Neglecting farmer cropping adaptation can overstate water shortages in large-scale hydrological modeling assessments.

Jim Yoon (jim.yoon@pnnl.gov)
Pacific Northwest National Laboratory https://orcid.org/0000-0002-8025-2587

Nathalie Voisin
Pacific Northwest National Laboratories, University of Washington https://orcid.org/0000-0002-6848-449X

Christian Klassert
Helmholtz Centre for Environmental Research - UFZ

Travis Thurber
Pacific Northwest National Laboratory

Wenwei Xu
Pacific Northwest National Laboratory

Analysis

Keywords:

Posted Date: April 7th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-2782824/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Threats to water security are a paramount global concern, largely driven by human pressures on scarce water resources. The irrigation of croplands, which accounts for the lion’s share of human water consumption, is critical in understanding water shortage trajectories. Despite irrigation’s defining role, large-scale hydrological modeling (LHM) frameworks typically impose trajectories of land use that underlie irrigation demand, neglecting dynamic feedbacks in the form of human instigation of and subsequent adaptation to water shortage via irrigated cropping changes. We extend an LHM with adaptive farmer agents, applying the model to the Continental United States to evaluate water shortage outcomes that emerge from the interplay between hydrologically driven water availability, reservoir management, and farmer cropping adaptation. Hypothetical comparative simulations reveal that neglecting farmer cropping adaptation regularly leads to pronounced overestimation of water shortages, with adaptation reducing U.S.-wide annual water shortage by as much as 42 percent in an experiment that mimics U.S. hydrology from 1950–2009.

Introduction

Threats to water security are a paramount global concern, driven by growing demographic pressures on scarce water resources and a changing climate (Vorosmarty et al., 2000; Oki and Kanae, 2006; Vorosmarty et al., 2010; Schewe et al., 2014; Liu et al., 2017; Huang et al., 2019). Regional and global water security outcomes are commonly framed in terms of depletion to groundwater (GW) and surface water (SW) resources (Wada et al., 2010) or through water shortage, defined as the gap between water resources availability and human water demand (Hoekstra et al., 2012; Brauman et al., 2016). In modeling studies evaluating water shortage, human water demand is commonly identified as the primary driver in undesirable future water security outcomes (Vorosmarty et al., 2000; Hejazi et al., 2015; Voisin et al., 2016; Hadjimichael et al., 2020; Yoon et al., 2021).

Of the activities underlying human water consumption, irrigation accounts for the lion’s share (Doll and Siebert, 2002; Brauman et al., 2016, Huang et al., 2018). Over the 20th century, the pace of irrigation expansion has been remarkable, with a six-fold increase in irrigated areas (Siebert et al., 2015). Opportunities for further irrigation expansion have been identified as a means to bolster agricultural productivity in the face of climate change (Elliott et al., 2014), though inter-sectoral competition for water resources may curb this potential (Rosegrant et al., 2002). The role of dams on the enablement of irrigation has been a particular focus of several modeling analyses (Hanasaki et al., 2006; Fekete et al., 2010; Biemans et al., 2011; Voisin et al., 2013a; Haddeland et al., 2014).

Despite irrigation’s defining role, existing large-scale hydrological modeling (LHM) frameworks for national to global assessment of water shortage (Vorosmarty et al., 2000; Doll et al., 2003; Hanasaki et al., 2008; Pokhrel et al., 2016; Sutanudjaja et al., 2018; Grogan et al., 2022) often exogenously impose trajectories of human land use that underlie irrigation demand in models, neglecting potential natural to human system feedbacks (Wada et al., 2017; Huang et al., 2019) such as human instigation of and subsequent adaptation to water scarcity (Turner et al., 2019; Dolan et al., 2021). While cropping adaptations have recently garnered attention in the agricultural adaptation literature (Sloat et al., 2020), such dynamics are largely absent in LHM frameworks leading to potential misdiagnosis of water security.

The representation of dynamic cropping adaptation in LHM frameworks for national to global scale water security analysis remains a major gap. Here we present a new modeling framework, WM-ABM, to evaluate water shortage outcomes that emerge from the interplay between climate-driven surface water availability, reservoir operations, and farmer cropping adaptation. The integrated model extends a large-scale grid-based river routing, reservoir management, and water allocation model, MOSART-WM (Voisin et al., 2013b), with a multi-agent farmer model of crop choice developed using a positive mathematical programming (PMP) approach (Howitt, 1995). While the PMP is an optimization-based simulation model, the approach allows for automated calibration to observed cropping, economic, and hydrologic data, capturing realistic crop patterning of farms (Heckelei et al., 2012) and flexibly accommodating local, regional, or national calibration datasets.

The model is deployed to conduct comparative simulations at 1/8th degree (~12 km) spatial resolution across the continental United States (CONUS) (~50,000 grid cells) representing surface water availability conditions that mimic the 1950-2009 hydrological record. We note that the study is designed as a hypothetical experiment rather than a historical reconstruction, as influences such as crop areas, areas equipped with irrigation, and all other non-hydrological factors are fixed over the model period. The hypothetical experiment is intentionally designed to isolate the potential cropping adaptation response to changes in water availability (using the 1950-2009 hydrological record as a reasonable window of hydrological variability), holding all other influences constant.

To distinguish the effect of farmer adaptation to hydrological change on water shortage outcomes, we compare model results between a non-adaptive run and an adaptive run, herein referred to as the “baseline” and “adaptive” runs respectively. In the baseline run, the surface water and groundwater irrigated crop areas are exogenous and static, as is common in the LHM literature. In the adaptive run, farmer agents endogenously determine their irrigated cropped areas for 10 general crop categories on an annual basis based on dynamically updated expectations of surface water availability (both local runoff and reservoir storage). The water shortage analytics are then calculated using unmet demand for surface water. Expected agricultural profits are also calculated for each year based on the farms’ cropping decisions. Given the hypothetical nature of the experiments a detailed comparison of model results against observed data is not applicable, though we evaluate the plausibility and reasonability of model results by comparing modeled and observed irrigated crop area changes over an isolated period of drought in the Western United States to determine whether modeled crop adaptations are commensurate with historical observations (see supplemental materials).

Results

Farmer cropping adaptation substantially alleviates simulated water shortages
Accounting for farmer cropping adaptation substantially alleviates simulated annual water shortages, especially during periods of severe regional drought (Fig. 1, see Fig. S2 for monthly details). Water shortage alleviation due to adaptation is especially prevalent across the Western United States (Fig. 1b) and most evident during periods of drought (Fig. 1a), with the California Hydrologic Unit Code (HUC) 2 region by far exhibiting the largest shortage differences due to adaptation. For example, water availability conditions from 1987–1992 were one of the driest in California’s recorded climate history. From the onset of these dry conditions to their culmination, modeled results indicate that cropping adaptation increasingly mitigates water shortages, reaching a decrease in average annual water shortage of ~107 m3/s when comparing the adaptive run to the baseline for year 1991 (monthly shortage decrease reaches a peak of 299 m3/s for August 1992). Neglecting farmer adaptation potentially overestimates water shortage by over a factor of 2 for the 1991–1992 drought years in California. Similar effects arise when accounting for farmer adaptation in response to the 2000s Missouri drought, the 1976–1977 Upper Colorado drought, and the 1987–1992 Snake River low flow period. In the Missouri HUC 2 region decreases in water shortage reach 2.4 m3/s in year 2002 when comparing the adaptive run to the baseline (or 32 percent of the shortage in the baseline run). In the Pacific Northwest region, water shortage is reduced by 15 m3/s in 1992 (or 66 percent of the shortage in the baseline run) due to the 1987–1992 low flow period in the Snake River basin.

The evaluation of water shortages on a monthly basis (see supplemental materials) indicates that water shortage differences between the adaptive model runs are concentrated in the peak irrigation months in regions that regularly experience water shortage. In the California region for example, water shortage difference between the adaptive and baseline runs in July reaches a peak of 299 m3/s for August 1992 (~3x the annual 1992 shortage difference rate). For the Pacific Northwest region, peak water shortage difference between the runs reaches 126 m3/s in August 1992 (~8x the annual 1992 shortage difference rate).

While accounting for farmer cropping adaptation primarily results in lower water shortages across the Western United States, there are also regions and periods in which cropping adaptation exacerbates simulated water shortage compared to non-adaptation. Increases in simulated water shortage are notable in the headwaters of the Middle Gila River Basin in Arizona, the Bear Watershed northeast of the Great Salt Lake in Utah, and the southern end of the Central Valley in California. Such increases in peak shortages with adaptation are expected over regions which tend to experience sequences of increasing water availability (along with increasing farmer expectations of water availability), interspersed by low water availability years which result in more severe shortage due to farmers increased water availability expectations. We also note that lack of representation of long-distance inter-basin transfers may account for these increases in peak shortage for regions like the Southern Central Valley of California and the Middle Gila River basin in Arizona, a limitation which is addressed further in the discussions.

Across the eastern United States (east of the Mississippi River), water shortage differences between the adaptive run and the baseline run are subdued, with significant changes isolated to southern pockets of the Texas Gulf, Lower Mississippi, and South-Atlantic Gulf regions. For both runs, the U.S. wide peak water shortage occurs in year 1977, with a 364 m3/s peak for the baseline run and a 332 m3/s peak for the adaptive run, a 32 m3/s difference between the two.

Farmers primarily adapt to water shortages through the contraction of cropped areas

In the most prominent regions of water shortage, the hypothetical modeling experiment results indicate that farmers primarily adapt through the contraction of irrigated cropped areas with crop switching playing a secondary role. Figure 2a-d shows simulated changes in total SW-irrigated crop areas for four representative regions with prominent shortage (California, Missouri, Upper Colorado, Pacific Northwest), while Fig. 2e-h assigns farms to crop adaptation categories based on the amount of crop adaptation simulated over the model period. For the latter, agents are assigned to one of four categories depending upon the simulated level of crop adaptation activity: 1) crop expansion/contraction, 2) crop switching, 3) both crop expansion/contraction and crop switching and, 4) no adaptation (see methods for details). Irrigated crop adaptation activity is heavily concentrated in the Western United States, with relatively subdued activity in the Eastern United States outside of the Lower Mississippi and South Atlantic-Gulf regions. Across the Western United States, irrigated crop adaptation largely takes the form of overall crop expansion and contraction, with notable hot spots of adaptation including the California Central Valley, Snake River Basin, and the Western Missouri regions.

In California, total SW-irrigated cropped areas fluctuate substantially. Preceding the 1987–1992 drought, SW-irrigated crop areas reach a maximum of 3.6M acres in 1985 dropping to 2.5M acres by the end of the drought in 1993, a 31 percent decline in SW-irrigated areas over an 8-year period. Crop makeup (in terms of the percentage each crop accounts for among all SW-irrigated crops) remains steady, with a slight shift away from rice crops (a decrease from 13.7 percent of all SW-irrigated crops to 11.8 percent). Crop adaptation in response to shortage is pronounced in the Central Valley (Fig. 2e), with farmer agents predominately adapting to water shortage through crop area contractions (blue cells) while crop switching plays a secondary role (purple and green cells).

In the Missouri region, widespread declines in SW-irrigated areas are simulated over the course of the 1950s drought across all crop categories. During this period, SW-irrigated areas peak at 3.2M acres in 1953, decreasing 25 percent to 2.4M acres in 1962 by end of the 1950s drought. Over this period, the relative proportion of crops remains nearly stable, with slight decreases in fodder grass as a relative share of total SW-irrigated crops (dropping from 48 percent of SW-irrigated crops in 1953 to 43 percent in 1962). The relative drop in fodder grass is accompanied by a relative increase in grains and miscellaneous crops. Additional major cycles of crop area contraction and expansion are observed over the simulation period (e.g., expansion during the late 1990s and contraction during the early 2000s). The Upper Colorado similarly experiences a steady reduction of SW-irrigated areas over the first several years of the simulation (reaching a minimum during the 1976–1977 drought), followed by cycles of crop expansion and contraction during the latter half of the simulation period.

For the Pacific Northwest region, marked contractions in SW-irrigated cropped areas as well as crop switching are simulated over the course of the major low-flow period in the Snake River basin from 1987–1992. From a SW-irrigated area of 4.3M acres in 1987, SW-irrigated area drops to a minimum of 3.3M acres in 1993, a 24 percent decline in area. Substantial crop switching is also simulated over this period, with fodder grass giving way to miscellaneous crop, root tuber, and wheat in terms of relative share of total SW-irrigated crop areas.
Farmer adaptations to declining water availability via total SW-irrigated crop area contractions and crop switching lead to associated declines in expected agricultural profits, though these declines are typically more subdued than the associated decrease in expected water availability or SW-irrigated crop areas. For the California region over the 1985–1993 period, expected agricultural profits (toted over both SW and GW irrigated areas) decline from $1.84B dollars to $1.68B dollars (an 8 percent decline), in spite of a 31 percent decline in SW-irrigated areas. The subdued profit impact is attributable to both crop switching and groundwater availability remaining steady, which comprises a significant percentage of irrigation water needs in California. In the Missouri region over the 1953–1962, agricultural profits decline from $2.53B in 1953 to $2.50B in 1962, a mere 1 percent decline in spite of a 25 percent decline in SW-irrigated crop areas, reflecting the predominant role of groundwater over surface water for irrigation water in this region. In the Pacific Northwest region, expected agricultural profits decrease from $1.60B in 1987 to $1.54B in 1995, a 5 percent decline associated with a 24 percent decline in SW-irrigated area.

Reductions in water shortage are most apparent for the years of highest shortage

The largest reductions in water shortage due to farmer cropping adaptation tend to occur in the highest shortage years, as observed in Fig. 3. For each of the HUC 2 watersheds shown, Fig. 3 indicates the annual average shortage percentage (shortage divided by demand) ranked in descending order by year of shortage (as simulated in the baseline run). Shortage percentages are shown for the baseline run (blue dots) and four sensitivity runs with varying degrees of adaptivity (red dots). The four sensitivity runs serve to assess the robustness of results to varying strength of agent’s memory to past water availability, with the adaptive run described in the results above (µ02) colored in the darkest shade of red and indicating relatively “long” memory, while lighter shades of red indicate decreasing strength of agent memory (i.e., increased agent reactivity to more recent experiences of water availability with higher values of µ). The specification of agent memory is described further in the methods.

Comparing the baseline results versus the adaptive results, we observe that the largest reductions in water shortage due to adaptation tend to occur in the years of highest of water shortage. California provides the most prominent example, in which the shortage difference between the baseline run and the adaptive runs is readily apparent during the 10 highest years of shortage (i.e., the first 10 years on the x-axis of Fig. 3). Beyond the 15th highest shortage year in California, this pattern reverses with the adaptive runs typically indicating slightly higher shortages than the baseline run. Similar patterns are observed for the Pacific Northwest and Upper Colorado regions. For the Missouri and South Atlantic-Gulf Regions, agent adaptation tends to lead to higher shortages, irrespective of the degree of shortage in any given year.

Across regions, shortage in the baseline run typically falls on one extreme of the adaptive runs for a given year (i.e. for a given year and region, the four adaptivity runs are either consistently higher or consistently lower than the baseline run, with some exceptions). The spread in shortage between the adaptive runs for any given year and region is also typically well constrained, with the largest spread between the sensitivity runs occurring during the higher shortage years in the California, Upper Colorado, and Pacific Northwest regions. These findings indicate that the comparative evaluation between the baseline and adaptive runs (in terms of the direction of water shortage change) is largely robust to assumptions regarding the strength of agent memory.

Discussion

We demonstrate the representation of farmer cropping adaptation to changing water availability in a large-scale hydrological modeling framework, with farmers’ degree of adaptivity specified using a positive economic calibration approach. The modeling framework allows for the evaluation of dynamic feedbacks between irrigated cropping areas, reservoir management, and water availability, and reveal that these interactions strongly shape national-scale water shortage outcomes. In a comparative hypothetical experiment conducted for all of CONUS, annual water shortages decrease by as much as 42 percent (from 245 to 142 m3/s in model year 1991) when accounting for farmer adaptation, with differences due to adaptation even further pronounced in regions prone to water shortage such as California (where neglecting farmer adaptation results in an overestimate of water shortage by a factor of 2 during the year of highest shortage). Traditional large-scale modeling efforts that neglect adaptive cropping adaptations therefore may be liable to misdiagnosis of water security outcomes. While farmer adaptation to decreasing surface water availability is accompanied by an associated loss in expected agricultural profit, this loss is buffered by the ability to switch crops and reallocate groundwater to more profitable crops to compensate for surface water shortages.

In agricultural hotspots with highly variable or declining water availability, the assumption of non-adaptive behavior most common in LHMs especially leads to overestimation of water shortages in our experiments. By isolating the effects of changing water availability on farmer cropping through comparing hypothetical adaptive and non-adaptive scenarios, our findings suggest that adaptation can significantly alleviate water shortage and put into question the severity of water shortage outcomes indicated by global water security analyses that neglect such adaptation, especially for regions such as the Western U.S. in which water availability is expected to decline due to climate change (Dettinger et al., 2015). For such regions with declining water availability trends, representative farm agents systematically overestimate water availability when they do not adapt their cropping based on changing conditions, resulting in higher shortages.

While initial sensitivity tests indicate that our results are robust to assumptions regarding agent memory of water availability, additional uncertainty characterization and sensitivity experiments on agent behavioral formulation and parameterization offer a promising direction for future research. Such uncertainty analysis could either be conducted at the level of the source PMP calibration data inputs, or at the level of the PMP parameters themselves. For example, estimation of the PMP parameters using alternative data sources or implementation in a data assimilation framework (Maneta and Howitt, 2014) could be conducted to further explore the implications of agent parameterization on water shortage outcomes.

While our study focuses on crop area changes, the modeling framework can be extended to consider additional farm-level adaptive mechanisms and considerations such as deficit irrigation, adoption of technological innovations (e.g., crop varietals, improved irrigation technologies, etc.), and costs for crop switching. The hydroeconomic formulation of farmer agent crop choices could further enable the investigation of economy-wide, multi-sector interactions. For example, future research could link WM-ABM with computable general equilibrium or partial equilibrium models, exploring economy-wide consequences and
feedbacks of water shortage induced cropping adaptations (in the fashion of Turner et al., 2019; Dolan et al., 2021; Basheer et al., 2021) that account for the hydrological, water management, and farmer processes represented in WM-ABM.

We also note key limitations of the current modeling framework. The ability of farms to increase groundwater extraction in response to surface water shortage, as well as changes in the availability and cost of groundwater (e.g., due to depletion of groundwater in stressed aquifers) are not currently represented in our modeling framework. These potential responses may either mute the simulated water shortage changes (e.g., instances in which farmers increase groundwater pumping to accommodate surface water shortage) or heighten them (e.g., instances in which increasing groundwater depletion results in even higher shortages and ensuing adaptive response).

The absence of inter-basin water transfers in the modeling framework further limits the analysis, with some instances of increased shortage with adaptation (e.g., in the southern California Central Valley and the Middle Gila River basin which are recipients of large inter-basin transfers in reality) appearing to be artifacts of this modeling limitation. In these regions, farms in the model base expectations of water availability on local runoff, while in reality they are able to receive water from distant water sources via inter-basin water transfers. We note that inter-basin transfers are largely absent in LHM applications (Wada et al., 2017) due to data limitations at large scales, and suggest that the development and incorporation of national (e.g., Siddik et al., 2023) and global inter-basin transfer datasets offers a promising next step for continued LHM improvement.

The hypothetical experiments presented here rather intentionally focus on isolating farmer cropping response to surface water change, tracing complex dynamic feedbacks between surface water availability, farmer crop choice, and irrigation demand. Our findings indicate that these interactions can shape the geographic distribution of crops and alter the magnitude of simulated water shortages, with the modeling framework providing a foundation from which to account for dynamic cropping adaptations amidst climate and socioeconomic change in future large-scale water security assessments.

Methods

Integrated Modeling Approach

The large-scale spatially distributed modeling framework, WM-ABM, consists of a large-scale river routing water management model enhanced with a farmer cropping adaptation model. For the latter, an agent-based model (ABM) approach is adopted with a representative farmer implemented for each model grid cell. The farmer agent crop selection and irrigation decisions are based on a Positive Mathematical Programming (PMP) approach, a method for calibrating agricultural production functions to observed data. Farmer decisions are based on water availability provided by the large-scale water management model, MOSART-WM, which simulates surface water availability for irrigation. The ABM and MOSART-WM models exchange information on an annual basis, with farmers looking to past simulated water availability from MOSART-WM at the onset of each calendar year and providing an updated water demand based on cropping decisions to MOSART-WM for the upcoming year. Following this annual update of demand, MOSART-WM proceeds on a daily timestep until the following calendar year, at which time farmers once again update their water availability forecasts, crop areas, and irrigation demand. A schematic illustrating a single year of the model run is shown on Fig. 4. The framework is applied to the continental United States at 1/8th degree spatial and daily temporal resolution, with model output aggregated and reported on an annual and monthly basis.

The two primary sub-models of the integrated model, the farmer cropping sub-model and the water availability sub-model, along with their coupling and various data inputs are described further in the following sections.

Agent-based Model of Farmer Cropping Decisions

The ABM entails agricultural agents, where each agent serves as an aggregated farm, representing all real-world farms that are located within a 1/8 degree grid cell (resulting in 53,835 representative farm agents over the entire model domain). The agents are involved in determining the types of crops to be grown over the 1/8 degree grid cell and the areas for each crop, taking into consideration the associated water requirements to meet the irrigation needs for the selected crop patterning. The agents further determine how much surface water and groundwater to use for irrigation based on the relative cost and availability of each water source.

Farmers update their crop choices on an annual basis at the start of the calendar year based on an imperfect forecast of future conditions for the coming year. For the current experiments, farms forecast future surface water availability for irrigation through tracking the state of hydrological proxies from MOSART-WM, which are then processed through a memory decay function (Tamburino et al., 2020) to determine a forecasted water demand for the following year. This annual demand forecast is further partitioned to individual months following the water use disaggregation method and dataset described in Moore et al. (2015), which utilizes a phenological approach to disaggregate annual irrigation water demand to monthly demand at 1/8 degree resolution over CONUS. As noted previously, future groundwater availability for irrigation is assumed to remain steady each year. Specifically, farmers adopt the following steps at the start of each model year (January 1):

1. Identify the average state of the hydrological proxy for the most recent simulated year (H_t).

a. For farmers within 4 grid cells (~ 50 km) of a river impounded by reservoirs (see Voisin, 2013 for dependency definition), the hydrological proxy is the sum (and associated annual deviations) of simulated storage volumes across upstream reservoirs impounding this river.

b. For farmers not relying on upstream reservoirs, the hydrological proxy is the river discharge in the coincident MOSART-WM grid cell.

2. Determine an adjusted surface water demand (Dem_{adj}) by dividing the updated hydrological proxy by the hydrological proxy during the calibration period (H_c) and multiplying by the surface water demand during the calibration period (Dem_c).
Dem_{adj} = \left(H_1 / H_0 \right) \times Dem_b \\

3. Process the adjusted surface water demand through a memory decay equation to calculate forecasted surface water demand (Dem_i)

Dem_i = \left[(1 - \mu) \times Dem_{i,t-1} \right] + (\mu \times Dem_{adj})

where:

\(\mu \) - memory decay factor between 0 and 1

Dem_{i,t-1} - surface water demand forecast from previous timestep (or Dem_b if initial timestep)

The memory decay factor, \(\mu \), determines how much the farmer agent weighs distant versus recent experience (with higher values indicating a higher weighting of recent experience). As a default, the factor is set at 0.2 (which weights the most recent year by 0.20, the year before that by 0.18, and so forth) with different values explored during sensitivity analysis. A figure illustrating the effect of \(\mu \) on the relative influence of previous year experience is included in the supplemental materials.

For the implementation of adaptive crop choice and irrigation decision making under dynamic expectations of water availability, agricultural agents are assumed to behave as profit maximizing firms, implemented and calibrated using a positive mathematical programming (PMP) approach. The PMP approach, introduced by Howitt (1995) has been widely using in agricultural policy modeling studies (de Frahan et al., 2007; Heckelei et al., 2012). In the adopted PMP framework, an agricultural agent’s crop choice decisions, including types of crops and areas (and associated crop production inputs), are framed as a quadratic optimization problem in which the farm agent maximizes profit subject to land and water availability constraints. Two “unobserved” cost terms (one linear and one quadratic) are added to the profit maximization formulation, with the coefficient for these terms calibrated such that the model reproduces observed land use under known historical conditions. Conceptually, these unobserved costs can abstractly represent a range of factors not explicitly accounted for in the agent’s profit maximization formulation, such as marketing, risk aversion, crop conversion, and transaction costs.

The PMP procedure generally follows a two-phase process. In the first calibration phase, the coefficients for the unobserved cost terms are solved using a linear optimization such that observed crop areas are reproduced under known historical conditions (i.e., known conditions of production costs, prices, land availability, and water availability). The development of input data sets for this calibration phase are described further in the following sub-sections. In the second simulation phase, the calibrated optimization model is then used to simulate farm agent cropping decisions for scenarios which include changes in economic (e.g., costs and prices) and physical (e.g., water availability) conditions.

Specifically, each agricultural agent seeks to maximize profit according to the following formulation:

\[
\text{maximize} \quad \text{profit} = \sum_i (\text{price}_i \times \text{yield}_i \times \text{areairrtotal}_i) - (\text{landcost}_i \times \text{areairrtotal}_i) - (\alpha_i \times \text{areairrtotal}_i) - \left(0.5 \times \beta_i \times \text{areairrtotal}_i^2\right) - (\text{swcost}_i \times \text{areairrs}_i) - (\text{gwcost}_i \times \text{areairrg}_i)
\]

subject to:

\[
\sum_i \text{areairrtotal}_i \leq \text{availablearea}
\]

\[
\text{cir}_i \times \text{areairrs}_i \leq \text{swavailability}
\]

\[
\text{cir}_i \times \text{areairrg}_i \leq \text{gwavailability}
\]

\[
\text{areairrs}_i + \text{areairrg}_i = \text{areairrtotal}_i
\]

where:

\(i \) - index for crop categories

\(\text{price} \) - unit farm-gate price which farmers receive for the sale of crop \(i \) ($/ton)

\(\text{yield} \) - amount of crop produced per land area of crop planted (ton/acre)

\(\text{areairrtotal} \) - total irrigated planted crop area (acres)

\(\text{areairrg} \) - total planted crop area irrigated with groundwater (acres)

\(\text{areairrs} \) - total planted crop area irrigated with surface water (acres)

\(\text{cir} \) - crop irrigation requirement (cubic meters / acre)

\(\text{landcost} \) - unit cost for land-based inputs excluding water ($/acre)

\(\text{swcost} \) - unit cost for surface water ($/acre)

\(\text{gwcost} \) - unit cost for groundwater ($/acre)

\(\alpha \) - first PMP calibration coefficient
The first term in the profit maximization formulation above represents the farmer's revenues from crop sales, the second term represents known land-based costs for producing crops, the third and fourth terms are the calibrated unobserved crop production costs, and the fifth and sixth terms are costs for surface water and groundwater production for irrigation. The unobserved costs have a modulating effect on the degree of simulated crop divergence from historical patterns, tending to "pull" agents towards selecting crops observed in the calibration period while changes in modeled conditions (prices, resource availability, etc.) potentially "push" agents towards new crops.

The data sources and processing for the agent calibration are described further in the “Farm Data for PMP Calibration” section below.

Large-Scale Modeling of Water Availability

MOSART-WM is a spatially distributed large-scale water management model consisting of a physically based river-routing model (MOSART, Li et al., 2011) coupled with a generalized water-management model (WM, Voisin et al. 2013b) for seasonal to long term studies. In the river-routing component, daily surface runoff is an input that is first routed across hill slopes and then discharged into a tributary subnetwork within each grid cell before entering the main channel for transport across grid cells. The water management component simulates daily reservoir storage and releases by adopting generic operating rules that are described in detail in Voisin et al. (2013b), building off the approach first set forth by Hanasaki et al. (2006) and Biemans et al. (2011). The generic operating rules mimic monthly release patterns based on the objective of the reservoir (e.g., flood control, irrigation, etc.), storage capacity, monthly inflow climatology, monthly long term demand, daily constraints for minimum environmental flow, and minimum and maximum storage volumes.

The generic operating rules diverge from that of Hanasaki et al. (2006) and Biemans et al. (2011) by the manner in which reservoirs with multiple competing objectives are treated, balancing flood control and irrigation objectives for reservoirs that serve both purposes. In general, the hybridized approach functions to preserve irrigation release targets for most of the year, while shifting to flood control targets in the months preceding the snowmelt season. The water management component serves to allocate water supply to sector-specific spatially distributed water demands (Voisin et al. 2013b). Grid cells within ~ 50 km of an impounded river are assumed to be able to divert water from the impounded river in addition to the river adjacent to that grid cell. Grid cells outside of this buffer are assumed to rely primarily only on the river co-located with the grid cell.

For the current experiments, MOSART-WM is simulated at 1/8th degree spatial resolution on a daily timestep across CONUS mimicking the hydrological record from 1950–2009, using simulated runoff derived with the VIC hydrology model (Liang et al., 1994). The 1950–2009 period is specifically selected as VIC outputs are available over this time period for a simulation that has been calibrated and is considered a benchmark for the United States Bureau of Reclamation (USBR), as used in the Secure Water Act (see Reclamation, 2014 for additional details on VIC simulations and calibration results).

Farm Data for PMP Calibration

The first stage of the PMP model development process involves calibration of agricultural agents’ unobserved cost coefficients over a historical period. Specifically, coefficients for the unobserved cost terms in the farm agents’ profit maximization formulation are calibrated such that the agents reproduce observed crop areas under a known set of historical prices, costs, and resource constraints (e.g., water and land availability). For the current effort, we aggregate farm agents at 1/8th degree grid resolution over the continental United States, following the North American Land Data Assimilation System (NLDAS) grid. In view of future work evaluating global change conditions, we adopt crop categories from the Global Change Analysis Model (GCAM) (Calvin et al. 2019), a country-scale and global scale multisectoral partial equilibrium model used by the community to answer what-if science questions around energy-water-land interactions under policy, climate, and technology change.

To calibrate the PMP model, estimates of the following data at 1/8 degree resolution for each GCAM crop category over the historical calibration period (2010–2013) are required: crop land area, crop prices, crop land-based costs, water-based costs, crop yield, and proportion of cropped area that is irrigated. Development of these data sets based upon United States Department of Agriculture (USDA) and other agricultural data sources is described further in the sub-sections to follow. We further note that we largely rely on nationally-available datasets for consistency in calibration input across the model domain, though the PMP automated calibration approach could readily accommodate other datasets (e.g., local agricultural datasets).

Crop Land Area Data

Observed cropped land area data for the continental United States used during the PMP calibration are estimated at 1/8 degree resolution combining data from the 2013 USDA Farm and Ranch Irrigation Survey (FRIS) (USDA, 2013), which reports official cropped areas at the state-level, and the Cropland Data Layer (CDL) (USDA, 2019), which provides additional estimates of observed land cover classifications at 30-meter resolution across the continental United States on an annual basis since 2008. To further determine proportions of irrigated versus non-irrigated crops and for those crops that are irrigated, proportions of groundwater irrigated to surface water irrigated crops, we leverage the FAO's global map of irrigated areas (Siebert et al., 2013). Our modeling experiment uses years 2010–2013 as the calibration period to coincide with the utilized economic datasets to the extent possible. The approach generally relies on the USDA irrigation survey data for acres irrigated by crop at the state level, then distributes these total areas within a state at 1/8 degree resolution following the distribution observed in the CDL data. The FAO global map of irrigated areas is used to further distinguish cropped areas by the portion of area that is non-irrigated versus irrigated, and for the latter, the portion of area that is irrigated with surface water versus groundwater.

As the FRIS, CDL, and GCAM crop categories differ, the first step in data processing involves developing a mapping between the crop categories for each source (included in the supplemental materials). Using the mapping, each FRIS and CDL crop category is assigned to a more general GCAM crop category.
Subsequently, the area of irrigated crops (following the GCAM crop categories), distinguished by surface water and groundwater irrigation, are calculated for each 1/8th degree grid cell using the following general sequence (for each State):

1. Determine summed area of CDL pixels assigned to each crop category for each 1/8 degree grid cell.
2. For each grid cell, determine the area of each crop category that is irrigated with groundwater, irrigated with surface-water, and non-irrigated based percentages reported in the FAO global map of irrigated areas dataset.
3. Sum the total irrigated area for all crop categories across the State.
4. Apply a scaling correction factor (uniform for all 1/8 degree grid cells across the State) to the irrigated areas calculated in step 2, such that the total State-wide irrigated area (calculated in step 3) matches the irrigated areas reported in the USDA Farm Ranch and Irrigation Survey.

The full implementation and code is provided in the project meta-repository. The approach assumes that the USDA 2013 FRIS dataset reported at the state-level is an accurate representation of total area of cropped land across the state, while the CDL maps which are based upon classification of satellite images effectively capture the spatial distribution of cropped area within a state (though are a less reliable indicator of total area compared to the USDA irrigation survey) and the FAO global irrigation maps provide a reasonable indication of irrigated vs. non-irrigated and groundwater vs. surface water irrigated areas. In some cases, the method above results in total crop areas that exceed the total available land area of a cell. For these cells, we set the available land area constraints in the farm-level optimization (see below) to this total observed crop area such that the PMP can reproduce the calculated total land areas but are unable to exceed them in simulation mode.

Baseline Water Demand Estimation

The water demand estimation for the baseline calibration period is calculated by taking observed crop-specific irrigated areas (see section above) and multiplying these by a region-specific irrigation requirement based on the 2013 USDA Farm and Ranch Irrigation Survey (FRIS) (USDA, 2013). Specifically, the average acre-ft/year of irrigation water applied per acre of land is obtained for each state on a crop-specific basis, which is assumed to be consistent with the crop irrigation requirement. For each 1/8 degree grid cell, the baseline demand is subsequently determined by multiplying the estimated irrigated crop areas (see “Crop Land Area Data” above) with their associated crop irrigation requirements and summing across all crops. A table of the state-level irrigation requirements on a crop-specific basis is included in the project meta-repository. In an adaptive model simulation, agents are initialized with their baseline water demands, and subsequently adjust their water demands as they adapt to changing water availability conditions as the model steps through time. As the baseline water demands are based on actual applied water data, these demands are assumed to account for state-to-state and crop-to-crop variation in climatology, irrigation technology, water use efficiency, and other factors that influence crop irrigation requirements.

Land Area Constraints

For the PMP model, we assume that areas assigned to the following land use categories based upon the CDL remain fixed throughout the model run: “NotAvailable”, “RockIceDesert”, and “UrbanLand” and are unavailable for cropping. To determine the land area constraint that enters the PMP formulation for each NLDAS grid cell, we take the maximum of: 1) The total land area in the grid cell subtracted by the categories described above and 2) the total land area allocated to irrigated crops (as described in the previous section).

Crop Prices, Costs, and Yields

Crop prices and costs are obtained from the USDA Economic Research Service’s (ERS) commodity costs and returns datasets, which are produced by the USDA on an annual basis. Prices and costs in these datasets are aggregated to 9 ERS farm resource regions across the United States. Similar to the USDA irrigation survey, ERS crop categories are mapped to more general crop categories to enhance compatibility with other global models (as detailed in the supplemental materials). Each NLDAS grid cell then uses the economic information of ERS farm region that it is located within. Specific economic price and cost data derived from the ERS datasets for each ERS farm region and GCAM crop category include: total cost of production ($ / acre), crop yield (bushels or tons / acre), the opportunity cost of labor ($ / acre), and the opportunity cost of land ($ / acre). For the acreage-based inputs, the ERS costs are generally estimated through surveys that ask the farmer how much was paid on a per acre basis for the various inputs, which we assume to be on a planted area basis. For empirical reasons we remove the USDA estimates of unpaid labor costs and imputed opportunity costs of land, as the PMP calibration terms are better able to capture the relevance and heterogeneity of these non-monetary production costs. The full cost tables are included as part of the data and code meta-repository included with this manuscript.

Irrigation Water Sources and Costs

Irrigation water sources and costs are derived from the 2013 FRIS database. The survey provides statewide estimates of irrigation water volumes assigned to three water source categories: 1) groundwater, 2) on-farm surface water and, 3) off-farm surface water.

The FRIS database also provides state-level estimates of water purchase costs for off-farm surface water ($ / acre-ft) and average energy pumping costs for farms that utilize on-farm groundwater for irrigation ($ / acre-ft). These per unit water production costs are assigned to each NLDAS grid cell based upon the state that the cell falls within. On-farm surface water is assumed to be free.

Partitioning Land and Water Based Costs

To partition land and water based costs in our farm agent’s economic profit formulation, we adopt the following procedure reconciling data reported in the ERS commodity costs and returns dataset and the 2013 FRIS database (the latter which reports costs specifically for irrigation water supply), while also enforcing a minimum agent profitability threshold:

1. Calculate perceived crop production costs as:
PerceivedCost_{n,c} = TotalCost_{n,c} - OppCostLabor_{n,c} - OppCostLand_{n,c}

where:

PerceivedCost – The perceived cost of production ($/acre)
TotalCost – The total cost of crop production as reported in 2013 FRIS ($/acre)
OppCostLabor – The opportunity cost of labor for crop production as reported in 2013 FRIS ($/acre)
OppCostLand – The opportunity cost of land for crop production as reported in 2013 FRIS ($/acre)

2. Calculate the perceived profit for crops:

\[Profit_{n,c} = (Yield_{n,c} \cdot Price_{n,c}) - PerceivedProfit_{n,c} \]

where:

Profit – The profit obtained from selling crops ($/acre)
Yield – The yield of crop production as reported in 2013 FRIS (ton/acre)
Price – The farm gate price for selling crops as reported in 2013 FRIS ($/ton)

3. Calculate an adjusted perceived cost of production (PerceivedCostAdj) which forces a minimum profit margin of 10 percent. This step is applied such that all observed crop production is assumed to be profitable.

4. Partition total crop production costs into land based costs and water based costs assuming:

\[PerceivedCostAdj = LandCost + GroundwaterCost + SurfaceWaterCost \]

where:

LandCost – Land based crop production costs ($/acre)
GroundwaterCost – Cost of groundwater based upon 2013 FRIS ($/acre)
SurfaceWaterCost– Cost of surface water based upon 2013 FRIS ($/acre)

5. For instances in which the sum of groundwater cost (GroundwaterCost) and surface water cost (SurfaceWaterCost) exceeds the total cost of crop production as reported in 2013 FRIS, adjust the GroundwaterCost and SurfaceWaterCost to assume that they comprise the same proportion of the total cost of crop production as the United States average.

Time Period Selection

The PMP calibration procedure assumes that observed crop areas are the outcome of conditions representative of a specific period of time. As such, the PMP calibration benefits from identifying data sources that are available for a coincident time period. Given the large spatial extent of our model, data for the PMP calibration has been drawn from several disparate data sources that often do not precisely align in terms of the date of data collection. For our purposes, we assume that these various data sources are an averaged representation of the 2010–2013 historical period, though we recognize that the data sets are drawn from different years and that conditions may be variable within this time period. Exploring the sensitivity of PMP parameters and model behavior to the choice and uncertainty of these input datasets is an important future research direction.

Crop Irrigation Requirement and MOSART-WM Water Availability Bias Correction

During the calibration phase of the PMP model, we assume that agent’s water availability constraints are non-binding (i.e., the irrigation water required to produce the observed surface-water irrigated crop area estimates were available during the calibration period). The irrigation water volumes that were assumed to be available during the calibration period are calculated by taking the crop-specific irrigation requirements (in acre-ft/acre) at the state level from the 2013 FRIS survey, and multiplying them with observed surface-water irrigated crop area. The total surface-water irrigation use for each agent during the calibration period is then determined by summing these values over all crops.

To account for potential biases in VIC-MOSART-WM simulated irrigation water availability, we then apply a bias correction factor to the crop irrigation requirements on a cell-by-cell basis such that total irrigation demand matches VIC-MOSART-WM simulated water availability for the historical calibration period. Such a treatment attempts to reconcile potential inconsistencies between estimated irrigation requirement calculated from the data assimilation process described throughout the sub-sections above and actual irrigation water availability modeled by VIC-MOSART-WM. The additive cell-specific bias correction factor is subsequently applied in simulation mode for each time period. This approach addresses potential biases in VIC-MOSART-WM’s estimates of irrigation water availability for baseline conditions, and assumes these biases are maintained in the ABM simulations that depart from baseline conditions while relying on modeled results to estimate changes in water availability relative to the baseline condition.
For the adaptive run, agents are assigned to one of four categories depending upon the level of crop adaptation activity: 1) if the ratio of an agent’s annual minimum surface-water irrigated crop area is less than 80 percent of the annual maximum surface-water irrigated crop area, the agent is designated as "crop expansion/contraction," 2) if the predominant crop’s share of the total crop makeup for any given agent (measured in terms of crop area) changes by at least 5 percent between any two years of the model run (which do not need to be consecutive), the agent is designated as "crop switching," 3) if the agent satisfies both criteria 1 and 2 above, the agent is designated as "both" and 4) if the agent satisfies none of these criteria, they are designated as "none."

Declarations

Author Contribution Statement

JY: Conceptualization, Methodology, Investigation, Writing – original draft, Visualization. NV: Conceptualization, Methodology, Writing – review & editing. CK: Conceptualization, Methodology, Software, Writing – review & editing. TT – Software. WX – Software.

Data and Code Availability Statement

All data and code required to run the model and reproduce numerical experiments are provided in the following repository: https://github.com/IMMM-SFA/yoon-etal_2023_natwat

Acknowledgments:

This research was supported by the U.S. Department of Energy, Office of Science, as part of research in the MultiSector Dynamics, Earth and Environmental System Modeling Program (grant 59534). Pacific Northwest National Laboratory is a multi-program national laboratory operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830. We thank Sean Turner and Jennie Rice for their valuable comments on an initial draft of the manuscript.

References

representing the linkages between energy, water, land, climate, and economic systems. Geoscientic Model Development, 12(2), pp.677-698.

Figures

Figure 1

Water shortage results from a hypothetical comparative model experiment mimicking 1950-2009 hydrology. (a) Shows the annual difference in water shortage between the adaptive and baseline versions of the model (annual water shortage in the adaptive run subtracted by annual water shortage in the baseline run), aggregated for four HUC 2 regions. (b) Identifies the peak annual water shortage (across all model years) for every farm agent in the model for both the adaptive and baseline runs. The ratio of peak annual water shortage of the adaptive and baseline runs (i.e., peak annual water shortage of the adaptive divided by that of the baseline) is shown on the figure. For both (a) and (b), blue colors indicate reduced shortages with adaptation and orange colors indicate increased shortages with adaptation. Accounting for farmer cropping adaptivity results in substantial alterations in simulated water shortage across the Western United States, with a strong tendency towards mitigation of shortage. During extended periods of historic drought in the California, Missouri, Upper Colorado, and Pacific Northwest regions, shortage is substantially reduced when taking adaptation into account (a). Peak annual shortage across the modeled time period is regularly only half of that experienced in the baseline run when accounting for adaptation (b). While shortage is curbed in most areas due to adaptation, some areas in the Great Basin, California, and Lower Colorado show an increase (indicated with orange colors).
Figure 2

Farmer cropping results from a hypothetical comparative model experiment mimicking 1950-2009 hydrology. (a-d) Shows changes in surface-water irrigated acreages by crop for the adaptive model run, aggregated for the four HUC 2 regions of interest shown (California, Missouri, Upper Colorado, and Pacific Northwest). (e-h) classifies individual farm agents in the adaptive model run with significant irrigation into one of four categories based upon their level of cropping adaptation (classified over the entire model period): those agents that exhibit significant expansion/contraction of crops are indicated in blue, those that exhibit significant switching behavior between crops in green, and those that exhibit both behaviors in purple (see Methods for additional details on classification). Farm agents that experience significant water shortage, likewise evaluated over the entire model run, are indicated with a red outline. Expansions and contractions in irrigated cropped areas are simulated in response to major hydrological events (a-d). Farmer agents in the model largely adapt (e-h) to drought through crop contraction (blue cells with red outline), whereas crop switching (green cells) plays a less prominent role and is more prevalent in non-shortage areas. Some agents do not adapt in spite of shortage (orange cells w/ red outline).
Figure 3

Shows the annual water shortage percentage (defined as unmet water demand divided by water demand) aggregated for six HUC 2 regions and ranked by year of shortage. For each year, results from five different experiments are shown, the baseline run (indicated in blue) and four adaptive runs in which the strength of agent memory as defined through a memory decay factor μ (see methods for details) is adjusted between 0.2-0.8 (indicated in shades of red, with lighter shades of red indicating shorter agent memory, i.e., higher reactivity to more recent events). The largest reductions in water shortage due to farmer cropping adaptation occur in the highest shortage years, as most notably evidenced by the difference in the baseline and adaptive shortages for the highest shortage years (left sides of the charts) in the California, Pacific Northwest, and the Upper Colorado regions. Results are largely robust across agent memory sensitivity runs, with the general direction of difference between the baseline run (blue) and the agent adaptation runs (shaded red) usually remaining consistent (i.e., the blue dot usually lies on one end of the shaded red dots for any given region/year).
Figure 4

A model schematic of WM-ABM distinguishing between exogenous inputs (orange), model processes (green/blue), and model outputs (brown). The model processes are further distinguished between the two interacting sub-models that constitute the integrated model: the farmer cropping sub-model based on PMP and the water availability sub-model based on MOSART-WM. For any given year, farms first update water availability expectations (using dynamic flow and storage states provided from the water availability sub-model) and make crop choice decisions. These decisions result in updated irrigation demands which are fed to the water availability sub-model, which subsequently routes surface water through the river network, determines reservoir releases, and allocates water supply to demand. Model outputs from various processes are indicated in brown, with the granularity of model output described in brackets.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- 20230405WMABMNWsupplement.docx