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Abstract Multi-Verse Optimizer (MVO) algorithm is one of the recent metaheuristic algorithms
used to solve various problems in different fields. However, MVO suffers from a lack of diversity
which may trapping of local minima, and premature convergence. This paper introduces two
steps of improving the basic MVO algorithm. The first step using Opposition-based learning
(OBL) in MVO, called OMVO. The OBL aids to speed up the searching and improving the
learning technique for selecting a better generation of candidate solutions of basic MVO. The
second stage, called OMVOD, combines the disturbance operator (DO) and OMVO to improve
the consistency of the chosen solution by providing a chance to solve the given problem with a
high fitness value and increase diversity. To test the performance of the proposed models, fifteen
CEC 2015 benchmark functions problems, thirty CEC 2017 benchmark functions problems, and
seven CEC 2011 real-world problems were used in both phases of the enhancement. The second
step, known as OMVOD, incorporates the disruption operator (DO) and OMVO to improve the
accuracy of the chosen solution by giving a chance to solve the given problem with a high fitness
value while also increasing variety. Fifteen CEC 2015 benchmark functions problems, thirty CEC
2017 benchmark functions problems and seven CEC 2011 real-world problems were used in both
phases of the upgrade to assess the accuracy of the proposed models.

Keywords: Multi-Verse Optimizer, Opposition-based learning, disruption operator, CEC2015
and CEC2017 benchmark functions problems, CEC2011 real-world problems.

1 Introduction

Population-based algorithms and local search-based algorithms are examples of metaheuristic
algorithms [59,11]. Particle swarm optimization (PSO) [34] and ant colony optimization (ACO)
[18] are examples of population-based algorithms that work on a group of solutions at a time
[25]. At each iteration, the best solutions were often used to add one or more new solutions. Hill
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climbing is one of the most popular local search-based algorithms [6]. While local search-based
algorithms focus on one solution and look to improve it using neighborhood solutions [64], hill
climbing is one of the most common local search-based algorithms [35]. The only disadvantage
is that they choose to concentrate on exploitation over discovery, which raises the chances of
being trapped in local optima [8]. These approaches are suitable for finding promising areas
in the search area. However, they are not so good at leveraging the search space field that is
being searched [66]. Population-based approaches are classified as evolutionary computing and
swarm intelligence [1,56]. Both approaches are focused on the natural biological evolution of
natural creatures’ social interaction behavior. Particle swarm optimization is an example of a
swarm-based algorithm (PSO) [34].

This work highlights a recent stochastic population-based algorithm, called Multi-Verse Opti-
mizer (MVO) [49]. MVO is bio-inspired from the multi-verse theory in physics, where it includes
unique concepts models such as white, black, and wormholes. These concepts increase the ability
of the exploration and exploitation search mechanisms, as well as the diversity. Table 1 presents a
brief description of the comparison between MVO and popular metaheuristic algorithms. Though,
MOV suffers from slow searching, local minima, and premature convergence [63,48].

Table 1: Differences between MVO, CSA, GA, PSO, HS, and TS

Properties Algorithm

MVO CAS GA PSO HS TS

Proposed [47] [75] [26] [33] [21] [23]

Parameter Three
[17]

Three
[63]

Three
[51]

Five
[53]

Three
[16]

Four
[77]

Complexity O(nlogn)
[43]

O(n.D.tmax)
[57]

O(m2)
[9]

O(nm2)
[73]

O(HMS × M + HMS × log(HMS))
[72]

O(mn2)
[55]

Convergence Smooth convergence with
fast rate [43]

Slow convergence
rate [58]

Fast convergence
[74]

Quickly converge
[45]

Suffer from premature
convergence [24]

Rapidly converged
[77]

Strength
Balance between exploration

and exploitation
[30]

Balance between intensification
and diversification

[3]

Deal with the
complex fitness landscape

[29]

Don’t have overlapping
and mutation calculation

[5]

Increases the diversity of
the new solutions

[13]

Avoid trapped at
local optimum

[36]

Weaknesses Relaxed convergence
[31]

Trapped in a local
optimum [65]

Evaluation is relatively
expensive [78]

Suffers from partial
optimism [15]

Get stuck on local optima
[46]

Needs huge memory
resources

[36]

Therefore, there are several methods applied to solve these drawbacks including,the enhanced
MVO proposed in [10], the authors improved the basic MVO by introducing a new version, called
EMVO to achieve high accuracy and efficiency of the requirement prioritization. EMVO based
on exchanging the information between the current solutions. EMVO starts by calculating the
warm hole probability. Then, calculates the rate of the traveling space. However, EMVO suffers
from minimum simplicity, so it needs the maximum number of functions. The results illustrated
that the EMVO achieved better accuracy of the solutions comparing with different existing
techniques.

Jangir et al. [32] proposed a new technique that hybridization particle swarm optimization
(PSO) and Multiverse Optimizer (MVO), called HPSO-MVO to determine the Optimal Reactive
Power Dispatch (ORPD). The aim of HPSO-MVO is taking advantage of PSO to enhance the
exploitation search, as well as the MVO to improve the exploration search in the uncertain
environment [62]. The speed and locations of the particles are updated based on the position of the
universe in each repetition. The experiment results show that the HPSO-MVO is outperformed
the original MVO and PSO algorithm.

Geng et al. [22] proposed an improved Multi-Objective Multi-Verse Optimizer (IMOMVO)
to find the optimal solution of the reentrant hybrid flow shop scheduling problem (RHFSP) with
maximum tardiness, objectives of makespan, and idle energy consumption. IMOMVO includes
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Latin hypercube sampling (LHS) for the initialization of the population. Then, updated the
position of candidate solutions based on Levy flight. Moreover, it utilized logical self-mapping to
chaotic local search. The authors proved the performance of IMOMVO using a set of benchmark
functions and comparing it with various techniques such as MOMVO, MOPSO, NSGA-II, and
MOALO.

Hu et al. [27] employed the Levy flights with MVO, namely, LFMVO to find the optimal
solution of the numerical and engineering optimization problems. The aim of utilizing the levy
flights to enhance the exploration search in the large scale search space. The experiment results
showed that the convergence speed and the quality of the solutions of LFMVO are outperformed
the various algorithms in the literature.

However, the drawback of these proposed methods is that they take into account just one
factor to be enhanced (i.e., diversity, local minima, and premature convergence). Also, most of
the approaches that utilized an enhanced MVO algorithm contain more parameters that must
be tuned. Therefore, the weaknesses of MVO still didn’t solve, perfectly. Thus, an alternative en-
hanced method for the MVO algorithm should be introduced to cover all limitations, completely.

This paper highlighting the two main weaknesses recognized in the performance trajectory
of the basic version of the MVO: diversity of the population, trapping of local minima, and
premature convergence. Because of these weaknesses, MVO requires further refinements, to be
enhanced the procedure search process of the basic MVO and combinations with other techniques.
The following points are summarized the main contributions of this work.

– A new version includes MVO and Opposition-based learning is developed to improve the
premature convergence problem by optimizing the initial population.

– Applied the disruption operator to enhance the diversity of the population and the exploration
ability.

– Evaluating the performance of the proposed algorithm by comparing it with other published
methods in the literature using CEC 2015 benchmark function problems, CEC 2017 bench-
mark function problems, and CEC 2011 real-world problems.

The following is how the sections of this paper is structured. Section 2 displays some similar
works. The opposition-based Learning (OBL) technique, the interruption operator (DO), and the
Multi-Verse optimizer (MVO) algorithm are all introduced in Section 3. After that, in Section
4, the proposed methods are listed. The experimental findings and discussions are presented in
Section 5. Section 6 concludes with recommendations for the future.

2 Related works

To improve the efficiency of the simple Krill Herd (KH) algorithm, Wang et al. [71] used
opposition-based learning (OBL), position clamping (PC), and Cauchy mutation (CM). OBL
speeds up the method’s convergence, while PC and heavy-tailed CM aid KH in escaping local
optima. The results show that among the various OKH variants, the KH with OBL, CM, and
PC operators has the best score.

Li et al. [42] used dynamic topology and biogeography-based optimization to solve computa-
tional optimization problems based on learning to improve elephant herding optimization (EHO).
When compared to other algorithms in the literature, the proposed algorithm proved to be more
effective. It also outperformed the competition in the simple traveling salesman dilemma (TSP).

The Cuckoo search (CS) algorithm has been improved in version [37,41,40,39]. The develop-
ers in [37] used I-PKL-CS or self-adaptive intelligence learning. By combining the power of human
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knowledge learning and community knowledge learning with a threshold statistics learning ap-
proach, the proposed algorithm achieves a strong balance between discovery and manipulation.
I-PKL-CS is a competitive new form of the algorithm, according to the findings.

The authors used the hierarchical step size cuckoo search algorithm and the Q-Learning step
size and genetic operator in [39]. (DMQL-CS). The DMQL-CS algorithm uses a step size man-
agement technique to analyze the individual multi-step evolution effect and learn the individual
optimum step size by estimating the Q function value.

Using the Opposition-Based Learning (OBL) Strategy and OBSSA, Li et al. [28] improved
the Salp Swarm Algorithm (SSA) shortcomings, which can fail in avoiding local optima and
have a sluggish convergence curve. The proposed algorithm was divided into two stages: the
first stage used OBL to improve the initialization stage. The second stage used OBL in the
population updating phase in each iteration. The findings show that OBSSA can compete with
other algorithms in the literature in terms of efficiency.

Using the Opposition-Based Learning (OBL) Strategy, dubbed OBSSA, Hussien [28] improved
the shortcomings of the Salp Swarm Algorithm (SSA), which may fail to resist local optima and
have a sluggish convergence curve. The proposed algorithm was divided into two stages: the
first stage used OBL to improve the initialization stage. The second stage used OBL in the
population updating phase in each iteration. The findings show that OBSSA can compete with
other algorithms in the literature in terms of efficiency.

Feng et al. [20] implemented Monarch Butterfly Optimization (MBO) with Gaussian pertur-
bation using opposition-based learning (OBL) (OMBO). The OBL technique is used on half of
the population in the late stages of evolution. In contrast, Gaussian perturbation is used on the
part of the population with low fitness in each evolution. OBL ensures OMBO’s faster conver-
gence, and Gaussian perturbation prevents OMBO from being trapped at a local optimum. The
OMBO generated high-quality solutions, according to the findings of the experiments.

To solve the premature convergence and fragile balance between manipulation and discovery
of the CS algorithm, named TOB-DCS, Li et al. [38] used Taguchi opposition-based scan. The
Taguchi search strategy generated random generalized learning based on opposing relationships
to improve the algorithm’s exploration ability. The dynamic evaluation strategy reduced the
number of function evaluations while also speeding up convergence. As a result, the TOB-DCS
could strike a good balance between discovery and extraction, as shown by the results.

3 Preliminaries

This section presents a brief introduction for the opposition-based Learning (OBL) strategy,
disruption operator (DO) and the Multi-Verse optimizer (MVO) algorithm.

3.1 Opposition-based learning

Opposition-based learning (OBL) mechanism represented in finding the opposite solution for
each current solution in the population. After that using their fitness function to select the best
solution [19].

3.1.1 Opposite number

The basics of the OBL method determined by assuming x ∈ [a, b] (a and b refer to the upper
boundary and the lower boundary of the problem, respectively) and a, b ∈ R. Thus, the opposite
point of x indicated by x̄op can be acquired as [68]:
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x̄op = a + b − x (1)

The following subsection shows determining the opposite numbers with a higher dimension.

3.1.2 Opposite vector in d-dimensional

In case there are opposite points d-dimensional space need to be computed as xop = (xop
1, xop

2, ..., xop
d)

for the point x = (x1, x2, ..., xd) ∈ R. The calculation process is shown in following equation [54]:

¯xopj = aj + bj + xj (2)

where aj and bj refer to the lower and the upper boundaries of the element xj ∈ x, respectively.
Finally, in the optimization method, the current solution x is chosen if f(x) is better than f(x̄op)
; otherwise, x is chosen. So, the population of the solutions is updated based on the best values
of x and x̄op.

3.2 Disruption operator

The disturbance operator (Dop) was inspired by the astrophysics effect, which it summarizes in
”When the total mass (m) of a swarm of gravitationally bound particles is too close to a large
object (M), the swarm will be broken apart. Similarly, when gravitational forces pull together a
rigid body, it approaches a much larger entity harwit2006astrophysical.

The full use of the Dop is defined as the following equation [44]:

Dop =

{
Disi,j × Ψ

(
−1
2 , 1

2

)
ifDisi,best ≥ 1

1 + Disi,best × Ψ
(

−10−16

2 , 10−16

2

)
otherwise (3)

where Disi,j indicates the Euclidean distance between two components, ith and jth. The Ψ(
a, b ) refers to a random number that is uniformly distributed located in [a, b]. Consequently,
when the two components are too close together, then Dop < 1, so the components will converge
towards the origin.

3.3 Multi-Verse optimizer (MVO)

MVO one of the efficient metaheuristic algorithms proposed by Mirjalili et al. [49] in 2016.
MVO inspired by the big bang theory that led to the birth of a universe. The algorithm and
their mathematical models have been established based on three main concepts: white hole,
black hole, and wormhole. As many proposed metaheuristic algorithms, MVO focused on the
exploration process using the white hole and black hole concepts, as well as the exploitation
using the wormhole concept. The following steps describe the main operations of the MVO
algorithm.

1. Population Initialization
The population is a subset of solutions, in MVO each candidate solution called a Universe
where represent as a vector of actual elements. For instance,

[
x1

i , x2
i , ..., xd

i
]

where i refers to
the number solutions in the population and d refers to the problem’s dimension [60]. The
following matrix shows a group of solutions in a certain population P.
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Pi =





x1
1 x2

1 ... xd
1

x1
2 x2

2 ... xd
2

...
...

...
...

x1
n x2

n ... xd
n




(4)

where n refers to the number of solutions in the population Pi.

2. Exploration
As mentioned previously, the white and black hole control the exploration process in MVO.
The mechanism of exchanging between the universes start by calculating the fitness value
which called inflation rate for each universe. After that, the white hole (i.e., solution xk)
is selected using the fitness proportionate selection scheme. Eq. 5 describes the exchange
technique between the chosen universe xk and the black hole (i.e., solution xi).

xj
i (t + 1) =

{
xj

k(t) r1 < N1(Ui)
xj

i (t) r1 > N1(Ui)
(5)

where j refers to the number of the elements in the universe, r1 is a random number locates
between [0,1], and N1(Ui indicates the normalize fitness value of the ith universe. Eq. 6
presents the normalization method for fitness value.

Ai =
Aoi√∑n

i=1(Aoi)2
(6)

where Ai and Aoi refers to the ith element of the vector after standardization and before
standardization, respectively. n indicates the number of elements in the universe.
It’s worth to mention that the MVO algorithm doesn’t utilize the normalization in the fit-
ness proportionate selection scheme. The normalization is used the fitness value based on the
decision in Eq. 5. Consequently, since the value of r1 locates between [0,1], the normalization
of the fitness value should be located in the same range (i.e., [0,1]).

3. Exploitation
The wormhole in the MVO algorithm is responsible for the exploitation process in the search
space. Eq. 7 represents the mechanism of the wormhole’s utilization.

xj
i (t + 1) =






{
xj + T DR(r4(ubj − lbj) + lbj) r3 < 0.5
xj + T DR(r4(ubj − lbj) + lbj) r3 ≥ 0.5 r2 < W EP

xj
i (t) r2 ≥ W EP

(7)

where Xj indicates the jth solution of the best universe, lbj and ubj refer to the lower bound
and upper bound of the jth element, respectively. r2, r3, and r4 are random numbers that fall
in the ranges of [0, 1]. The transmission processes from discovery to exploitation are regulated
by the traveling distance rate (TDR) and the wormhole presence likelihood (WEP). The WEP
and TDR change their values over the direction of the iterations, as seen in Eqs. 8 and 9.

W EP = min + l ×
(

max − min
L

)
(8)

T DR = 1 −
(

l
L

) 1
p

(9)
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where l refers to the current iteration, L refers to the maximum number of iterations, min is
the minimum possible values of WEP where the common value is 0, and max is the maximum
possible values of WEP where the common value is 2. p indicates the exploitation intensifier.

It can be noticed that in the Eq. 8, the WEP’s value increases in each iteration. Thus,
that enhanced the exploitation process. While in Eq. 9,the value of TDR reducing which affects
the local search process in each iteration. The pseudo-code of the MVO algorithm is shown in
Algorithm 1.

4 The proposed method

This section presents two new methods for enhancing basic MVO.

4.1 Opposition-based learning and Multi-Verse Optimizer

This Section presents the first improvement which combining the basic MVO with the OBL to
enhance the ability of MVO in the exploration search and achieve the optimal value, rapidly. The
proposed version called OMVO. The following points show the two main stages of the OMVO:

1. Initial stage:
The OMVO starts by initializing the population using the MVO strategy (i.e.,

[
x1

i , x2
i , ..., xd

i
]

). The OBL is utilized to find the opposite solution for each actual element (solution) in
the vector. After that, calculates the fitness function each solution

[
x1

i , x2
i , ..., xd

i
]

and their[
x̄1

i , x̄2
i , ..., x̄d

i
]
. Then, determines the best N solutions from the union of the two populations

(i.e., the actual and the opposite solutions).
2. Updating stage:

This stage presents the updating and evaluating the solutions based on Eq.6. Then, determines
the best solution and its fitness value. In contrast, the OBL mechanism keeps a group of the
updated solutions from the MVO and calculating their opposite fitness values. After that, the
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best solution will be compared with the OBL solutions and the OMVO will choose the best
to update the population in the next iteration. These processes will repeat until achieving
the maximum number of iterations (i.e., stop criterion).

4.2 Improving OMVO using disruption operator

This Section shows enhancing both the diversity and the convergence rate of the OMVO using
the Dop which called OMVOD. The proposed algorithms applied to improve its exploration
and exploitation capabilities [61]. Thus, the disruption operator in OMVOD is depended on the
distances between the elements at the given time in the search space. Therefore, the Dop will
be applied if the ratio of distances between the element i and the nearest element and the ratio
of distances between the element i and the start element is lower than the threshold C, see the
following equation.

Ri,nbd

Ri,best
< C (10)

where Ri,nbd refers to the Euclidean distance between ith element and it’s nearest element, Ri,best
is refers to the the Euclidean distance between ith element and star element, C is defined as the
following equation.

C = θ
(

1 −
GenIndex
MaxGen

)
(11)

where the θ is a parameter that is either a constant or a function of generations, the GenIndex and
MaxGen indicate the generation index and the maximum number of generations, respectively.
The position of every element that satisfies Eq.10 will update according to the following equation:

xi(new) = xi(old) · D, (12)

D =
{

Ri,nbd · U (−0.5, 0.5) ifRi,best ≥ 1
1 + ρ · U (−0.5, 0.5) otherwise (13)

where U (-0.5, 0.5) returns a uniformly distributed pseudorandom number in the interval [-0.5,
0.5]. Xi =

(
x1

i , x2
i , ..., xd

i
)

is the position of element i that should be disrupted, and ρ refer to a
small number.
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Fig. 1: Flowchart of OMVOD

5 Experiments and results

In this section, comprehensive experiments are conducted using three sets of optimization prob-
lems to test the performance of the proposed algorithms [4,7]. These problems are divided into
three main parts; Part 1: Experiments on CEC 2015, which contains fifteen benchmark func-
tions [66]. Part 2: Experiments on CEC 2017, which contains thirteen benchmark functions [58].
And Part 3: Experiments on CEC 2011 real-world problem, which includes seven real-world
optimization problems [60].
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The values of MVO’s parameters are the same in [49]. The maximum number of iterations is
1000, and the number of solutions N is set to thirteen with a dimension space value equal to the
dimension of the given problem. Thus, all of the proposed algorithms were run thirteen times
over each optimization problem for statistical analysis purposes. Furthermore, both experimental
groups run on MATLAB 2016 running on Windows 7 on a PC with a Core 2 Duo processor and
16 GB of RAM. The below are the organizations and analyses of proposed approaches for these
research problems:

5.1 Part 1: Experiments on CEC 2015

In this section, the proposed algorithms are tested. The findings of other published approaches
in the literature are compared using CEC 2015 benchmark function problems. Table 2 contains
the specifics of the CEC 2015 benchmark feature issues.

These benchmark functions are divided into four categories. The first is the Unimodal func-
tions (from F1 to F2 in Table 2) used to evaluate the proposed algorithms’ optimization accuracy
and convergence speed [65]. In the given search field, these functions have a single final solution.
Meanwhile, the Simple Multimodal Functions (from F3 to F9 in Table 2) test the efficiency of
the proposed algorithms in evading the exploitation optimum and providing the global solution
[50]. The third form is Hybrid Functions (from F10 to F12 in Table 2), which evaluates the
proposed algorithms’ optimization efficiency and convergence acceleration. Finally, the Compo-
sition Functions (from F13 to F15 in Table 2) are the fourth kind. They are used to evaluate the
optimization efficiency and convergence acceleration of the proposed algorithms.

Table 2: Review of CEC 2015 benchmark function problems.

No. Type Description Fi*
1 Unimodal functions Rotated Bent Cigar Function 100
2 Rotated Discus Function 200
3 Simple Multimodal Functions Shifted and Rotated Weierstrass Function 300
4 Shifted and Rotated Schwefel’s Function 400
5 Shifted and Rotated Katsuura Function 500
6 Shifted and Rotated HappyCat Function 600
7 Shifted and Rotated HGBat Function 700
8 Shifted and Rotated Expanded Griewank’s plus Rosenbrock’s Function 800
9 Shifted and Rotated Expanded Scaffer’s F6 Function 900
10 Hybrid functions Hybrid Function 1 (N=3) 1000
11 Hybrid Function 2 (N=4) 1100
12 Hybrid Function 3 (N=5) 1200
13 Composition Functions Composition Function 1 (N=5) 1300
14 Composition Function 2 (N=3) 1400
15 Composition Function 3 (N=5) 1500

Four versions of the proposed MVO are investigated using CEC 2015 benchmark function
problems as shown in Tables 3-6 and Figure 2 (from A to O). These experiments are con-
ducted to find the best vision from the given algorithms, which are Basic Multi-Verse Optimizer
called BMVO, Multi-Verse Optimizer with disruption operator called MVOD, Opposition based
Multi-Verse Optimizer called OMVO, and Opposition-based learning Multi-Verse Optimizer with
disruption operator called OMVOD.

When the dimension space is set to 10, the efficiency of the proposed algorithms (BMVO,
MVOD, OMVO, and OMVOD) is shown in Table 3. The findings in Table 3 show that the
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proposed algorithm (OMVOD) outperformed other proposed methods (MVOD, OMVO) and
the simple MVO in the vast majority of instances (BMVO). The suggested algorithm (OMVOD)
generated the best results (F1 and F2). For four of the seven functions, the proposed algorithm
(OMVOD) generated the best results in the second group (F4, F5, F8, and F9). In the third group,
the proposed algorithm (OMVOD) outperformed the competition in three scenarios (all given
functions). Finally, OMVOD achieved the best performance in the fourth group (F13 to F15).
These research problems were used to assess discovery and extraction potential. We deduced from
their findings that MVO’s modification accomplished its primary goal of improving its efficiency.

Table 3: The performance of the proposed algorithms on CEC 2015 benchmark function problems,
Dim=10

10 Dim
Function BMVO MVOD OMVO OMVOD

No. Mean Std. Mean Std. Mean Std. Mean Std.
F1 3,4522E+07 2,8945E+08 2,9862E+05 4,9786E+09 5,5787E+03 3,5454E+07 1,2354E+03 1,5486E+04
F2 3,9453E+03 1,2487E+00 3,2561E+03 1,6124E+00 3,1545E+02 1,5836E+00 3,0071E+02 1,3698E+03
F3 3,2253E+02 1,2487E+00 3,3614E+02 1,6124E+00 2,5895E+02 1,8745E+00 3,1051E+02 1,4141E+02
F4 3,5453E+03 3,2112E+02 2,9856E+03 2,6203E+02 3,4251E+02 3,1651E+02 1,2856E+02 2,6985E+02
F5 5,2513E+02 5,9796E-01 5,6480E+02 9,3430E+01 5,3556E+02 6,2452E-01 4,2266E+02 4,3617E-01
F6 6,3352E+03 5,8361E-01 4,5653E+03 1,7580E+01 4,2654E+02 2,5252E-01 6,2587E+02 1,0147E-02
F7 6,5456E+02 5,8077E+00 4,0541E+02 3,5349E+01 6,0099E+02 5,5654E-01 5,1160E+02 2,2884E-01
F8 7,4744E+03 1,7256E+02 2,3422E+03 2,6453E+03 7,4568E+03 3,7527E+00 2,0287E+02 2,9866E+01
F9 7,6545E+02 2,3842E-01 5,5482E+02 4,7453E-01 6,0571E+02 2,3142E-01 3,2547E+02 2,1257E-02
F10 5,3672E+06 6,5054E+05 3,5546E+05 7,4846E+04 3,4585E+05 3,2513E+05 2,1894E+05 3,0147E+05
F11 1,9960E+03 2,4020E+00 1,1345E+03 4,7569E+01 1,2658E+03 1,8569E+00 2,0158E+02 2,1541E+00
F12 1,5855E+04 9,1615E+01 1,4645E+02 7,5482E+02 1,2547E+02 8,5423E+01 1,1582E+01 1,0141E+02
F13 3,5984E+03 2,9519E+01 2,2345E+02 3,8971E+01 1,9875E+02 2,3652E+01 1,2516E+02 2,3912E+01
F14 2,6687E+04 3,5980E+00 2,3243E+03 4,5656E+01 1,8853E+03 5,1458E+00 1,3524E+03 3,2221E+02
F15 2,7981E+03 7,4514E+01 1,4324E+02 2,2525E+02 1,9965E+03 1,9899E+02 1,1452E+02 1,0628E+02

The efficiency of the proposed algorithms (BMVO, MVOD, OMVO, and OMVOD) is seen
in Table 4 when the dimension space is expanded to 30. The findings in Table 4 show that the
proposed algorithm (OMVOD) outperformed other proposed methods (MVOD, OMVO) and
the simple MVO in the vast majority of instances (BMVO). The suggested algorithm (OMVOD)
generated the best results (F1 and F2). For seven out of seven functions, the proposed algorithm
(OMVOD) generated the best results in the second group (all functions). In the third group, the
proposed algorithm (OMVOD) outperformed the competition in two of three scenarios (F11 and
F12).

OMVOD achieved the best performance in the fourth group (F13 to F15). These optimization
problems were used to assess discovery and exploitation using an expanded dimension space (30).
We deduced from their findings that the MVO modification, especially the proposed algorithm
(OMVOD), achieved its primary goal of improving efficiency. The convergence behavior of the
proposed algorithms on CEC 2015 test functions is seen in Figure 2(A-O). Furthermore, the
findings seen in the sub-figures demonstrated that the planned OMVOD conference to the best
solution prevents premature convergence.
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Table 4: The performance of the proposed algorithms on CEC 2015 benchmark function problems,
Dim=30

30 Dim
Function BMVO MVOD OMVO OMVOD

No. Mean Std. Mean Std. Mean Std. Mean Std.
F1 2,4586E+06 5,8475E+02 9,2586E+04 1,6482E+05 3,5856E+04 2,3433E+05 2,5515E+03 6,2432E+07
F2 5,3468E+05 2,6484E+04 3,9830E+05 1,4687E+05 2,7376E+05 2,7614E+05 1,3363E+05 2,0564E+05
F3 3,3560E+02 2,9654E+00 3,2781E+02 2,9972E+00 3,2659E+02 2,6674E+00 2,2687E+02 2,4458E+00
F4 8,4856E+03 4,4676E+02 6,5743E+03 4,4676E+02 6,7356E+03 8,4676E+02 5,7343E+03 6,4534E+02
F5 5,7467E+02 5,8678E-01 5,5778E+02 1,8747E+00 5,5754E+02 6,5822E-01 4,3456E+02 6,2345E-01
F6 6,1345E+02 3,5678E-01 3,3795E+02 5,3696E-01 3,6467E+02 2,7942E-01 1,0025E+02 7,5663E-02
F7 7,1586E+02 1,5464E+01 6,6526E+02 2,6543E+01 7,6458E+02 4,8754E+00 5,0052E+02 3,3567E-01
F8 2,3578E+04 1,7532E+06 1,3689E+02 4,3856E+05 1,8653E+02 2,6378E+04 1,2743E+02 3,8953E+03
F9 3,4574E+02 2,4924E-01 9,3971E+01 1,1254E-01 9,2563E+01 3,3658E-01 1,0330E+01 2,5654E-01
F10 2,4568E+05 1,0876E+05 3,1458E+04 1,4582E+05 2,1145E+04 6,8852E+04 2,1114E+04 3,4587E+04
F11 1,5485E+05 2,4865E+01 2,5696E+04 3,8589E+02 1,2295E+03 2,2698E+01 1,1887E+03 2,6523E+01
F12 2,4585E+06 3,3621E+02 4,9514E+04 4,6328E+04 3,7485E+04 2,5525E+02 3,4852E+02 1,4029E+02
F13 1,8641E+03 2,1153E+02 2,1236E+03 4,7545E+02 1,5685E+03 2,5864E+01 1,4568E+03 1,4244E+01
F14 2,8504E+03 2,2665E+01 1,3854E+03 1,4580E+02 1,6585E+03 2,8498E+01 1,3446E+03 5,7262E+01
F15 3,5640E+03 4,4751E+01 2,8547E+03 4,6582E+02 2,9581E+03 1,6954E+02 2,2565E+03 2,2345E+02
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Fig. 2: Convergence behavior of the proposed algorithms on CEC 2015 test functions
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The statistic rank test, Friedman rank test, for the proposed algorithms on CEC 2015 test
functions with 10 and 30 dimension space (Dim) is shown in Table 5. The findings indicate
that, in general, the suggested algorithms generated comparable results. Furthermore, when the
dimension is set to 10, the proposed OMVOD received the highest Mean rank value (17), followed
by OMVO (35), MVOD (41), and BMVO (51). In addition, when the dimension is set to 30, the
proposed OMVOD has the best Mean rank value (16), followed by OMVO (35), MVOD (41),
and BMVO (47). Furthermore, when the dimension value is set at 10, the proposed OMVOD
has the highest final ranking value (ranked first), followed by OMVO (ranked second), MVOD
(ranked third), and BMVO (ranked fourth) (ranked as the fourth).

Furthermore, when the dimension value is set to 30, the proposed OMVOD has the highest
final ranking value (ranked first), followed by OMVO (ranked second), MVOD (ranked third),
and BMVO (ranked fourth) (ranked as the fourth), as shown in Table 5. When we merged the
Opposition-based learning approach into the MVO with a disruption operator, we found that
the best-proposed variant is Opposition-based learning Multi-Verse Optimizer with a disrup-
tion operator called OMVOD. The second-best suggested approach, Opposition-based learning
with MVO (OMVO), showed that the Opposition-based learning technique was better than the
disruption operator. It gave the MVO more flexibility while maintaining its diversity of solutions.

On CEC 2015 test functions using 30 Dim, Table 6 displays efficiency comparisons of the best-
proposed algorithm (OMVOD) with other related approaches. The results of the best-proposed
algorithm are validated and compared using eight well-known published methods (OMVOD).
These methods are DE [52], iSRPSO [67], (µ+λ)-ES [14], EPSO [52], CMAES-S [12], CMAES-G
[12], ISRPSO [14], and HFPSO [14]. The proposed OMVOD obtained better results in comparison
with other similar methods in almost all cases (it got elven best cases out of fifteen). Generally,
the results show the superiority of the proposed algorithm by getting the best global optimum
solution.

The statistic rank test, Friedman rank test, for the proposed algorithms on CEC 2015 test
functions using 30 dimension space (Dim) is also seen in Table 6. The findings show that the sug-
gested algorithms outperformed the competition. Furthermore, the proposed OMVOD received
the highest Mean rank rating (1.60), followed by HFPSO (3.26), ISRPSO (3.46), iSRPSO (3.73),
EPSO (5.20), DE (6.13), µ+λ-ES (6.80), CMAES-G (6.80), CMAES-G (6.80), and CMAES-G
(7.86). The proposed OMVOD was ranked first, followed by HFPSO (ranked second), ISRPSO
(ranked third), iSRPSO (ranked fourth), EPSO (ranked fifth), DE (ranked sixth), mu+lambda)-
ES (ranked seventh), CMAES-G (ranked eighth), CMAES-G (ranked ninth), and CMAES-G
(ranked the ninth).

When we merged the Opposition-based learning approach into the MVO with a disruption
operator, we found that the best-proposed variant is Opposition-based learning Multi-Verse Op-
timizer with a disruption operator called OMVOD. It outperformed other published approaches
that used the same benchmark functions in the literature.

5.2 Part 2: Experiments on CEC 2017

In this section, the proposed algorithms are tested, and the findings of other published approaches
in the literature are compared using CEC 2017 benchmark function problems. Table 7 shows the
specifics of the CEC 2017 benchmark feature issues.

These benchmark functions are divided into four categories. The first is the Unimodal func-
tions (from F1 to F3 in Table 7), which are used to evaluate the proposed algorithms’ optimization
accuracy and convergence speed. Furthermore, in the given search field, these functions provide
a single final solution. Meanwhile, the Simple Multimodal Functions (from F4 to F10 in Table
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Fig. 2: Convergence behavior of the proposed algorithms on CEC 2015 test functions

7) are used to test the efficiency of the proposed algorithms in evading the exploitation optimum
and providing the global solution. The third form is Hybrid Functions (from F11 to F20 in Table
7), which are used to evaluate the proposed algorithms’ optimization efficiency and convergence
acceleration. Finally, the Composition Functions (from F13 to F15 in Table 7) are the fourth
kind, and they are used to evaluate the optimization efficiency and convergence acceleration of
the proposed algorithms.
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Table 5: Friedman rank test for the proposed algorithms on CEC 2015 test functions using 10
and 30 Dim

Function Dim Proposed Algorithms

No. BMVO MVOD OMVO OMVOD
F1 10 4 3 2 1
F1 30 4 3 2 1
F2 10 4 3 2 1
F2 30 4 3 2 1
F3 10 3 4 2 1
F3 30 4 3 2 1
F4 10 4 3 2 1
F4 30 4 2 3 1
F5 10 2 4 3 1
F5 30 4 3 2 1
F6 10 4 3 1 2
F6 30 4 2 3 1
F7 10 4 1 3 2
F7 30 4 2 3 1
F8 10 4 2 3 1
F8 30 4 2 3 1
F9 10 4 2 3 1
F9 30 4 3 2 1
F10 10 4 3 2 1
F10 30 3 4 1 2
F11 10 4 3 2 1
F11 30 4 3 2 1
F12 10 4 2 3 1
F12 30 4 3 2 1
F13 10 4 3 2 1
F13 30 3 4 2 1
F14 10 4 3 2 1
F14 30 4 2 3 1
F15 10 4 2 3 1
F15 30 4 2 3 1
Mean rank 10 57 41 35 17

30 58 41 35 16
Final ranking 10 4 3 2 1

30 4 3 2 1

Table 7: Review of CEC 2017 benchmark function problems.

No. Type Description Fi*
1 Unimodal functions Shifted and Rotated Bent Cigar Function 100
2 Shifted and Rotated Sum of Different Power Function 200
3 Shifted and Rotated Zakharov Function 300
4 Simple Multimodal Functions Shifted and Rotated Rosenbrock’s Function 400
5 Shifted and Rotated Rastrigin’s Function 500
6 Shifted and Rotated Expanded Scaffer’s F6 Function 600
7 Shifted and Rotated Lunacek Bi-Rastrigin Function 700
8 Shifted and Rotated Non-Continuous Rastrigin’s Function 800
9 Shifted and Rotated Levy Function 900
10 Shifted and Rotated Schwefel’s Function 1000
11 Hybrid functions Hybrid Function 1 (N=3) 1100
12 Hybrid Function 2 (N=3) 1200
13 Hybrid Function 3 (N=3) 1300
14 Hybrid Function 4 (N=4) 1400
15 Hybrid Function 5 (N=4) 1500
16 Hybrid Function 6 (N=4) 1600
17 Hybrid Function 6 (N=5) 1700
18 Hybrid Function 6 (N=5) 1800
19 Hybrid Function 6 (N=5) 1900
20 Hybrid Function 6 (N=6) 2000
21 Composition Functions Composition Function 1 (N=3) 2100
22 Composition Function 2 (N=3) 2200
23 Composition Function 3 (N=4) 2300
24 Composition Function 4 (N=4) 2400
25 Composition Function 5 (N=5) 2500
26 Composition Function 6 (N=5) 2600
27 Composition Function 7 (N=6) 2700
28 Composition Function 8 (N=6) 2800
29 Composition Function 9 (N=3) 2900
30 Composition Function 10 (N=3) 3000
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Table 6: Performance comparisons of the best-proposed algorithm (OMVOD) with other similar
methods on CEC 2015 test functions using 30 Dim.

30 Dim
Function Comparative Algorithms

No. DE iSRPSO (µ+λ)-ES EPSO CMAES-S CMAES-G ISRPSO HFPSO OMVOD
Ranking [52] [67] [14] [52] [12] [12] [14] [14] Our proposed
F1 2,3911E+10 6.0180E+08 3.5775E+10 8.4866E+09 6.8700E+07 1.1080E+08 7,1910E+08 1,1795E+09 2,5515E+03
Rank 8 4 9 7 2 3 5 6 1
F2 1,8254E+05 7.7320E+04 1.6179E+05 6.3748E+04 2.3630E+05 2.9530E+05 7,6860E+04 8,5653E+04 1,3363E+05
Rank 6 1 7 2 8 9 3 4 5
F3 3,4190E+02 2.6030E+02 3.4353E+02 3.3800E+02 6.3390E+02 6.5270E+02 3,2569E+02 3,2638E+02 2,2687E+02
Rank 7 2 6 5 8 9 3 4 1
F4 7,9627E+03 5.4450E+03 7.0557E+03 6.6946E+03 8.6730E+03 1.2040E+04 5,8090E+03 5,1202E+03 5,7343E+03
Rank 7 4 6 5 8 9 3 2 1
F5 5,0431E+02 4.4100E+02 5.0499E+02 5.0430E+02 1.0010E+03 1.0080E+03 5,0424E+02 5,0410E+02 4,3456E+02
Rank 4 7 5 6 8 9 3 2 1
F6 6,0365E+02 6.3980E-01 6.0433E+02 6.0276E+02 1.2010E+03 1.2010E+03 6,0064E+02 6,0076E+02 1,0025E+02
Rank 6 1 7 5 8 8 3 4 2
F7 7,5438E+02 4.8800E-01 7.8216E+02 7.2189E+02 1.4010E+03 1.4010E+03 7,0057E+02 7,0074E+02 5,0052E+02
Rank 6 1 7 5 8 8 3 4 2
F8 7,9963E+05 5.1450E+02 7.3789E+06 1.2746E+05 1.7670E+03 2.3210E+03 1,4262E+03 2,6354E+03 1,2743E+02
Rank 8 2 9 7 4 5 3 6 1
F9 9,1349E+02 1.3540E+01 9.1408E+02 9.1372E+02 1.8270E+03 1.8280E+03 9,1357E+02 9,1337E+02 1,0330E+01
Rank 4 2 7 6 8 9 5 3 1
F10 3,8759E+07 6.4750E+06 9.5323E+07 2.6363E+07 3.6310E+06 1.4730E+07 6,8320E+06 5,4690E+06 2,1114E+04
Rank 7 4 9 8 2 6 5 3 1
F11 1,2870E+03 3.1530E+01 1.4378E+03 1.2288E+03 2.2460E+03 2.2580E+03 1,1509E+03 1,1336E+03 1,1887E+03
Rank 6 1 7 5 8 9 3 2 4
F12 3,0110E+03 7.0880E+02 3.8087E+03 2.4432E+03 3.4540E+03 4.0940E+03 1,9357E+03 1,7752E+03 3,4852E+02
Rank 6 2 7 5 8 9 4 3 1
F13 1,9613E+03 3.9950E+03 2.2208E+03 1.8839E+03 3.3840E+03 3.4260E+03 1,6996E+03 1,6866E+03 1,4568E+03
Rank 5 9 6 4 7 8 3 2 1
F14 1.7479E+03 2.6560E+03 1.8406E+03 1.7016E+03 3.2660E+03 3.3000E+03 1,6655E+03 1,6469E+03 1,3446E+03
Rank 6 7 5 4 8 9 3 2 1
F15 2,9304E+03 9.7610E+03 2.9154E+03 2.7488E+03 4.4270E+03 4.8360E+03 2,4510E+03 2,4467E+03 2,2565E+03
Rank 6 9 5 4 7 8 3 2 1
Mean rank 6.13 3.73 6.80 5.20 6.80 7.86 3.46 3.26 1.60
Final ranking 6 4 7 5 7 8 3 2 1

When the dimension space is set to 10, Table 8 displays the efficiency of the proposed algo-
rithms (i.e., BMVO, MVOD, OMVO, and OMVOD) on the CEC 2017 benchmark function prob-
lems. The findings in Table 8 confirmed that the proposed algorithm (OMVOD) outperformed
other proposed methods (MVOD, OMVO) and the simple MVO in the majority of instances
(BMVO). The suggested algorithm (OMVOD) generated the best results (F1 and F3).

In all cases (seven out of seven functions), the suggested algorithm (OMVOD) generated the
best results in the second group (F4 to F10). The suggested algorithm (OMVOD) outperformed
the competition in three out of three cases (all functions from F11 to F20). Finally, overall
situations, OMVOD received the best performance in the fourth group (F21 to F30). These
research problems were used to assess discovery and extraction potential. The performance of
the proposed algorithms (i.e., BMVO, MVOD, OMVO, and OMVOD) on CEC 2017 benchmark
function problems are seen in Table 9 when the dimension space is set to 30.

The results shown in Table 9 are a continuation of the earlier results. The findings showed that
the proposed algorithm (OMVOD) outperformed other proposed methods (MVOD, OMVO) and
the simple MVO in every case (BMVO). We inferred from the results that adding the opposite
dependent learning method to the MVO with the disruption operator achieved its key goals to
improve its efficiency.

On CEC 2017 benchmark function problems, Table 9 shows the efficiency of the proposed
algorithms (i.e., BMVO, MVOD, OMVO, and OMVOD) when the dimension space is set to 30.
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Table 8: The performance of the proposed algorithms on CEC 2017 benchmark function problems,
Dim=10

10 Dim
Function BMVO MVOD OMVO OMVOD

No. Mean Std. Mean Std. Mean Std. Mean Std.
F1 1,1542E+10 6,3627E+09 2,3656E+09 5,6525E+09 1,5691E+08 2,4625E+08 2,2589E+07 2,3059E+08
F2 2,3529E+11 1,4256E+12 1,3690E+09 3,2566E+10 1,3563E+08 3,2338E+08 1,1250E+08 2,3016E+08
F3 3,5692E+04 2,9560E+04 3,5973E+04 1,5297E+04 2,2236E+04 1,6668E+04 1,1060E+04 1,9658E+03
F4 6,8654E+02 5,4167E+03 2,4123E+03 3,3624E+01 3,3698E+02 4,9633E+01 2,1525E+02 4,9865E+01
F5 5,9447E+02 2,6542E+01 2,4556E+02 2,4864E+01 4,3354E+02 1,5699E+01 2,2514E+02 1,3622E+01
F6 6,2376E+02 5,7474E+01 4,8345E+02 1,4856E+01 3,2443E+02 5,5352E+00 2,3453E+02 1,3523E+01
F7 7,4935E+02 2,2487E+01 8,1546E+02 6,3491E+01 6,8694E+02 1,5758E+01 4,2975E+02 1,6245E+01
F8 8,4397E+02 1,6496E+01 4,5964E+02 2,9654E+01 5,3681E+02 1,3579E+01 3,1548E+02 1,0214E+01
F9 4,7410E+03 1,7545E+02 1,6252E+03 3,9524E+02 1,3659E+03 2,7546E+02 1,1445E+03 2,2547E+02
F10 3,6634E+03 3,6975E+02 2,5654E+03 2,3654E+02 2,6543E+03 3,2589E+02 1,4564E+03 2,3633E+02
F11 3,2145E+04 4,2742E+03 2,5652E+04 1,6556E+05 1,3605E+03 1,2379E+02 1,1179E+03 3,4560E+01
F12 7,7778E+07 6,2686E+07 3,3654E+06 6,5658E+07 2,3557E+05 4,7352E+06 2,1258E+04 6,6547E+03
F13 4,3983E+04 6,5652E+05 2,6535E+04 5,5580E+08 1,2585E+04 6,3256E+03 1,1123E+03 3,6985E+03
F14 2,2112E+04 9,4564E+03 6,0251E+03 1,5453E+06 4,1565E+03 3,4549E+03 2,2396E+02 4,2355E+03
F15 4,2563E+04 1,4673E+04 6,3652E+03 9,5632E+07 2,2525E+03 1,2352E+04 2,3235E+02 2,7452E+04
F16 6,3567E+03 1,5854E+02 2,5757E+03 3,1814E+02 2,5642E+03 1,5245E+02 1,4658E+02 1,5676E+02
F17 4,8855E+03 5,6348E+01 2,3652E+03 2,9856E+02 1,4567E+03 4,5820E+01 1,3601E+02 3,5678E+01
F18 6,3824E+06 1,3643E+04 4,3497E+04 1,5697E+06 3,2656E+04 1,5765E+05 1,5868E+03 1,9995E+04
F19 1,4652E+06 1,8764E+04 2,3695E+04 4,5479E+07 1,8365E+04 4,7450E+03 2,1477E+03 3,8570E+04
F20 3,9638E+04 4,3621E+02 2,1458E+03 1,3654E+02 1,1421E+03 3,2452E+02 1,1236E+02 1,0587E+02
F21 2,7412E+04 5,7854E+02 2,6568E+03 3,5963E+01 2,3535E+03 3,8342E+01 1,2487E+02 2,2450E+01
F22 2,1345E+04 1,1225E+02 4,5540E+03 6,4335E+02 2,3652E+03 2,8563E+02 2,1453E+02 2,0258E+02
F23 5,6364E+04 1,4653E+01 3,9452E+03 2,4616E+02 2,1256E+03 2,4617E+01 2,1247E+02 2,1652E+01
F24 2,9681E+05 6,8753E+01 3,2648E+04 1,1265E+02 2,3179E+03 1,0147E+02 1,1420E+03 1,3478E+02
F25 9,3659E+04 6,5958E+01 4,2915E+03 5,4594E+02 2,1216E+03 3,8374E+01 1,4552E+03 2,2874E+01
F26 7,1743E+04 4,3977E+02 5,3485E+03 4,5548E+02 3,3304E+03 5,8464E+02 2,2573E+03 1,4357E+02
F27 4,1974E+03 7,6955E+01 3,8988E+03 4,3976E+02 3,1263E+03 4,3485E+01 2,0254E+02 3,4752E+01
F28 5,2682E+04 4,5186E+02 4,7589E+03 3,5468E+02 4,5858E+03 5,6378E+01 2,2549E+02 1,5424E+02
F29 4,6323E+03 7,9721E+01 3,1147E+03 2,6510E+02 2,4562E+03 1,1437E+02 1,2341E+03 5,5478E+01
F30 7,4214E+06 2,8851E+06 2,5685E+06 2,7134E+05 4,8780E+05 2,4125E+05 5,5464E+03 3,8365E+04

The results shown in Table 9 suggested that the proposed algorithm (OMVOD) outperformed
other proposed methods (MVOD, OMVO) and the simple MVO in all situations (BMVO). In any
case, in the first range, the suggested algorithm (OMVOD) produced the best results (F1-F3).

In all cases (seven out of seven functions), the suggested algorithm (OMVOD) generated the
best results in the second group (F4-F10). The suggested algorithm (OMVOD) outperformed
the competition in three out of three cases (all functions from F11 to F20). Finally, overall
situations, OMVOD received the best performance in the fourth group (F21 to F30). These
research problems were used to assess discovery and extraction potential. The performance of
the proposed algorithms (i.e., BMVO, MVOD, OMVO, and OMVOD) on CEC 2017 benchmark
function problems are seen in Table 9 when the dimension space is set to 30.

According to the Friedman ranking test, the findings in Table 10 are devoted to the results
seen earlier. Where the dimensions are equal to 10 and 30, the results showed that the proposed
algorithm (OMVOD) outperformed other proposed methods (MVOD, OMVO) and the simple
MVO (BMVO) in both situations. Therefore, we inferred from the results that adding the oppo-
site dependent learning method to the MVO with the disruption operator achieved its key goals
to improve its efficiency.
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Table 9: The performance of the proposed algorithms on CEC 2017 benchmark function problems,
Dim=30

30 Dim
Function BMVO MVOD OMVO OMVOD

No. Mean Std. Mean Std. Mean Std. Mean Std.
F1 3,3661E+11 3,4784E+09 1,8614E+10 1,8718E+09 6,6416E+08 2,6544E+08 1,5448E+07 8,4895E+05
F2 2,4874E+49 3,8750E+39 3,6178E+46 4,6964E+57 3,5875E+39 1,5354E+30 3,5418E+27 1,1647E+25
F3 2,8455E+09 4,6224E+08 2,4768E+05 1,8774E+09 1,6412E+05 3,9763E+04 1,4688E+04 2,4861E+04
F4 3,5378E+04 1,3586E+03 4,3575E+03 1,5754E+04 1,2753E+03 3,3546E+02 1,5499E+02 3,4546E+02
F5 5,2582E+03 2,1258E+01 1,7857E+02 6,7847E+01 3,9735E+02 3,8643E+01 7,5688E+01 2,5548E+01
F6 6,8453E+02 6,5455E+00 3,6481E+02 1,8746E+01 4,4586E+02 8,7985E+00 2,0256E+02 1,6847E+01
F7 1,7985E+03 1,6329E+02 2,9927E+03 2,0330E+02 1,1241E+03 5,3149E+01 1,0634E+03 3,8217E+01
F8 1,6548E+04 3,9765E+01 1,6873E+03 3,5455E+01 1,5428E+03 3,3185E+01 1,2425E+02 3,5354E+01
F9 1,0143E+04 1,6887E+03 3,4572E+03 3,5724E+03 5,5724E+03 2,2475E+03 2,4584E+02 2,9765E+03
F10 9,8757E+04 7,6483E+03 1,1642E+04 6,1254E+02 4,1394E+03 5,2931E+02 6,2946E+02 5,6481E+02
F11 3,4589E+04 3,3698E+03 3,9485E+03 1,3659E+04 3,2697E+03 1,2456E+03 3,3465E+02 4,6481E+02
F12 3,9450E+09 9,4541E+07 2,7222E+06 5,3696E+09 3,3120E+06 2,2237E+05 7,9259E+05 3,7870E+04
F13 4,1745E+09 6,1693E+08 2,7642E+06 1,2479E+04 2,4750E+05 1,6471E+06 2,0185E+03 1,6485E+04
F14 1,3452E+07 1,6485E+06 5,3485E+07 3,6485E+07 1,7680E+05 1,4258E+06 4,4369E+04 5,3168E+05
F15 1,7255E+08 6,1141E+07 7,1425E+04 3,3501E+04 1,2476E+04 1,1726E+06 2,3512E+03 2,3451E+04
F16 4,4645E+04 2,9646E+02 3,6364E+03 2,6620E+03 2,6633E+03 4,0749E+02 1,8761E+02 4,5412E+02
F17 3,0694E+04 1,8157E+02 2,3587E+04 4,9353E+04 1,5584E+03 2,5871E+02 1,9954E+02 2,7854E+02
F18 2,2581E+09 1,9753E+07 1,2445E+08 5,7822E+08 7,2789E+06 9,2564E+06 2,5574E+04 2,1144E+05
F19 1,6632E+09 6,2434E+07 1,2654E+08 3,5465E+09 8,4651E+06 9,5542E+06 5,9657E+03 5,7686E+04
F20 3,9641E+03 1,3552E+02 3,7505E+03 2,1617E+02 2,9243E+03 2,5124E+02 1,1485E+03 1,8240E+02
F21 2,8705E+03 2,5474E+01 2,3580E+03 6,5385E+01 2,2582E+03 5,7252E+01 1,3257E+02 2,9584E+01
F22 5,3253E+04 1,6975E+03 2,2747E+04 3,2465E+02 4,7653E+03 3,1479E+03 3,7366E+02 3,4553E+03
F23 3,3652E+04 4,9488E+02 3,3659E+03 2,8141E+02 3,4669E+03 9,0778E+02 2,0124E+03 4,6524E+02
F24 5,7656E+04 5,1865E+05 4,5439E+03 2,5680E+05 3,2579E+03 9,8243E+05 1,1582E+03 1,4577E+04
F25 4,9540E+05 4,8632E+07 1,7658E+04 3,5669E+05 3,3520E+03 1,4526E+04 1,0623E+03 7,5721E+03
F26 7,8541E+04 6,7612E+02 1,6653E+04 1,5541E+03 5,8686E+03 1,6655E+03 3,6540E+02 1,5275E+03
F27 3,6456E+04 6,7456E+01 5,5649E+03 7,3547E+02 3,4656E+03 9,7626E+03 2,6543E+03 6,6540E+03
F28 5,6356E+04 4,3252E+02 1,3425E+04 1,5514E+03 3,7438E+03 2,4540E+02 3,3855E+02 5,6645E+02
F29 5,4565E+04 3,5675E+02 5,2454E+04 1,6535E+05 4,8286E+03 4,8654E+02 1,6749E+03 2,7644E+02
F30 1,6452E+09 6,3125E+07 4,1452E+09 1,6496E+09 2,9754E+07 1,3647E+07 4,1495E+04 2,4585E+06
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Table 10: Friedman rank test for the proposed algorithms on CEC 2017 test functions using 10
and 30 Dim

Function Dim Proposed Algorithms

No. BMVO MVOD OMVO OMVOD
F1 10 4 3 2 1
F1 30 4 3 2 1
F2 10 4 3 2 1
F2 30 4 3 2 1
F3 10 3 4 2 1
F3 30 4 3 2 1
F4 10 3 4 2 1
F4 30 4 3 2 1
F5 10 4 3 2 1
F5 30 4 2 3 1
F6 10 4 3 2 1
F6 30 4 2 3 1
F7 10 4 3 2 1
F7 30 4 3 2 1
F8 10 4 2 3 1
F8 30 4 3 2 1
F9 10 4 3 2 1
F9 30 4 2 3 1
F10 10 4 2 3 1
F10 30 4 3 2 1
F11 10 4 3 2 1
F11 30 4 3 2 1
F12 10 4 3 2 1
F12 30 4 3 2 1
F13 10 4 3 2 1
F13 30 4 3 2 1
F14 10 4 3 2 1
F14 30 4 3 2 1
F15 10 4 3 2 1
F15 30 4 3 2 1
F16 10 4 3 2 1
F16 30 4 3 2 1
F17 10 4 3 2 1
F17 30 4 3 2 1
F18 10 4 3 2 1
F18 30 4 3 2 1
F19 10 4 3 2 1
F19 30 4 3 2 1
F20 10 4 3 2 1
F20 30 4 3 2 1
F21 10 4 3 2 1
F21 30 4 3 2 1
F22 10 4 3 2 1
F22 30 4 3 2 1
F23 10 4 3 2 1
F23 30 4 2 2 1
F24 10 4 3 2 1
F24 30 4 3 2 1
F25 10 4 3 2 1
F25 30 4 3 2 1
F26 10 4 3 2 1
F26 30 4 3 2 1
F27 10 4 3 2 1
F27 30 4 3 2 1
F28 10 4 3 2 1
F28 30 4 3 2 1
F29 10 4 3 2 1
F29 30 4 3 2 1
F30 10 4 3 2 1
F30 30 4 3 2 1
Mean rank 10 3.93 3.00 2.06 1.00

30 4.00 2.83 2.16 1.00
Final ranking 10 4 3 2 1

30 4 3 2 1
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Figure 3 depicts the distribution effects of the suggested processes. The distribution results
for multiple functions from all groups are presented. The distributions of the obtained results by
the proposed approach (OMVOD) are much better than the other comparative approaches, as
seen in all sub-figures. Furthermore, all OMVOD’s results have a high density near the optimum
solutions, demonstrating that OMVOD’s efficiency with these modifications is superior.

(a) F1 (b) F3

(c) F7 (d) F9

(e) F16 (f) F17

Fig. 3: Convergence behavior of the proposed algorithms on CEC 2017 test functions
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(g) F23 (h) F24

Fig. 3: Convergence behavior of the proposed algorithms on CEC 2017 test functions

On CEC 2017 test functions using 30 Dim, Table 11 displays efficiency comparisons of the
best-proposed algorithm (OMVOD) with other related approaches. The results of the best-
proposed algorithm are validated and compared using eight well-known published methods
(OMVOD). These methods are Firefly Algorithm (FA) [14], Particle swarm optimization (PSO)
[52], Gravitational Search Algorithm (GSA) [76], Glowworm Swarm Optimization (GSO) [2] ,
Hybrid Firefly and Particle Swarm Optimization (FFPSO) [14], Dynamic Virtual Bats Algorithm
(DVBA) [69], Hybrid Particle Swarm Optimization-Firefly algorithm (HPSOFF) [14], MVO [49],
and OMVOD.

In every scenario, the proposed OMVOD produced better results than other related ap-
proaches (it got fourteen best cases out of thirteen). In general, the results suggest that the
proposed algorithm is better for obtaining the best global optimum solution. The statistic rank
test, Friedman rank test, for the proposed algorithms on CEC 2017 test functions using 30 di-
mension space value is also seen in Table 11. The findings show that the suggested algorithms
outperformed the competition. In addition, the suggested OMVOD received the highest Mean
rank value (2.13), followed by DVBA (3.10), GSA (3.46), GSO (4.23), PSO (4.63), HPSOFF
(4.86), FA (6.46), FFPSO (8.00), and MVO (8.03). The proposed OMVOD received the highest
overall ranking rating (ranking first), followed by DVBA (ranking second), GSA (ranking third),
GSO (ranking fourth), PSO (ranking fifth), HPSOFF (ranking sixth), FA (ranking seventh),
FFPSO (ranking eighth), and MVO (ranking ninth) (ranked the ninth). When we merged the
Opposition-based learning approach into the MVO with a disruption operator, we found that
the best-proposed variant is Opposition-based learning Multi-Verse Optimizer with a disruption
operator called OMVOD. When contrasted to other published approaches in the literature that
used the same benchmark functions, OMVOD produced better performance.
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Table 11: Performance comparisons of the best-proposed algorithm (OMVOD) with other similar
methods on CEC 2017 test functions using 30 Dim.

30 Dim
Function Comparative Algorithms

No. FA PSO GSA GSO FFPSO DVBA HPSOFF MVO OMVOD
Ranking [14] [52] [76] [2] [14] [69] [14] [49] Our proposed
F1 3,3061E+10 5,5573E+09 3,1400E+08 2,2000E+08 1,1348E+11 1,0500E+05 6,0544E+09 3,3661E+11 1,5448E+07
Rank 7 5 4 3 8 1 6 9 2
F2 1,8379E+39 3,9099E+32 1,5500E+10 1,4400E+10 1,0418E+57 2,9100E+04 3,1775E+34 2,4874E+49 3,5418E+27
Rank 7 5 3 2 9 1 6 8 4
F3 2,1556E+05 1,3257E+05 8,6400E+04 9,9600E+04 6,7723E+09 1,5900E+04 1,3635E+05 2,8455E+09 1,4688E+04
Rank 7 5 3 4 9 2 6 8 1
F4 6,8240E+03 9,0860E+02 1,3900E+03 1,8400E+03 4,4924E+04 1,8800E+02 1,2583E+03 3,5378E+04 1,5499E+02
Rank 7 3 5 6 9 2 4 8 1
F5 8,7976E+02 8,0387E+02 2,0000E+01 2,0400E+01 1,1284E+03 2,0100E+01 8,1763E+02 5,2582E+03 7,5688E+01
Rank 7 5 1 3 8 2 6 9 4
F6 6,7297E+02 6,5628E+02 3,0400E+01 1,2600E+02 7,2989E+02 2,3400E+02 6,7252E+02 6,8453E+02 2,0256E+02
Rank 7 5 1 2 9 4 6 8 3
F7 1,7985E+03 1,1273E+03 1,6300E+03 9,6200E+01 2,9927E+03 1.0700E+03 1,1241E+03 1,7985E+03 1,0634E+03
Rank 7 5 6 1 9 3 4 7 2
F8 1,1591E+03 1,0857E+03 1,4600E+03 4,1700E+02 1,3608E+03 3,0000E+01 1,1756E+03 1,6548E+04 1,2425E+02
Rank 5 4 8 3 7 1 6 9 2
F9 1,3053E+04 6,6038E+03 1,6400E+03 8,0900E+02 3,0274E+04 2,1400E+03 9,0601E+03 1,0143E+04 2,4584E+02
Rank 8 5 3 2 9 4 6 7 1
F10 9,4664E+03 9,2920E+03 3,9100E+03 7,6600E+03 1,0715E+04 7,9000E+03 8,9099E+03 9,8757E+04 6,2946E+02
Rank 7 6 2 3 8 4 5 9 1
F11 1,1963E+04 3,6404E+03 4,3800E+03 1,7600E+04 3,4403E+04 3,9300E+02 4,5469E+03 3,4589E+04 3,3465E+02
Rank 6 3 4 7 8 2 5 9 1
F12 3,0340E+09 6,4666E+08 2,0300E+02 1,1400E+00 2,7727E+10 9,8000E+01 3,3040E+08 3,9450E+09 7,9259E+05
Rank 7 6 3 1 9 2 5 8 4
F13 1,1545E+09 1,9336E+08 3,7300E+04 5,5400E+04 2,7922E+10 5,1000E+04 2,7671E+07 4,1745E+09 2,0185E+03
Rank 7 6 2 4 9 3 5 8 1
F14 1,8933E+06 1,1117E+06 7,2600E+05 5,5900E+05 5,6035E+07 2,0000E+04 1,1120E+06 1,3452E+07 4,4369E+04
Rank 7 5 4 3 9 1 6 8 2
F15 1,0725E+08 3,9118E+07 1,3700E+03 2,9800E+03 7,1411E+09 2,4900E+03 1,5676E+06 1,7255E+08 2,3512E+03
Rank 7 6 1 2 9 4 5 8 3
F16 4,4164E+03 3,9514E+03 1,3700E+01 9,4800E+05 9,6352E+03 1,2700E+02 3,6383E+03 4,4645E+04 1,8761E+02
Rank 6 5 1 9 7 2 4 8 3
F17 3,0044E+03 2,6556E+03 2,3000E+07 4,5000E+07 3,3347E+04 8,0900E+04 2,5254E+03 3,0694E+04 1,9954E+02
Rank 4 3 8 9 6 7 2 5 1
F18 2,9281E+07 7,9043E+06 5,3600E+04 8,1600E+06 1,0554E+09 7,9000E+04 8,5589E+06 2,2581E+09 2,5574E+04
Rank 7 4 2 5 8 3 6 9 1
F19 1,6603E+08 5,1700E+07 1,7300E+02 2,3200E+02 8,2628E+09 1,8100E+01 8,4341E+06 1,6632E+09 5,9657E+03
Rank 7 6 2 3 9 1 5 8 4
F20 3,1162E+03 3,0177E+03 2,5400E+05 1,2600E+05 3,7975E+03 8,2900E+03 2,9083E+03 3,9641E+03 1,1485E+03
Rank 4 3 9 8 5 7 2 6 1
F21 2,6405E+03 2,6009E+03 1,0100E+07 1,8800E+07 2,8880E+03 8,4500E+04 2,5982E+03 2,8705E+03 1,3257E+02
Rank 4 3 8 9 6 7 2 5 1
F22 8,0003E+03 6,8425E+03 1,2700E+03 3,0500E+03 1,2117E+04 4,7000E+02 5,7433E+03 5,3253E+04 3,7366E+02
Rank 7 6 3 4 8 2 5 9 1
F23 3,1542E+03 3,0819E+03 2,6600E+02 4,2600E+02 4,0749E+03 3,1600E+03 3,0969E+03 3,3652E+04 2,0124E+03
Rank 6 4 1 2 8 7 5 9 3
F24 3,3056E+03 3,2139E+03 2,1500E+02 2,0300E+02 4,4529E+03 2,4900E+02 3,2719E+03 5,7656E+04 1,1582E+03
Rank 7 5 1 2 8 3 6 9 4
F25 4,9480E+03 3,2145E+03 2,0500E+02 3,3500E+02 1,5958E+04 2,1900E+02 3,2320E+03 4,9540E+05 1,0623E+03
Rank 7 5 1 3 8 2 6 9 4
F26 8,8041E+03 6,6461E+03 1,9000E+02 2,0500E+02 1,6163E+04 1,9000E+02 7,2386E+03 7,8541E+04 2,6540E+02
Rank 7 5 1 3 8 1 6 9 4
F27 6,6059E+03 3,3573E+03 1,7400E+03 3,5500E+03 5,8099E+03 5,7000E+03 3,4360E+03 3,6456E+04 2,6543E+03
Rank 8 3 1 5 7 6 4 9 2
F28 5,6940E+03 3,6388E+03 2,3100E+03 1,9900E+04 1,3535E+04 1,5600E+03 3,7938E+03 5,6356E+04 3,3855E+02
Rank 6 4 3 8 7 2 5 9 1
F29 5,7051E+03 4,9240E+03 3,3000E+07 8,1300E+05 9,3924E+04 1,8400E+04 4,8406E+03 5,4565E+04 1,6749E+03
Rank 4 3 9 8 7 5 2 6 1
F30 1,7163E+08 4,8514E+07 1,7900E+06 7,7300E+05 4,1425E+09 1,1900E+05 2,5749E+07 1,6452E+09 4,1495E+04
Rank 7 6 4 3 9 2 5 8 1
Mean rank 6.46 4.63 3.46 4.23 8.00 3.10 4.86 8.03 2.13
Final ranking 7 5 3 4 8 2 6 9 1
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5.3 Part 3: Experiments on CEC 2011 real-world problems

Additionally, for the standard benchmark functions presented in the sections earlier, seven more
real-world problems (RWPs) have also been utilized to verify the effectiveness of the proposed
method (OMVOD) [70], which are chosen from CEC 2011 real-world problems. These problems
are as follows:

– RWP01: optimal control of a non-linear stirred tank reactor
– RWP02: spread spectrum radar polly phase code design
– RWP03: large scale transmission pricing problem
– RWP04: dynamic economic dispatch (DED) problem
– RWP05: hydrothermal scheduling problem
– RWP06: hydrothermal scheduling problem
– RWP07: hydrothermal scheduling problem

Seven real-world problems were used to evaluate the proposed method’s success and equate it
to other related approaches from [70]. To test the efficiency of many algorithms, these problems
can be handled as continuous or discrete constrained problems. Five complementary approaches
are used in this article to compare the findings of the proposed process. The population size is
set to 30 for the experiments in this section. The maximum number of iterations is set to 1000.
In Table 12, the results of 50 runs on seven RWPs are presented.

The proposed OMVOD algorithm outperformed the competition on six out of seven RWPs,
as seen in Table 12 (except RWP06). The BBO algorithm, on the other hand, just got the best
solution on one out of seven RWPs. Furthermore, the suggested OMVOD algorithm obtained
the mean best results on six out of seven RWPs in terms of mean best results (except RWP06).
The BBO algorithm, on the other hand, had the best results on one out of seven RWPs. The
consequence of the outcomes of these two scenarios is continuity. On five out of seven RWPs,
the proposed OMVOD algorithm got the worst scores (except RWO02 and RWP06). The BBO
algorithm, on the other hand, got the worst best results on one of seven RWPs (RWO02), while
the ABC got the worst best results on one of seven RWPs (RWP06). Finally, on five out of
seven RWPs, the proposed OMVOD algorithm obtained the best STD results (except RWO01
and RWP06). The BBO algorithm, on the other hand, had the better STD results on two out
of seven RWPs. In general, as compared to other related approaches, the proposed OMVOD al-
gorithm generated the best overall results by 22 times. We concluded that the proposed method
(OMVOD) could solve the optimization problems from different disciplines efficiently, reflect-
ing the effect of the opposite-based-learning method and disruption operator in developing the
optimization process to reach the optimal solution effectively.

6 Conclusions and future directions

Using the Multi-Verse Optimizer (MVO) algorithm, this paper introduced new alternative ap-
proaches. Two key stages are included in the proposed methods: To improve its exploitation
quest, the basic MVO is combined with Opposition-based learning (OBL) in the first phase,
resulting in OMVO. The disruption operator (DO) is examined in the second phase to increase
the discovery search of the OMVO while preserving the variety of the solutions, which is referred
to as OMVOD.

Twenty-five CEC 2015 benchmark functions problems, thirty CEC 2017 benchmark functions
problems and seven CEC 2011 real-world problems are included in the experiments. The proposed
algorithms’ findings are comparable to those of many other algorithms that have been published
in the literature. The best, average, and standard deviation of the fitness values are used to
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Table 12

Problem Metric Comparative Algorithms

ABC BBO DE PSO SGA OMVOD
RWP01

Best 19.81 23.93 20.93 14.39 23.93 13.73
Mean 21.43 23.93 22.93 20.47 23.93 18.55
Worst 22.91 23.93 23.93 21.83 23.93 21.14
STD 5.1E-01 7.2E-15 8.4E-1 1.78E+00 7.2E-15 3.5E-10

RWP02
Best 1.62 1.73 1.88 1.95 1.62 1.56
Mean 2.34 2.13 2.44 2.42 2.17 2.04
Worst 2.88 2.49 2.77 2.89 2.90 2.50
STD 2.4E-01 2.0E-01 2.2E-01 2.0E-01 3.0E-01 1.9E-01

RWP03
Best 1.6E-06 8.9E-05 1.1E-06 1.4E-06 1.0E-06 7.6E-05
Mean 2.0E+06 1.2E-06 1.3E-06 1.7E-06 1.3E-06 1.1E-06
Worst 2.0E-06 1.5E-06 1.5E-06 2.0E-06 1.6E-06 1.3E-06
STD 1.7E-05 1.0E-05 9.3E-04 1.3E-05 1.3E-05 7.3E-04

RWP04
Best 7.8E-07 5.7E-06 3.9E-07 8.6E-07 1.8E-07 3.9E-06
Mean 3.3E-08 5.2E-07 2.8E-08 1.2E-08 8.8E-07 2.4E-07
Worst 4.0E-08 9.2E-07 3.3E-08 1.6E-08 1.5E-08 4.6E-07
STD 3.2E-07 2.0E-07 2.4E-07 2.4E-07 2.3E-07 1.4E-07

RWP05
Best 2.2E-08 1.2E-07 2.2E-08 7.2E-07 2.5E-07 3.4E-06
Mean 1.5E-08 1.6E-07 6.2E-07 1.1E-08 4.0E-07 8.6E-06
Worst 1.9E-08 3.6E-07 8.5E-07 1.3E-08 5.9E-07 2.4E-07
STD 2.1E-07 6.7E-06 1.1E-07 1.0E-07 9.1E-06 3.7E-06

RWP06
Best 8.2E-07 4.6E-06 4.0E-07 7.9E-07 1.4E-07 5.2E-07
Mean 1.5E-08 1.7E-07 6.2E-07 1.1E-08 3.7E-07 2.6E-07
Worst 2.0E-07 4.0E-07 8.5E-07 1.3E-08 5.5E-07 4.1E-07
STD 2.2E-07 8.5E-06 1.1E-07 1.3E-07 9.3E-06 1.1E-07

RWP07
Best 1.0E-08 2.5E-06 3.6E-07 7.9E-07 2.2E-07 2.4E-06
Mean 1.5E-08 1.4E-07 5.9E-07 1.1E-08 3.8E-07 1.2E-07
Worst 1.9E-08 3.2E-07 8.1E-07 1.3E-08 4.1E-07 3.2E-07
STD 2.1E-07 6.5E-06 8.9E-06 1.2E-07 8.9E-06 4.3E-06

Obtained best
Best 0 1 0 0 0 6
Mean 0 1 0 0 0 6
Worst 1 2 0 0 0 5
STD 0 2 0 0 0 5
Summation 1 6 0 0 0 22

determine the efficacy of each algorithm. Compared to other related algorithms, the findings
revealed that the OMVOD version is almost the best optimizer in all test problems. In summary,
solving real-world problems showed that the proposed OMVOD has a promising potential to be
very useful in solving structural design problems with unfamiliar search spaces. Furthermore, the
suggested OMVOD encourages discovery and extraction phases to be balanced while maintaining
solution diversity. It does, however, suffer from a late convergence flaw.

In future works, we will consider the performance of other algorithms for new hybrid versions.
We will also utilize them in the different optimization problems and multi-objective problems to
achieve better results. Furthermore, we will also apply the other representative computational
intelligence algorithms such as monarch butterfly optimization (MBO), earthworm optimization
algorithm (EWA), elephant herding optimization (EHO), moth search (MS) algorithm, Arith-
metic Optimization Algorithm (AOA), and Aquila optimizer (AO).
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