of DEPs and their enrichment analysis

We identi�ed a total of 697 proteins (Fig. 2a). Quantitative data and annotation results of these proteins
were detailed in the Additional �le 2. Among all the identi�ed proteins, 25 were signi�cantly up-regulated
(FC > 1.2 and P <0.05) and 59 were markedly down-regulated (FC <0.83 and P <0.05) (Fig. 2b). The
criteria used in our study was appropriate, which was con�rmed by the hierarchical clustering of DEPs
(Fig. 2c).

GO function enrichment analysis gave signi�cant enriched GO function entries in the DEPs compared to
all identi�ed proteins (Fig. 2d), de�ning the biological function of the DEPs. GO biological process (BP)
analysis found that the DEPs were mainly enriched in multicellular organism development, system
development, regulation of bone mineralization, cell adhesion, homophilic cell adhesion via plasma
membrane adhesion molecules, negative regulation of cellular process, regulation of biological process,
and oxidation-reduction process. In the cell composition (CC) part, the DEPs were involved in the
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extracellular matrix and extracellular region. In the molecular function (MF) section, the DEPs joined in the
calcium ion binding, metal ion binding, lyase activity, hydro-lyase activity, magnesium ion binding,
enzyme activator activity.

KEGG pathway enrichment analysis demonstrated that the DEPs were enriched in proteoglycans in
cancer, ECM-receptor interaction, HIF-1 signaling pathway, endocrine resistance, RNA degradation, which
indicated that those above and T2DM share the same molecular pathways.

3.3. PPI analysis of DEPs raised the need for lipidome

There were 69 common proteins and 89 interactions when we matched the 84 DEPs with proteins in the
STRING database (Rattus Norvegicus). The results were described in detail in the permalink: STRING
(https://version-11-0.string-db.org/cgi/network.pl?networkId=fOIDKdXKqgFI. Accessed 28 May 2019). A
network containing 15 up-regulated proteins and 33 down-regulated proteins was performed after
removing unconnected nodes (Fig. 2e). Four signi�cant modules were constructed by MCODE, one of
which was associated with lipid metabolism and transport. Preliminary analysis of these proteins in this
module suggested there were some changes in the plasma lipids. So, we conducted plasma lipidomics.

3.4. The screening of DELs

We identi�ed 1000 lipids in the positive ion mode, of which 153 were substantially up-regulated (VIP >1.0,
FC >2.0 and P <0.05) and 26 were signi�cantly down-regulated (VIP >1.0, FC <1.5 and P <0.05). In the
negative ion mode, we identi�ed 1291 lipids, of which 139 were substantially up-regulated and 39 were
signi�cantly down-regulated. The quantitative data and statistical analysis results of these lipids were
detailed in the Additional �le 3. We obtained lipid classi�cation by matching the screened DELs with the
Lipidmaps database (http://www.lipidmaps.org), removed unmatched entries and counted the number of
DELs accompanied by each classi�cation. The top categories are Glycerolipids (GL),
Glycerophospholipids (GP), Fatty Acyls (FA), and Sphingolipids (SP) in the positive ion mode. And in the
negative ion mode, they are GP, FA, SP, and GL (Fig. 3a). The plasma lipid pro�le of ZDF rats was different
from their basic diet-fed littermate wild-type control (Fig. 3b), and like the plasma protein pro�le, it could
distinguish the state of T2DM.

3.5. Correlation analysis suggested the main reason for the differences

The expressions of the top 50 DEPs and the top 20 DELs are strongly correlated. A simple statistical
display of the absolute value of the Pearson correlation coe�cient is as follows: Mean ±SD and Median
[IQR], 0.90 ±0.05 and 0.91 [0.07] in the positive ion mode and 0.86 ±0.09 and 0.88 [0.11] in the negative
ion mode. Correlation analysis showed a high consistency between DEPs and DELs (Fig. 3c). Please refer
to the Additional �le 4 for the correlation analysis heatmap with detailed DEPs/DELs annotations.

Based on this, we conducted KEGG pathway enrichment analysis on DELs as did on DEPs aiming to �nd
the main reasons for the differences. The analysis prompted that DELs were enriched in purine
metabolism, biosynthesis of alkaloids derived from histidine and purine in the positive ion mode, and in

https://version-11-0.string-db.org/cgi/network.pl?networkId=fOIDKdXKqgFI
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synthesis and degradation of ketone bodies in the negative ion mode. The original P-value was then
corrected by hypergeometric veri�cation, and the KEGG pathway enrichment results of both DEPs and
DELs were compared and reviewed (Fig. 4). We found that metabolism disorder of glycan and lipid plays
a signi�cant role in the pathogenesis of T2DM. Besides, the enrichment results of DEPs also suggested
oxidative stress and insulin resistance were related to the changes. Table 1 displays the candidate
biomarkers related to the mechanism of these differences.

Table 1 Candidate biomarkers of T2DM suggested by KEGG pathway enrichment analysis

Pathogenesis

(suggested by KEGG
pathways)

Candidate biomarkers of T2DM

Up-regulated proteins Down-regulated proteins

Oxidative Stress   ceruloplasmin

  extracellular superoxide
dismutase [Cu-Zn]

  glutathione peroxidase 6

Insulin Resistance glycogen phosphorylase, liver form insulin-like growth factor 1,
isoform CRA_b

60 kDa heat shock protein,
mitochondrial

 

Glycan Biosynthesis and
Metabolism

glyceraldehyde-3-phosphate
dehydrogenase

 

4-trimethylaminobutyraldehyde
dehydrogenase

 

Lipid Metabolism apolipoprotein C-I apolipoprotein M

apolipoprotein C-II (Predicted) very low-density lipoprotein
receptor

apolipoprotein C-IV  

4. Discussion
Our study here showed that ZDF rats (fa/fa) and their basic diet-fed littermate wild-type rats (fa/+)
exhibited different plasma proteins and lipids pro�les which could distinguish the diabetic status of rats
clearly by the hierarchical clustering of DEPs/DELs. GO function enrichment analysis demonstrated that
DEPs were in the extracellular, which gave these proteins the potential to become plasma biomarkers.
Furtherly, KEGG pathway enrichment analysis of DEPs and DELs revealed the related mechanisms of
T2DM, such as oxidative stress, insulin resistance and metabolic disorders. This was consistent with
previous researches [31-33]. Some differentially expressed indicators and their role in KEEG pathways led
us to believe that they had the potential to be biomarkers, as follows: Down-regulated ceruloplasmin,
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extracellular superoxide dismutase [Cu-Zn] and glutathione peroxidase 6 indicated a decrease in
antioxidant level [34, 35]. Up-regulated glycogen phosphorylase (liver form), 60 kDa heat shock protein
(mitochondrial), and down-regulated insulin-like growth factor 1 (isoform CRA_b) proved a signi�cant
insulin resistance [36-38]. Up-regulated glyceraldehyde-3-phosphate dehydrogenase and 4-
trimethylaminobutyraldehyde dehydrogenase showed an increasing degree of plasma glycolysis [39]. Up-
regulated apolipoprotein C-I and apolipoprotein C-II illustrated blood low-density lipoproteins accumulated
in the blood, thereby increasing the risk of cardiovascular complications in diabetes [40, 41].

Importantly, we found two interesting points in these screened biomarkers.

Firstly, three oxidative stress-related markers that we screened, ceruloplasmin, extracellular superoxide
dismutase [Cu-Zn] and glutathione peroxidase 6, are all trace elements related-metalloproteins.
Ceruloplasmin stores approximately 95% of copper in the blood in a non-diffused state [42] and is linked
to iron metabolism [43]. More than half of the patients with aceruloplasminemia (ACP), an autosomal
recessive genetic disease caused by mutations in the gene encoding ceruloplasmin, have diabetes as
their earliest symptom [44]. And some epidemiological studies use ceruloplasmin to indicate diabetes
nephropathy progresses [45-49]. Each subunit of extracellular superoxide dismutase [Cu-Zn] contains a
copper ion and a zinc ion, and each of the four subunits of glutathione peroxidase 6 contains a single
selenium ion. These metal trace elements play a major part in maintaining the normal function of these
proteins [50-52]. So, our study provides evidence for the association of T2DM with trace elements, such
as copper, zinc, iron, selenium, through metalloproteins.

The second point is a question of lipid metabolism and transport. A signi�cant module of the DEPs PPI
network, which contains three up-regulated proteins, apolipoprotein C-I, apolipoprotein C-II (Predicted) and
apolipoprotein C-IV, and two down-regulated proteins, apolipoprotein M and very-low-density lipoprotein
receptor, suggests metabolism and transport disorder of lipid. Hierarchical clustering of DELs proves this.
Since plasma lipids are greatly in�uenced by diet, we use the basic diet to feed ZDF rats for one week and
all animals are fasted for 12 hours before collecting plasma samples. And because of this, we don’t
screen biomarkers in DELs. It is noteworthy that our results show the association between the
apolipoprotein C and T2DM. Since there are limited studies in this area [53, 54], we will pay more
attention to the changes in apolipoprotein C during the progress of T2DM in the future.
The pathogenesis of T2DM is complicated. Multi-omics study helps to profoundly understand the
molecular mechanisms and explores the possible directions in diagnosis and treatment of it. Screening
of plasma biomarkers has unparalleled advantages, as the plasma is more stable and more readily
available compared to urine and tissues, respectively [55, 56]. We screened the potential biomarkers of
T2DM by comparing the plasma proteins and lipids expression levels in ZDF rats (fa/fa) and their basic
diet-fed littermate wild-type controls (fa/+). The comparison method we adopted fully considered the
in�uence of genetics and environments. Although this comparison will overestimate the role of the
genetic effects of the leptin receptor gene in T2DM and increase the di�culty of comparison with other
similar studies [57, 58], we believe this is a simple and effective comparison strategy when the
population's genetic background is not known clearly. So far, very limited studies have been performed
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with regard to detection of plasma proteins and lipids pro�les in ZDF rats. Therefore, this study may
provide a novel strategy to characterize the molecular mechanism of T2DM and search for potential
biomarkers [54, 59, 60], despite the fact that this is only at the animal level. It is notable that the samples
number is small, although this is su�cient for LC-MS/MS analysis. Increasing samples and verifying the
predictability of these candidate biomarkers are the focus of our next work.

5. Conclusions
Differentially expressed proteins and lipids in plasma are helpful for early diagnosis and predict the
complications of T2DM. Trace elements related-metalloproteins, such as ceruloplasmin, and lipid
metabolism and transport-related apolipoprotein C are important in the progression of diabetes and are
expected to be candidate plasma biomarkers of T2DM.
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ACP aceruloplasminemia
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Figure 1

Purina #5C08 diet-induced irreversible diabetes in Zucker leptin receptor gene-de�cient rats. a Bodyweight
of the rats. b Blood glucose of the rats. The dotted line in the �gure represents the standard for
successful modeling of ZDF, the blood glucose >11.1 mmol/L. (n =10. #: P <0.05, paired T-test in 11 W
and 12 W. *: P <0.05, paired T-test in ZDF and their basic diet-fed littermate wild-type control at the same
time point.)
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Figure 2

Visualization of differentially expressed proteins (DEP) and enrichment analysis. a Function annotations
Venn graph of all the identi�ed 697 proteins. b Volcano plot of DEPs. Gray in the Volcano plot indicate the
proteins with insigni�cant differences, red indicates up-regulated and blue indicates down-regulated. We
use triangles and squares to highlight the lipid metabolism and transport-related DEPs and
metalloproteins, respectively. c Heatmap of DEPs. Each row is corrected for the Z value. Longitudinal is
the clustering of samples and horizontal is the clustering of proteins. The heatmap with annotations are
provided in the Additional �le 4. d Histogram of GO enrichment analyses results. The entries in the
histogram are arranged from left to right according to the degree of enrichment, and the curves show the
change of enrichment degree. e Protein-protein interaction network of DEPs. Each node represents a
protein. The up-regulated protein is in red and down-regulated protein is blue. The size of each node is
proportional to the -log10 P-value. The edges represent protein-protein interactions. The width of the edge



Page 17/19

is proportional to the combined-score in STRING. The module circled by the red line is associated with
lipid metabolism and transport.

Figure 3

Visualization of differentially expressed lipids (DEL) and their correlation with DEPs. a Volcano plot of
DELs. Gray in the Volcano plot represents a lipid with no differential expressions, red represents up-
regulated and the blue represents down-regulated. We use different shapes to highlight the lipid



Page 18/19

categories that changed signi�cantly. The size represents the variable importance in the projection (VIP).
b Heatmap of DELs. Each row is corrected for the Z value. The heatmap with annotations are provided in
the Additional �le 4. c Correlation analysis heatmap of the top 50 DEPs and the top 20 DELs according to
the order of FC. The redder the color, the stronger the positive correlation; the bluer the color, the stronger
the negative correlation. The heatmap with annotations are provided in the Additional �le 4. Fig. 4
Visualization of KEGG pathway enrichment analysis of DEPs and DELs. a Bubble chart of KEGG pathway
enrichment analysis of DEPs. Abscissa represents the enrichment degree, the ratio of differences to the
number of backgrounds identi�ed in the pathway. The color is proportional to the -log10 P-value and the
size represents the number. b Result of DELs in the positive ion mode. c Result of DELs in the negative ion
mode. (DEPs results show only a part, DELs results are comprehensive.)

Figure 4

Visualization of KEGG pathway enrichment analysis of DEPs and DELs. a Bubble chart of KEGG pathway
enrichment analysis of DEPs. Abscissa represents the enrichment degree, the ratio of differences to the
number of backgrounds identi�ed in the pathway. The color is proportional to the -log10 P-value and the
size represents the number. b Result of DELs in the positive ion mode. c Result of DELs in the negative ion
mode. (DEPs results show only a part, DELs results are comprehensive.)
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