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Abstract  30 

Finding disease-relevant tissues and cell types can facilitate the identification and investigation of 31 

functional genes and variants. In particular, cell type proportions can serve as potential disease 32 

predictive biomarkers. Here, we introduce a novel statistical framework, cell-type Wide 33 

Association Study (cWAS), that integrates genetic data with transcriptomics data to identify cell 34 

types whose genetically regulated proportions (GRPs) are disease/trait-associated.  On simulated 35 

and real GWAS data, cWAS showed substantial statistical power with newly identified significant 36 

GRP associations in disease-associated tissues. More specifically, GRPs of endothelial and 37 

myofibroblasts in lung tissue were associated with Idiopathic Pulmonary Fibrosis and Chronic 38 

Obstructive Pulmonary Disease, respectively. For breast cancer, the GRP of blood CD8+ T cells  39 

was negatively associated with breast cancer (BC) risk as well as survival. Overall, cWAS is a 40 

powerful tool to reveal cell types associated with complex diseases mediated by GRPs.  41 
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Introduction  42 

Despite the great success of genome-wide association studies (GWAS), it has been challenging to 43 

identify disease-causing genes and variants. To better design functional studies of GWAS 44 

implicated SNPs, it is important to identify tissues and cell types most relevant to a disease. Several 45 

statistical approaches have been developed for this purpose1–3. In general, these methods aim to 46 

detect statistically significant overlap between GWAS signals and annotated functional regions in 47 

specific tissues and cell types, where the annotated functional regions are curated from other data 48 

sources, such as ENCODE and Roadmap Epigenomics data and single cell data. Although such 49 

analyses have led to novel insights on disease mechanisms1,4–7, the cell types associated with the 50 

majority of genomic regions remain to be discovered. 51 

 52 

Several studies have found that the proportions of cell types are not only associated with disease 53 

incidence8,9 but also disease prognosis10,11. Single cell RNA-seq (scRNA-seq) technologies have 54 

been used to identify cell type proportions that impact human diseases and traits12. However, 55 

several intrinsic characteristics of single cell data make disease-cell type proportion association 56 

analysis challenging. First, high expense and technical noise (e.g., high sparsity of gene expression) 57 

limit the number of samples analyzed and quality of cell type composition estimation, leading to 58 

low power in association analysis. Second, cell type compositions measured in single cell 59 

experiments are highly dependent on the biopsy samples and do not necessarily reflect the true cell 60 

type compositions in the corresponding tissue13. Instead of directly calculating cell type 61 

proportions from scRNA-seq data, cell type proportions can also be inferred through 62 

deconvolution of bulk RNA-sequencing (RNA-seq) data available with larger sample sizes. Many 63 

computational methods have been developed to estimate cell type proportions in bulk RNA-seq 64 
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data using cell type-specific gene expression signatures derived from either microarray or scRNA-65 

seq reference12. Compared with biopsy samples in single cell analyses, tissue samples for bulk 66 

analysis might better represent the original cell type compositions8,12.  67 

 68 

For both single cell and bulk data, cell type proportions can be affected by various factors including 69 

disease status and treatment effects. Consequently, the observed cell type proportion differences 70 

between disease and healthy individuals might be the outcome of the disease and environmental 71 

factors instead of disease causes. 72 

 73 

Unlike assayed gene expression levels, genotypes are less likely to be affected by confounding 74 

factors and reverse causation. The same idea underlies Mendelian randomization methods to infer 75 

causal factors for different traits9,10,14. In this paper, we examined genetically regulated proportions 76 

(GRPs) of cell types. We note that cell type proportions are heritable11,15, suggesting the feasibility 77 

of inferring cell type proportions based on genotypes. Cell type proportions can vary substantially 78 

in patients with different diseases16. We introduce a new framework, cell type Wide Association 79 

Study (cWAS), to consider the GRPs of cell types as contributors to human disease. Through 80 

simulation studies and real data analyses across 55 traits in 36 tissues, cWAS showed higher 81 

statistical power in identifying disease-cell type proportion associations than typical cell-disease 82 

association identification approaches like FUMA3. In summary, cWAS offers a novel way to 83 

understand human diseases in a cell-type specific manner. 84 

 85 

86 
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Results 87 

Model summary 88 

We propose a statistical framework to identify cell types whose GRPs are associated with diseases. 89 

The framework consists of two parts (Figure 1). First, under the assumption that there exist 90 

signature genes signifying specific cell types (consistent with previous methods15,17), we infer 91 

GRPs of cell types through deconvolution of the imputed tissue-specific gene expression levels 92 

based on cis-SNP genotypes from eQTL data. Second, we combine the GRPs with disease 93 

phenotype information to identify cell-type proportion associations with disease phenotypes. 94 

 95 

In the first step, we build tissue-specific gene expression imputation models using the elastic net, 96 

similar to previous Transcriptome-wide association study (TWAS) methods18–20. With the 97 

imputation weights  𝛽"!" , we obtain the estimation of genetically regulated tissue-level gene 98 

expression for gene 𝑔 in tissue 𝑡 as  𝐵&!" = 𝑋!	𝛽"!", where 𝑋! is the genotype matrix of cis-SNPs 99 

around gene 𝑔. With pre-obtained cell-type specific gene expression levels for signature genes, we 100 

deconvolute the genetically imputed tissue-level expression data through the following model: 101 

𝐵&" = 𝐹&"𝑆"# ,	102 

where 𝑆" ∈ 𝑅$×&  is the cell-type specific gene expression level matrix in tissue 𝑡 for 𝐺 signature 103 

genes across 𝐶 cell types,  𝐹&"  is the estimated GRPs for all cell types in tissue t, and 𝐵&"  is the 104 

imputed gene expression level matrix for all signature genes in tissue 𝑡. For a specific cell type 𝑐, 105 

we assess its GRP association with phenotype 𝑌 using the following model: 106 

𝑌 = 𝐹&(.,*),"𝛾* + 𝜂, 107 

where 𝛾* is the effect of GRP for cell type 𝑐 on the trait and 𝜂 is noise. 𝐹&(.,*)," is the estimated GRPs 108 

of a cell type 𝑐, which is the 𝑐th column of the 𝐹&" matrix. However, individual-level genotype data 109 
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are not always available for GWAS, which makes the direct estimation of  𝛾* from the above two-110 

step procedure unfeasible. With only summary statistics available, we propose to use the following 111 

approach to assessing the association between GRPs of a cell type 𝑐 and traits  112 

𝑧* ≈8𝑠𝑒;𝑋,<𝑧,	𝛽"",𝑆"(𝑆"#𝑆").,*-./𝑠𝑒(𝐹&*),
,

	113 

where 𝑠𝑒(𝑋,) is the genotype standard deviation of SNP 𝑝, calculated from a reference panel; 𝑧, 114 

is the GWAS z score for SNP 𝑝; 𝛽"", is the imputed tissue-level gene expression vector of SNP 𝑝 115 

across 𝐺 signature genes in tissue t, and (. ).,* stands for the 𝑐th column vector of the corresponding 116 

matrix. cWAS takes the GWAS summary statistics as the input, which provides an indirect way 117 

of estimating cell-type GRP associations with diseases that do not require individual-level data. 118 

More model details are presented in the methods section, and the cWAS framework for GWAS 119 

summary statistics is available at https://github.com/vivid-/cWAS.    120 

 121 

 122 

Simulation studies  123 

To evaluate cWAS performance in identifying cell type proportions associated with a disease, we 124 

considered several simulation settings (Methods). We simulated disease phenotypes based on 125 

genetically predicted proportions of M1 macrophages in whole blood, using 10,000 individuals 126 

randomly sampled from UK Biobank21. Under moderate heritability settings, where genetic-127 

regulated cell type proportions explain 1% to 9% of the phenotype variances, cWAS had at least 128 

98% power to identify M1 macrophages’ association with the phenotype when all signature genes 129 

were known and used (Figure 2a, the purple dashed line). Furthermore, M1 macrophage was 130 

identified as the most significant cell type in at least 70% of 600 replicates (Figure 2b) when 131 
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heritability was 4% or higher, and the effect of M1 macrophages identified by cWAS had the same 132 

direction as that simulated in at least 90% of 600 replicates, while FUMA only identified 133 

macrophages as the significant cell type in around 15% of 600 replicates (S Table 1). When we 134 

simulated phenotypes independent of cell type proportions in whole blood tissue, cWAS had a 135 

well-controlled type I error rate (Figure 2c). 136 

 137 

One critical point of cWAS is the reliability of cell type specific gene expression signatures. Many 138 

cell-type deconvolution methods also depend on the accurate curation of the signature matrix, such 139 

as those from microarray data of known cell types (like the LM22 matrix used in CIBERSORT17). 140 

However, in many cases, we have to derive a signature matrix from single-cell data, which are 141 

usually highly sparse and only include cell type-specific expression levels of a subset of signature 142 

genes. Consequently, the signature genes curated from single-cell data may be incomplete 143 

compared to those from more informative data sources, such as RNA-seq assayed in known cell 144 

types. To evaluate the impact of incomplete genes in the signature matrix, we considered using a 145 

subset (50%-90%) of signature genes in cWAS. When only half of the signature genes were used, 146 

there was a significant drop in statistical power although the type I error was still well-controlled 147 

(Figure 2d). With an increasing proportion of signature genes used, there was improved power in 148 

identifying associated cell types (Figure 2a).    149 

 150 

 151 

Trait-tissue association patterns 152 

To further study disease-cell type proportion associations, we applied cWAS to GWAS summary 153 

data from 55 traits (S Table 2, including autoimmune diseases, psychiatric disorders, and other 154 



 8 

traits like lipids and height) together with scRNA-seq data from the Human Cell Landscape 155 

(HCL)22. We identified trait-associated cell types in 23 adult non-brain tissues and 13 fetal brain 156 

tissues (S Table 3) using eQTLs for curated signature genes (Methods, S Fig. 1). Consistent with 157 

findings from other methods, we found that the most significant cell types are usually present in 158 

the trait-associated tissues1,23 (Figure 3a, S Fig. 2) supporting the validity of cWAS, e.g., 159 

oligodendrocytes from fetal brain amygdala for autism spectrum disorder (ASD) (p= 3.0e-3), 160 

myeloid progenitor cells from whole blood for Crohn’s disease (p=3.6e-5), and endothelial cells 161 

from a tibial artery for heart rate (HR) (p=4.0e-9).  Several traits showed global cell type proportion 162 

associations across multiple tissues, e.g., height and body mass index (BMI). This can be partly 163 

explained by large sample sizes in BMI and height GWAS, as we also observed a significant 164 

positive correlation (p=8.4e-4, cor=0.88) between the number of associated cell types and the 165 

sample size of BMI and height GWAS when we down-sampled the GWAS results (Methods). 166 

Notably, cWAS identified many cell type-trait associations in unexpected tissues. Many of them 167 

are immune cells, for example, neutrophil cells in fetal brain frontal cortex are associated with 168 

systemic lupus erythematosus (SLE) (p=5.8e-4), and macrophages from subcutaneous adipose and 169 

neutrophils from the left ventricle of the heart are associated with anxiety disorders (ADIS) 170 

(p=7.4e-3 and 1.6e-3, respectively).   171 

 172 

Since several cell types (S Table 4), especially immune cells, are present in multiple adult tissues, 173 

we further investigated whether those identified disease-associated immune cell types above are 174 

due to true biological process or false positives by studying tissue-tissue correlations based on 175 

shared cell types’ associations with traits (Methods). Compared to biologically unrelated tissue 176 

pairs, the results showed a higher correlation among tissues with similar biological functions 177 
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(Figure 3b), such as artery tissues (tibial artery, coronary artery, and aorta artery), heart tissues 178 

(left heart ventricle and heart atrial appendage), and esophagus tissues (esophagus muscularis and 179 

esophagus mucosa). This finding suggests that cell types are more likely to be identified as trait-180 

associated in disease-related tissues even though the same cell types may exist in multiple tissues.  181 

 182 

We also evaluated correlations among traits based on their associations with different cell types  183 

across 23 adult non-brain tissues and 13 fetal brain tissues, respectively (S Table 5). In 23 adult 184 

non-brain tissues, we identified high correlations among many traits, e.g., autoimmune diseases 185 

including eczema and SLE; lipid traits like total cholesterol (TC), low-density lipoprotein 186 

cholesterol (LDL), and triglycerides (TG) (Figure 4a). Brain tissue associated traits have higher 187 

correlations based on estimates using fetal brain tissues (Figure 4b) compared to those from adult 188 

non-brain tissues. For example, Alzheimer's disease (AD) is clustered with autoimmune-related 189 

traits in adult non-brain tissues, whereas it is correlated with psychiatric traits like bipolar disorders 190 

(BD) and ADHD in fetal brain tissues. For some other traits, their correlations in 13 fetal brain 191 

tissues were similar to those identified in adult non-brain tissues. For example, a positive 192 

correlation between ASD and ADHD was observed for both adult tissues (𝑅/=0.33, p=1.4e-7) and 193 

fetal brain tissues (0.55, p=7.9e-16). Moreover, we observed correlations in different directions 194 

between fetal brain tissues and adult non-brain tissues. For example, smoking initiation (SmkInit) 195 

and asthma had a positive correlation in fetal brain tissues (0.35, p=1.1e-6) but a negative 196 

correlation in adult non-brain tissues (-0.33, p=1.2e-7). The associations identified between asthma 197 

and neuronal cells in fetal brain tissues may be supported by previous findings linking neural 198 

pathways to allergic inflammation in lungs24,25.    199 

 200 
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 201 

Breast cancer and CD8+ T cells 202 

To further examine the potential utility of cWAS using specific datasets, we applied cWAS to 203 

identify cell types for breast cancer and two lung diseases. For breast cancer (BC), we used 204 

European breast cancer GWAS summary data26(n=228,951, n_case=122,977, n_control=105,974). 205 

In whole blood, we identified a significant negative association between GRPs of CD8+ T cells 206 

and BC risk (Figure 5a) (p=8.9e-9) using the published signature gene expression matrix  207 

LM2212,17. 208 

 209 

To explore potential biological and clinical implications of this result, we imputed genetic-210 

regulated cell type proportions in whole blood for subjects with European ancestry in The Cancer 211 

Genome Atlas (TCGA) project who were diagnosed with BC (TCGA-BRCA)27 (see Methods). 212 

We found that basal breast cancer patients with higher imputed CD8+ T cell proportions had an 213 

overall better survival (Figure 5b, p=0.085). Results were similar but significant (p=0.034) for 214 

luminal B breast cancer patients (Figure 5c). We also considered an alternative approach to 215 

evaluating cell-type specific expression patterns of BC-associated genes identified using 216 

epigenetic annotations and genetic signals (T-GEN28). BC-associated genes showed no significant 217 

expression enrichment in any cell type of whole blood other than a significant depletion in dividing 218 

NK T cells (fold-change=0.79, p=1.6e-8) (S Fig. 3a). Furthermore, BC-associated genes identified 219 

by T-GEN did not show significantly higher expression levels in T cells or any other cell types (S 220 

Fig. 3b).  221 

 222 
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To further validate the results, we studied BC-cell type proportion association using another cell 223 

type proportion decomposition approach29. In this case, the cell type proportion association result 224 

was based on the directly measured tumor tissue transcriptome data from TCGA-BRCA. We found 225 

a similar protective effect of the CD8+ T cell proportion (p=0.013) in basal breast cancer patients 226 

(S Fig. 4a), but not in luminal breast cancer patients (S Fig. 4b, 4c).  227 

 228 

 229 

Lung diseases and lung tissue 230 

Using single cell data30 with better quality than HCL data to identify cell types with small 231 

proportions, we performed cWAS analysis for two lung diseases, idiopathic pulmonary fibrosis 232 

(IPF, n=24,589, n_case=4,124, n_control=20,465)31 and chronic obstructive pulmonary disease 233 

(COPD, n=5,346, n_case=2,812, n_control=2,534)32. In IPF, a higher predicted proportion of 234 

myofibroblast in lung tissue was associated with an increased risk of developing the disease 235 

(p=5.3e-4, Figure 6a), consistent with the accumulation of myofibroblasts observed in IPF 236 

patients33. We also observed a negative association of fibroblast proportions in the development 237 

of IPF (p=3.5e-2), which is consistent with aberrant fibroblast-to-myofibroblast34 differentiation 238 

and fibroblast degeneration and myofibroblast proliferation35 in IPF.  239 

 240 

To further evaluate cell type associations with IPF, we investigated the cell type expression pattern 241 

of IPF dysregulated genes by conventional transcriptomics analysis. Using differentially expressed 242 

genes from the published36 RNA-seq data of lung tissue in IPF patients (n=36) and non-disease 243 

individuals (n=19), we found that upregulated genes in IPF patients were significantly enriched in 244 

myofibroblasts (fold change=1.3, p=1.4e-3, Figure 6b). However, genes differentially expressed 245 
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in myofibroblasts can result either from genetic effects or disease status. We further analyzed the 246 

cell type signal based on genetic information using IPF GWAS summary statistics. Applying 247 

MAGMA (implemented in FUMA, see URLs) to the IPF GWAS results (S Fig. 5a), we found 248 

marginal evidence of enriched genetic signals in the fibroblasts of lung tissue (p=7.5e-2). IPF-249 

associated genes identified by T-GEN37 did not show any significant enrichment in any cell type 250 

of lung. Therefore, though neither was significant after Bonferroni correction, both transcriptomic 251 

and gene-set based genetic analyses suggest the importance of myofibroblasts and fibroblasts 252 

consistent with cWAS. 253 

 254 

For COPD, cWAS found higher GRPs of endothelial cells increased disease risk (p=2.1e-4, Figure 255 

6c). To further investigate the association, we applied cWAS in additional GWAS of a larger 256 

sample size with a signature matrix having more refined cell types (Methods). One specific 257 

endothelial cell type, vascular endothelial capillary A, was positively associated (p=3.9e-4) with 258 

COPD based on results from another GWAS (N=257,811)38. Upregulated genes in COPD patient 259 

lung tissue36 were also enriched in endothelial cells (fold change=1.4, p-value=1.4e-2) (Figure 260 

6d). Similar to IPF analysis, we also investigated COPD genetic signal enrichment using MAGMA 261 

on mouse lung data (no human lung data available in FUMA, S Table 6). There was marginal 262 

evidence of signal enrichment in endothelial cells in the lung tissue (p=8e-2, S Fig. 5b) and lung 263 

vasculature (p=2.8e-2, S Fig. 5c). Similar to the results in IPF, T-GEN-identified genes in COPD 264 

did not show any enrichment in cell types of lung. Nevertheless, these results support the cWAS 265 

results indicating a role for endothelial cells in COPD. 266 

 267 

 268 
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We further validated the findings on IPF-myofibroblast and COPD-endothelial associations using 269 

another lung scRNA-seq dataset30. This recent study profiled 32 IPF patients, 18 COPD patients, 270 

and 28 controls, and we compared major cell type proportions across these three groups of samples 271 

(S Fig. 6a). In IPF patients, the myofibroblast cell type proportion was significantly increased 272 

(p=1.3e-3, Figure 7a) compared with other major cell types (Figure 7b). We also conducted 273 

pathway analysis on both up- and down-regulated genes in IPF myofibroblast cells (Figure 7c). 274 

The top enriched pathways of upregulated genes mostly function as the extracellular matrix39 275 

(ECM), a network playing an important role in cell adhesion and linking glycoproteins with fibrous 276 

proteins, supporting the importance of the fibroblast-to-myofibroblast migration process in IPF. In 277 

COPD, despite low endothelial cell counts and the limited sample size in the single cell data (S 278 

Fig 6b),  analysis of upregulated genes in COPD endothelial cells (Figure 7d, S Fig 6b, 6c, 6d) 279 

suggests the involvement of DNA-binding transcription activity and higher activity of COPD 280 

endothelial cells compared to control endothelial cells.  281 

 282 

 283 

Discussion 284 

Recent analyses have devoted great efforts to understand GWAS findings in traits and diseases. 285 

Several methods have been developed to link identified variants to genes based on genomic 286 

locations2, epigenetic annotations, or eQTL regulations18. At the cell type or tissue level, methods 287 

like LD score regression40 and FUMA3 either utilize annotation information or expression data to 288 

investigate the genetic enrichment pattern in cell types or tissues. Differing from previous methods, 289 

cWAS is a novel statistical framework to interpret GWAS findings in a cell type proportion manner. 290 

It helps researchers gain insights into the relationship between cell type GRPs and diseases. cWAS 291 
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is complementary to cell type-disease associations identified solely through genetic association or 292 

heritability enrichment, especially when genetic signals are mediated by regulating cell type 293 

proportions. Identified disease-associated cell type proportions can potentially serve as biological 294 

markers in clinical practices to identify patients with higher genetic risk41,42. Applying cWAS to 295 

GWAS summary statistics from 55 traits, we found that previously genetically correlated traits 296 

also have correlated associations with GRPs of cell types. Applications of cWAS to Breast Cancer, 297 

IPF, and COPD identified cell type proportion-trait associations, which were supported by either 298 

previous findings or our analysis of other data. Specifically, a high proportion of CD8+ T cells was 299 

identified as protective in breast cancer development based on both transcriptome and cWAS 300 

analyses. Survival analysis using imputed GRPs of cell types also implied a protective effect of 301 

higher CD8+ T cell proportion in breast cancer prognosis. All these findings support the importance 302 

of  CD8+ T cell proportions for both disease onset and prognosis in breast cancer.  303 

 304 

We noted that transcriptome analyses of breast cancer patients have also identified the importance 305 

of CD8+ T cells. Utilizing breast tumor infiltration data, multiple published survival studies43,44 306 

found protective effects of high CD8+ T cell proportions in the tumor tissue for breast cancer.  In 307 

contrast to TCGA results based on observed breast tissue expression data, cWAS identifies 308 

genetically regulated cell type proportions in whole blood,  which are more likely to cause the 309 

development of the disease instead of being affected by the disease status. Although the 310 

mechanisms in the prognosis and the development of breast cancer are not necessarily the same, 311 

the converging evidence from different approaches used here suggests the importance of CD8+ T 312 

cells in breast cancer.   313 

 314 
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We also note that previous COPD research has already implied the importance of endothelial 315 

cells45, which are involved in both the initiation and progression of COPD as well as other lung 316 

diseases, such as asthma and emphysema. More specifically, endothelial cells play a role in the 317 

transendothelial migration (TEM), through which neutrophils move to lung tissue and respond to 318 

the residential inflammation46. Additionally, endothelial apoptosis in lung initiates and contributes 319 

to the progression of COPD disease45,47. Previous genetic research also identified the importance 320 

of endothelial cells in COPD38 using ATAC-seq data and emphysema48. This further lends support 321 

to the involvement of endothelial cells in developing COPD.   322 

 323 

Similar to many statistical methods, cWAS is also highly dependent on the data used, more 324 

specifically, the single cell data. The single cell data used in signature gene expression curation 325 

can affect cWAS performance, including the cell types included and the signature gene expression 326 

levels. More single cell databases with larger sample sizes, higher resolution and more comparable 327 

experiment pipelines across more tissues will aid in its further application and result interpretation. 328 

To mitigate the batch effects across various tissues, for trait-trait correlation analysis and multi-329 

tissue association analysis, we used the HCL dataset to extract signature gene matrices since the 330 

test results will be comparable across tissues due to relatively small batch effects and the same cell 331 

labeling criteria in all tissues. For BC, we used the LM22 matrix, which was curated based on the 332 

Affymetrix microarray data, to extract the signature matrix in whole blood. In IPF and COPD, the 333 

signature matrix was curated using single cell data of lung from HCL, which consists of 23,878 334 

cells from 20 cell types. Notably, due to randomness of obtaining samples in experiments, cell 335 

type composition in lung single cell data can be strongly biased, with 90% of the cells being 336 

immune cells. Despite this limitation, we identified a non-immune cell population in COPD. Our 337 
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results based on fetal brain single cell data relied on the assumption that the genetic regulation of 338 

gene expression is the same in both adult and fetal tissues. The assumption could be violated for 339 

tissues still undergoing development in fetuses49.  The accuracy of cWAS results could be further 340 

improved if matched genotype and cell type proportion data were available for identifying cell 341 

type proportion QTLs.   342 

 343 

Nevertheless, future work can further expand the potential of cWAS analysis. First, considering 344 

the differentiation trajectory between cell types will further better pinpoint the associated cell types 345 

or even causal cell types, but will also limit the application of cWAS since not all differentiation 346 

trajectories are known in human tissues. Second, when analyzing specific traits across tissues to 347 

identify the most signal-enriched tissue, we found that traits like BMI and height are associated 348 

with cell types in almost all tissues, even though both BMI (p=1.4e-13) and height (p<2e-16) has 349 

the strongest signal in whole blood tissue. The results can be affected by the comparably large 350 

sample size of BMI and height GWAS as well as the complex biological processes involved in 351 

these traits. Future work can explore the potential of jointly modeling multiple traits to identify 352 

trait-specific associations with cell type proportions.     353 

 354 

To conclude, different from bulk RNA-seq or scRNA-seq analysis comparing patients and healthy 355 

individuals, cWAS assesses the association between GRPs of cell types and diseases. In addition 356 

to typical genetic enrichment methods like MAGMA and LD score regression, cWAS provides a 357 

novel way to investigate the cell type-disease association. Both simulation and real data analyses 358 

have demonstrated the statistical power of cWAS in providing new insights in understanding the 359 

genetic etiology of human diseases from the cell type proportion perspective. 360 

361 
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Online Methods 362 

Expression imputation model training 363 

Tissue-specific expression imputation models were trained in 44 tissues using matched individual-364 

level RNA-seq and whole-genome sequencing data from the GTEx (v8) project. We focused on 365 

common SNPs (minor allele frequencies > 0.05) by filtering out SNPs whose allele frequencies 366 

were smaller than 0.05. RNA-seq data were adjusted for possible confounding factors, including 367 

the first five genotype principal components (PCs) and different numbers of Probabilistic 368 

Estimation of Expression Residuals (PEER) factors. Only cis-SNPs located within 1Mb from the 369 

transcription starting site of each gene were considered for training the gene expression imputation 370 

model. 371 

 372 

Ten-fold cross-validated elastic-net models were applied to build gene expression imputation 373 

models, with the parameter 𝛼 as 0.5 and the optimal 𝜆 selected via the function cv.glmnet provided 374 

in the ‘glmnet’ package. Only gene expression imputation models with FDR < 0.05 were 375 

considered in the following analysis. To make the test results more robust, we only considered 376 

those models with an imputation accuracy higher than the median level in each tissue. 377 

 378 

 379 

Single cell datasets preprocessing 380 

All single-cell data used in this project were obtained from public repositories. In the trait 381 

association analysis, we obtained the tissue-specific signature matrices from the Human Cell 382 

Landscape (HCL)22, sequenced on the microwell-seq platform [1].  HCL provides a coherent 383 

sequencing procedure that can minimize the batch-effects to have a higher consistency, making 384 
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the trait-trait correlation analysis feasible. To better utilize HCL, we manually cleaned the cell type 385 

annotation across the tissues to have a consistent cell type naming rule. 386 

 387 

We found  that the curation of signature matrices might not be representative enough if they were 388 

only based on the raw counts due to the high drop-out rate of single cell data. To alleviate this 389 

problem,  We applied SAVERX50, a deep Bayesian autoencoder single cell imputation tool 390 

implemented with transfer learning, on the single cell expression profile to impute drop-out events 391 

before signature matrix computation. SAVERX may distinguish the dropout and real zero 392 

expression, which helps to get a more accurate cell type-specific average expression. It is common 393 

when some single cell datasets have a rare cell population. The limited cell counts make the 394 

average expression profile across cells unstable for signature matrix. Therefore, we filtered out 395 

cell types with low counts and only kept the major cell types.  396 

 397 

In lung disease analysis, to get the signature matrix with deeper sequencing depth and accurate 398 

cell type annotations, we used control samples in the IPF cell atlas, which contains 312,928 cells 399 

from subjects without IPF and without IPF. We partitioned the lung atlas randomly to get a smaller 400 

subset with 20,000 cells. For the signature matrix with more cell types, we include all observed 401 

cell types, while the signature matrix curated for the original two GWAS summary stats only 402 

included the main 20 cell types annotated in the IPF cell atlas.  403 

 404 

 405 

Association analysis  406 
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After getting SNP weights  𝛽"" on the tissue-specific gene expression imputation models, we further 407 

combined them with published GWAS summary statistics to estimate cell-type associations with 408 

disease phenotypes. For a specific cell type 𝑐, we consider the association between a phenotype 𝑌 409 

and its genetically regulated cell type proportions 𝐹&*  as 𝑌 = 𝐹&(.,*),"𝛾* + 𝜂 . From the linear 410 

deconvolution of genetically imputed tissue-specific gene expression, we can estimate the 411 

genetically regulated cell type proportion as follows: 412 

𝐹&" = 𝐵&"𝑆"(𝑆"#𝑆")-. = 𝑋𝛽""𝑆"(𝑆"#𝑆")-.	413 

where 𝐹&" is the cell type proportion matrix in tissue 𝑡 and 𝑆" is the expression matrix of cell-type 414 

specific signature genes.  415 

 416 

When the individual level data are not available, we cannot obtain the cell proportions 𝐹&*. By 417 

considering the genotype-phenotype association 𝑌 = 𝑋𝜔 + η. , we can indirectly estimate the 418 

coefficient 𝛾* as follows: 419 

𝛾F* =
𝑐𝑜𝑣;𝑌, 𝐹&(.,*),"<
𝑣𝑎𝑟;𝐹&(.,*),"<

= 𝑐𝑜𝑣(𝑋𝜔 + 𝜂., 𝑋𝛽""𝑆"(𝑆"#𝑆")-.)
𝑣𝑎𝑟(𝐹&(.,*),") 	420 

=8𝑣𝑎𝑟;𝑋,<𝜔,𝑀*,,

𝑣𝑎𝑟(𝐹&(.,*),"),

	421 

where 𝑀* = 𝛽""𝑆"𝐴* and 𝐴 = (𝑆"#𝑆")-..  422 

 423 

To further get the z-score statistics for each cell type 𝑧* = 01!
23(01!)

, we would need to get the variance 424 

of the estimated coefficients  𝛾F*. Based on simple linear regression, we can get: 425 

𝑣𝑎𝑟(𝛾F*) =
𝑣𝑎𝑟(η)

𝑛 × 𝑣𝑎𝑟(𝐹&(.,*),") =
𝑣𝑎𝑟(𝑌)(1 − 𝑅*/)
𝑛 × 𝑣𝑎𝑟(𝐹&(.,*),") 	426 
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where 𝑅*/ is the correlation between the phenotype 𝑌 and the predictor 𝐹&(.,*),". At the same time, 427 

based on the phenotype-genotype association from GWAS, we would have: 428 

𝑣𝑎𝑟;𝜔,< =
𝑣𝑎𝑟(𝑌)(1 − 𝑅,/)
𝑛 × 𝑣𝑎𝑟(𝑋,) 	429 

where 𝑅,/  is the correlation between the phenotype 𝑌  and the predictor 𝑋&, . Combining the 430 

equations above, we can get the 𝑧* statistic formulated as follows: 431 

𝑧* =8𝑣𝑎𝑟;𝑋,<𝜔,𝑀*,,

𝑣𝑎𝑟;𝐹&*<
/𝑠𝑒(𝛾F*)

,

	432 

≈8𝑠𝑒;𝑋,<𝑧,𝑀*,,/𝑠𝑒(𝛾F*)
,

	433 

and 𝑧, is the z-score for SNP 𝑝 for GWAS summary stats for the phenotype of interest.  434 

 435 

 436 

Simulation 437 

In simulation studies, we randomly sampled 10,000 individuals from the UK Biobank dataset. 438 

Based on their genotypes of common SNPs and gene expression imputation weights trained above, 439 

we imputed their genetically regulated gene expression levels in whole blood and lung. Based on 440 

the LM22 signature matrix and simple linear regression, we imputed the cell type proportions for 441 

each sample in whole blood and used the signature matrix curated from the HCL database to get 442 

the cell proportion for lung tissue. For power analysis, we simulated phenotypes based on the 443 

imputed cell type proportion of M1 macrophages under different cis-eQTL heritability values from 444 

0.01 to 0.09 by assuming the effect size of each cis-SNP follows the same normal distribution. 445 

Here we defined the heritability as the phenotypic variance contributed by the imputed cell type 446 

proportion of M1 macrophages. Then we used PLINK to conduct GWAS analysis to obtain the 447 



 21 

GWAS summary results. Sex and first ten principal components of genotypes were adjusted. These 448 

GWAS summary results were used in the cWAS test to identify disease-cell type proportion 449 

association in whole blood. For the type-I error analysis, the disease phenotypes were simulated 450 

based on imputed proportions of basal cells in lung tissue. Similar to the analysis in the whole 451 

blood tissue, we obtained the GWAS summary statistics but the heritability we considered was 452 

0.05, 0.1, and 0.5. After getting the GWAS results, we applied cWAS to identify disease-cell type 453 

proportion associations in whole blood tissue. 454 

 455 

 456 

Signature gene expression matrix curation 457 

Only protein-coding genes were considered here. We selected the signature genes by differential 458 

expression (DE) analysis, i.e., Wilcoxon rank sum test, Model-based Analysis of Single-cell 459 

Transcriptomics (MAST)51, and ANOVA. Among these methods, MAST is a DE framework that 460 

takes cell size and drop-out rates into consideration. The Wilcoxon Rank Sum test and MAST for 461 

DE analysis were conducted by the FindMarkers() command in package Seurat (3.1.5). Bonferroni 462 

correction at a = 0.05 was used. When a large number of DE genes were selected, we kept the DE 463 

genes which were upregulated and differential to a single cell population. We took the intersection 464 

between significant DE genes and the GTEx-V8 genes of the corresponding tissue and included 465 

them in the signature matrix. By setting different thresholds and applying appropriate DE analysis 466 

approaches for filtering, we aimed to get the signature matrices. We computed the cell type-467 

specific gene signature matrices by the average expression levels across cells within cell 468 

populations in the final step. 469 

 470 
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 471 

Survival analysis in TCGA data 472 

The imputation of the tissue-specific bulk RNA-seq expression for the TCGA-BRCA samples was 473 

based on individual germline genotypes and corresponding expression weights trained above. We 474 

followed the same procedure in the work of Huang et al. to process the germline genotypes27 from 475 

TCGA. Missing SNPs were not considered. 476 

  477 

After getting the imputed tissue-level gene expression, we used linear regression to estimate the 478 

genetically regulated cell type proportions for each sample. For survival analysis, we compared 479 

the disease-free survival times between groups with a high and lower percentage of genetically 480 

predicted cell type proportion of the identified cell type. More specifically, we extracted those two 481 

groups of samples with extremely high (e.g.: top 10%) or low genetically predicted cell type 482 

proportion levels. Then, we compared disease-free survival times for the samples with the top 483 

percentage of genetically regulated cell type proportion and those with a lower percentage of 484 

genetically regulated cell type proportion levels. 485 

 486 

 487 

Curation of GWAS summary data 488 

We collected GWAS summary data of 55 phenotypes, their detailed information can be found in 489 

supplementary table 2. We intentionally selected studies with most of the populations being 490 

European to reduce the bias due to population stratification. GWAS summary statistics were 491 

curated by first filtering out SNPs with minor allele frequencies less than 0.05. For datasets without 492 

rsID, we used the human genome reference build 37 to map to corresponding rsID. For datasets 493 
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without Z score or P-value, we manually obtained those columns using other available information 494 

such as beta, odds ratio, and standard error. After these steps, all GWAS summary statistics contain 495 

rsID, reference and alternative alleles, Z scores, p values, and sample sizes. 496 

 497 

For down-sampled GWAS summary stats, we considered the z scores as 𝑧 = √𝑛𝛽, where 𝛽 is the 498 

reported effect sizes in GWAS results and 𝑛 is the sample size. When we reduced the sample size 499 

of the GWAS summary stats, we consider the 𝑧4567289,:3 = ;"#$%$&'(

√=
, where 𝑅 is the ratio of the 500 

sample size in the original GWAS summary stats over the sample size in the down sampled GWAS 501 

summary stats. We considered 𝑅 = 2, 3, 4, 5 in our study here. 502 

 503 

 504 

MAGMA 505 

To generate annotations, gene location files using the human genome reference panel build 37 506 

were downloaded from the MAGMA software website as the input of the gene location file. The 507 

SNP location file was generated by extracting SNPs from curated GWAS summary data and 508 

mapping to genome locations using build 37. Annotations were generated with the command: 509 

magma --annotate --snp-loc [SNPLOC_FILE] --gene-loc [GENELOC_FILE] --out 510 

[ANNOT_PREFIX].  511 

Next, gene analysis was performed for each phenotype using the annotation files generated from 512 

the previous step. European panels of the 1000 Genomes phase 3 data downloaded from the 513 

MAGMA software website were used as the reference. The following command was used to 514 

generate gene analysis results: magma --bfile [REFDATA] --gene-annot 515 

[ANNOT_PREFIX].genes.annot --pval [PVAL_FILE] ncol=N snp-id=SNP pval=P --out 516 
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[GENE_PREFIX]. Finally, 161 processed single cell expression datasets provided by MAGMA 517 

were downloaded. To avoid duplicated cell types in multiple datasets from the same data resource, 518 

we manually selected 60 datasets (S Table 6) for the following analysis. MAGMA gene-property 519 

analyses (v1.07) were performed using the output of gene analysis and gene expression datasets 520 

processed as described above using the following command: magma --gene-results 521 

[GENE_PREFIX].genes.raw --gene-covar [SCDATA] --model condition-hide=Average 522 

direction=greater --out [OUT_PREFIX]. Bonferroni corrections were performed per dataset 523 

during the gene-property analyses to obtain significantly associated cell types. 524 

 525 

 526 

Trait-cell type association analysis across tissues 527 

Using the signature gene matrix processed from the HCL database, we applied cWAS to obtain 528 

cell type association results for each trait across different tissues. To investigate trait-trait 529 

correlation, we considered the test-statistics (z scores) of all cell types in a trait as the 530 

representation vector of the trait. Then for any two traits, we computed the Pearson correlation 531 

between their two z score vectors and the corresponding p-value to quantify the similarity between 532 

these two traits with respect to cell type associations. Similarly, to consider the correlation of the 533 

effects of a shared cell type between tissues, for a specific cell type, we would treat its association 534 

z scores with all traits in one tissue as a vector 𝑣.. We then put its association z scores with all 535 

traits in a second tissue as a vector 𝑣/. To study the tissue-tissue correlation for the shared cell type 536 

effects, we calculated the Pearson correlation between 𝑣. and 𝑣/.   537 

 538 
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In the across-tissue analysis, for each trait, we firstly identified the significant cell type associations 539 

after the Bonferroni correction in each tissue. Then across all tissues, we identified the most 540 

significant cell type association signals. 541 

 542 

 543 

Differentially expressed genes from bulk and cell type enrichment analysis 544 

Differentially expressed (DE) genes in IPF and COPD patients were downloaded from previous      545 

publications36,52. We curated the cell-type specific gene expression matrix in lung tissue using the 546 

published single cell data. Then for each gene, we identified the cell type with the highest 547 

expression. Then for each cell type, we analyzed the enrichment pattern of upregulated genes in 548 

patients compared to other genes in the cell type. The binomial test was used to test the significance 549 

level of the enrichment pattern and then Bonferroni correction was further applied to select the 550 

significant cell types. 551 

 552 

The Gene Set Enrichment Analysis was conducted by the gseGO() command in package clusterProfiler 553 

(3.14.3). All the parameters were set to the defaults values, where Benjamin–Hochberg correction at  554 

a = 0.05 was used as the cutoff. 555 

 556 

 557 

URLs: 558 

Human cell landscape: http://bis.zju.edu.cn/HCL/ 559 

GTEx data: https://gtexportal.org/home/ 560 

Roadmap Epigenomics project: https://egg2.wustl.edu/roadmap/web_portal/ 561 
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BC summary stats: http://bcac.ccge.medschl.cam.ac.uk/ 562 

COPD summary stats: https://pubmed.ncbi.nlm.nih.gov/24621683/; 563 

https://pubmed.ncbi.nlm.nih.gov/30804561/ 564 

IPF summary stats: https://github.com/genomicsITER/PFgenetics 565 

MAGMA: https://github.com/Kyoko-wtnb/FUMA_scRNA_data 566 

 567 
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 600 

Figure  Legends: 601 

Figure 1. The schematic framework of cWAS 602 

Bulk gene expression levels are firstly imputed based on each individual’s genotypes. Combined 603 

with a signature gene expression matrix for different cell types, imputed gene expression data for 604 

each tissue are used to infer cell type compositions. Comparing different genetically inferred cell 605 
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type compositions in case and control groups, cWAS can identify cell types whose genetic-606 

regulated proportions are associated with a trait of interest. 607 

Figure 2. High power of cWAS in simulation studies with a controlled type I error rate 608 

Different colors indicate different proportions (0.5, 0.7, 0.9, and 1) of signature genes used in the 609 

cWAS test. The phenotypic variance explained by the genetically regulated cell type proportions 610 

(M1 macrophages) ranges from 0.01 to 0.09 for panels A and B, respectively. a) Each line 611 

represents the percentage of simulations where cWAS identified the M1 macrophages as 612 

associated with simulated phenotypes. b) This figure shows the proportion of times that the M1 613 

macrophage was identified as the most significant cell type whose proportion was associated with 614 

simulated phenotypes. The line represents the rate (top selection rate) under settings with different 615 

proportions of known signature genes. For panels c and d, we simulated phenotypes based on the 616 

genetic-regulated proportion of basal cells in lung tissue with heritability being 0.05, 0.1, or 0.5. 617 

c) All signature genes in whole blood are known when conducting the cWAS test. The red dashed 618 

line indicates the 5% type I error. The green line indicates the proportion of simulations where any 619 

cell type in whole blood was selected as associated with the simulated disease status, the orange 620 

line indicates the proportion of simulations where M1 macrophages were selected as associated 621 

with the simulated disease. d)  Only 50% of signature genes in whole blood are known.   622 

Figure 3. Disease-cell type associations in multiple tissues 623 

a) Across 12 tissues, the z scores derived from the test statistics quantify the associations between 624 

genetically regulated cell type proportions and diseases. If there is no cell type significantly 625 

associated with a disease after Bonferroni correction, the corresponding entry is blank. The number 626 

in each block indicates the p-value of the most significant association between the cell type 627 

proportion of the corresponding tissue and the disease. HOMA-B: beta-cell function; SLE: 628 
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Systemic Lupus Erythematosus; Crohn: Crohn’s disease; IBD: Inflammatory Bowel Disease; 629 

CAD: Coronary Artery Disease; FG: Fasting Glucose; LDL: LDL cholesterol; PSC: Primary 630 

Sclerosing Cholangitis; PBC: Primary Biliary Cirrhosis; HR: Resting Heart Rate; TC: Total 631 

Cholesterol; TG: Triglycerides; MDD: Major Depressive Disorder; ADs: Anxiety Disorder; 632 

Height: Height; ASD: Autism Spectrum Disorder; BD: Bipolar Disorder; BMI: Body Mass Index; 633 

DrnkWk: Drinks per Week. b) For any tissue pair, we only considered shared cell types and treated 634 

their proportion associations across 55 tissues. Tissue-tissue correlations were calculated based on 635 

the cell type-disease associations for the shared cell types. The darker color indicates a higher 636 

significance level. 637 

Figure 4. Trait-trait correlation 638 

Different colors indicate the correlation level and the stars indicate the significant correlations after 639 

Bonferroni correction. a) Trait-trait correlation calculated from cell-disease associations in adult 640 

non-brain tissues. b) Trait-trait correlation based on cell-disease associations in fetal brain tissues. 641 

Figure 5. CD8+ T cells in breast cancer 642 

a) cWAS results of breast cancer in whole blood. The x axis is the z score of the cell type-disease 643 

association from cWAS. Negative z scores indicate negative associations between cell type 644 

proportions and diseases. The red line indicates the significance threshold (0.05) after Bonferroni 645 

correction. The star indicates significant cell types after Bonferroni correction. b) and c) show 646 

survival analysis results in breast cancer patients of TCGA. B) Considering the white basal patients 647 

with top 10% and low 10% of genetically regulated cell type proportions of CD8+ T cells, and the 648 

survival patterns were compared between patients in these two groups. c) shows the results of a 649 

similar analysis in white Luminal B breast cancer patients considering patients with top 40% and 650 

bottom 40% of GRPs of CD8+ T cells.  651 
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Figure 6. cWAS association results of IPF and COPD in lung 652 

For a) and c), the red line indicates the significance threshold (0.05) after Bonferroni correction. 653 

For all figures, stars indicate significant cell types after Bonferroni correction. a) cWAS results of 654 

IPF in lung tissue. The x axis is the z score of the cell type-disease association from cWAS. 655 

Negative z scores indicate a negative association between cell type proportions and the disease. b) 656 

Cell-type specific expression enrichment pattern of upregulated genes in IPF patients. c) cWAS 657 

results of COPD in lung tissue. d) Cell-type specific expression enrichment pattern of upregulated 658 

genes in COPD patients. 659 

Figure 7. IPF myofibroblast and COPD endothelial cell type proportion validation in the 660 

separate scRNA-seq atlas. 661 

a) Boxplots of myofibroblast cell type proportions in 32 IPF patients and 28 controls. The vertical 662 

axis is the cell type proportion of myofibroblast. The IPF myofibroblast cell proportion is 663 

significantly higher than that in controls with p-value = 1.3e-3 by t-test. b) Bar plots of z scores 664 

when cell type proportions were regressed on conditions of IPF and control. The red line indicates 665 

the significance threshold (0.05) after the Bonferroni correction. The star indicates the significant 666 

cell types after Bonferroni correlation. All the cell types with z scores greater than 2 are labeled 667 

with an asterisk. Only cell types whose proportions are more than 1% are shown. Myofibroblast 668 

ranks second in these 15 major cell populations. This difference may be related to the genetically 669 

mediated regulation of cell type proportion based on the cWAS results. c) Scatterplots of Gene Set 670 

Enrichment Analysis (GSEA) results of IPF myofibroblast up-regulated genes. The dot size is the 671 

gene counts found in the pathway. The colors indicate the hypergeometric test p-values. Most top 672 

enriched pathways are related to ECM and cell adhesion. d) Scatterplots of GSEA results on COPD 673 

endothelial up-regulated genes. The dot size is the gene counts found in the pathway. The colors 674 
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indicate the hypergeometric test p-values. The pathways indicate a stronger DNA-binding 675 

transcription activity. 676 

 677 

S1 Figure. The workflow of curating gene expression signature matrix in each tissue 678 

Single cell data across multiple cell types in tissue is firstly imputed by SAVER-X and then 679 

significant differentially expressed (DE) genes are identified based on cell-type level DE analysis. 680 

Finally, for those identified DE genes, their average gene expression levels are computed within 681 

each cell type. 682 

S2 Figure. The cell type-trait associations across 55 traits identified by cWAS 683 

In 36 tissues, the significant/most-significant associated cell types are shown in the figure. Blue 684 

colors indicate the negative correlations between traits and the corresponding associated cell type 685 

proportion while red colors indicate the positive correlations. 686 

S3 Figure. Cell type expression pattern of breast cancer (BC)-associated gene identified by 687 

TWAS analysis 688 

a) As in previous figures, the star indicates the significant cell types after Bonferroni correction in 689 

whole blood. The fold indicates (x axis) the enrichment level of BC-associated genes in those 690 

genes with high expression specificity in the corresponding cell type. b) This figure shows the 691 

expression level of identified BC-associated genes in different cell types of whole blood.  692 

S4 Figure. Survival analysis results of breast cancer patients in TCGA 693 

Here we consider the cell type proportion estimated based on the assayed expression level in tumor 694 

tissues from TCGA. a) In patients of European ancestry with basal breast cancer, only patients 695 

with the top 10% and bottom 10% proportion of CD8+ T cells were considered. b) In Luminal A 696 

patients with European ancestry, only patients with top 8% and bottom 8% proportion of CD8+ T 697 



 32 

cells were considered. c) In luminal B patients of European ancestry, only patients with the top 698 

20% and bottom 20% proportion of CD8+ T cells were considered. 699 

S5 Figure. MAGMA analysis results of IPF and COPD GWAS summary stats 700 

In all figures, the vertical dash line indicates the significance threshold after Bonferroni correction. 701 

The red bars indicate the corresponding cell types of interest in IPF and COPD. a)  Bar plots of 702 

MAGMA cell type association results between IPF and all cell types of the MAGMA processed 703 

GSE93374_Mouse_Arc_ME_level2 dataset53. Fibroblast-related cell types are highlighted in red. 704 

The grey dashed line represents the 0.05 significance level. b) Bar plots of MAGMA cell type 705 

association results between COPD and cell types from lung tissue of the MAGMA processed 706 

TabulaMuris_FACS_all dataset54. Endothelial-related cell types are highlighted in red. The grey 707 

dashed line represents the 0.05 significance level. c) Bar plots of MAGMA cell type association 708 

results between COPD and all cell types from the MAGMA processed 709 

GSE99235_Mouse_Lung_Vascular dataset. Endothelial-related cell types are highlighted in red. 710 

The grey dashed line represents the 0.05 significance level.  711 

S6 Figure. IPF myofibroblast and COPD endothelial cell type proportion validation in the 712 

separate scRNA-seq atlas. 713 

a) Boxplots of cell-type proportions comparison across IPF, COPD, and controls in lung tissue. 714 

The horizontal axis represents the major cell types. The vertical axis is the cell type proportions. 715 

The immune cells are the majority of the data. The cell type proportion has a non-negligible 716 

variance across different conditions. b) Boxplots of two endothelial subtype proportions 717 

comparison between COPD and controls. The vertical axis represents cell-type proportions. To 718 

compare the cell type proportion distributions between COPD and controls, we conducted a t-test 719 

which was not significant. However, the direction is consistent with cWAS finding for vascular 720 
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endothelial. We still consider these results inconclusive due to the low endothelial cell counts. c) 721 

Dot plots of GSEA on IPF myofibroblast down-regulated genes. The dot size is the gene counts 722 

found in the pathway. The colors indicate the hypergeometric test p-values. d) Dot plots of GSEA 723 

on COPD endothelial down-regulated genes. The dot size is the gene counts found in the pathway. 724 

The colors indicate the hypergeometric test p-values. 725 

 726 

 727 

S Table 1. Statistical power and type I error of FUMA in the simulation study 728 

S Table 2. HCL tissues used in the analysis 729 

S Table 3. GWAS summary statistics for 55 traits used in the trait-trait correlation analysis 730 

S Table 4. Shared cell types (mainly immune cells) in all tissues 731 

S Table 5. cWAS test results in all HCL tissues for 55 traits 732 

S Table 6. scRNA-seq data sets used for MAGMA analysis 733 
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Figures

Figure 1

The schematic framework of cWAS Bulk gene expression levels are �rstly imputed based on each
individual’s genotypes. Combined with a signature gene expression matrix for different cell types,
imputed gene expression data for each tissue are used to infer cell type compositions. Comparing



different genetically inferred cell type compositions in case and control groups, cWAS can identify cell
types whose genetic regulated proportions are associated with a trait of interest.

Figure 2

High power of cWAS in simulation studies with a controlled type I error rate Different colors indicate
different proportions (0.5, 0.7, 0.9, and 1) of signature genes used in the cWAS test. The phenotypic
variance explained by the genetically regulated cell type proportions (M1 macrophages) ranges from 0.01



to 0.09 for panels A and B, respectively. a) Each line represents the percentage of simulations where
cWAS identi�ed the M1 macrophages as associated with simulated phenotypes. b) This �gure shows the
proportion of times that the M1 macrophage was identi�ed as the most signi�cant cell type whose
proportion was associated with simulated phenotypes. The line represents the rate (top selection rate)
under settings with different proportions of known signature genes. For panels c and d, we simulated
phenotypes based on the genetic-regulated proportion of basal cells in lung tissue with heritability being
0.05, 0.1, or 0.5. c) All signature genes in whole blood are known when conducting the cWAS test. The red
dashed line indicates the 5% type I error. The green line indicates the proportion of simulations where any
cell type in whole blood was selected as associated with the simulated disease status, the orange line
indicates the proportion of simulations where M1 macrophages were selected as associated with the
simulated disease. d) Only 50% of signature genes in whole blood are known.



Figure 3

Disease-cell type associations in multiple tissues a) Across 12 tissues, the z scores derived from the test
statistics quantify the associations between genetically regulated cell type proportions and diseases. If
there is no cell type signi�cantly associated with a disease after Bonferroni correction, the corresponding
entry is blank. The number in each block indicates the p-value of the most signi�cant association
between the cell type proportion of the corresponding tissue and the disease. HOMA-B: beta-cell function;



SLE: Systemic Lupus Erythematosus; Crohn: Crohn’s disease; IBD: In�ammatory Bowel Disease; CAD:
Coronary Artery Disease; FG: Fasting Glucose; LDL: LDL cholesterol; PSC: Primary Sclerosing Cholangitis;
PBC: Primary Biliary Cirrhosis; HR: Resting Heart Rate; TC: Total Cholesterol; TG: Triglycerides; MDD:
Major Depressive Disorder; ADs: Anxiety Disorder; Height: Height; ASD: Autism Spectrum Disorder; BD:
Bipolar Disorder; BMI: Body Mass Index; DrnkWk: Drinks per Week. b) For any tissue pair, we only
considered shared cell types and treated their proportion associations across 55 tissues. Tissue-tissue
correlations were calculated based on the cell type-disease associations for the shared cell types. The
darker color indicates a higher signi�cance level.



Figure 4

Trait-trait correlation Different colors indicate the correlation level and the stars indicate the signi�cant
correlations after Bonferroni correction. a) Trait-trait correlation calculated from cell-disease associations
in adult non-brain tissues. b) Trait-trait correlation based on cell-disease associations in fetal brain
tissues.



Figure 5

CD8+ T cells in breast cancer a) cWAS results of breast cancer in whole blood. The x axis is the z score of
the cell type-disease association from cWAS. Negative z scores indicate negative associations between
cell type proportions and diseases. The red line indicates the signi�cance threshold (0.05) after
Bonferroni correction. The star indicates signi�cant cell types after Bonferroni correction. b) and c) show
survival analysis results in breast cancer patients of TCGA. B) Considering the white basal patients with



top 10% and low 10% of genetically regulated cell type proportions of CD8+ T cells, and the survival
patterns were compared between patients in these two groups. c) shows the results of a similar analysis
in white Luminal B breast cancer patients considering patients with top 40% and bottom 40% of GRPs of
CD8+ T cells.

Figure 6



cWAS association results of IPF and COPD in lung For a) and c), the red line indicates the signi�cance
threshold (0.05) after Bonferroni correction. For all �gures, stars indicate signi�cant cell types after
Bonferroni correction. a) cWAS results of IPF in lung tissue. The x axis is the z score of the cell type-
disease association from cWAS. Negative z scores indicate a negative association between cell type
proportions and the disease. b) Cell-type speci�c expression enrichment pattern of upregulated genes in
IPF patients. c) cWAS results of COPD in lung tissue. d) Cell-type speci�c expression enrichment pattern
of upregulated genes in COPD patients.



Figure 7

IPF myo�broblast and COPD endothelial cell type proportion validation in the separate scRNA-seq atlas.
a) Boxplots of myo�broblast cell type proportions in 32 IPF patients and 28 controls. The vertical axis is
the cell type proportion of myo�broblast. The IPF myo�broblast cell proportion is signi�cantly higher than
that in controls with p-value = 1.3e-3 by t-test. b) Bar plots of z scores when cell type proportions were
regressed on conditions of IPF and control. The red line indicates the signi�cance threshold (0.05) after
the Bonferroni correction. The star indicates the signi�cant cell types after Bonferroni correlation. All the
cell types with z scores greater than 2 are labeled with an asterisk. Only cell types whose proportions are
more than 1% are shown. Myo�broblast ranks second in these 15 major cell populations. This difference
may be related to the genetically mediated regulation of cell type proportion based on the cWAS results.
c) Scatterplots of Gene Set Enrichment Analysis (GSEA) results of IPF myo�broblast up-regulated genes.
The dot size is the gene counts found in the pathway. The colors indicate the hypergeometric test p-
values. Most top enriched pathways are related to ECM and cell adhesion. d) Scatterplots of GSEA results
on COPD endothelial up-regulated genes. The dot size is the gene counts found in the pathway. The
colors indicate the hypergeometric test p-values. The pathways indicate a stronger DNA-binding
transcription activity.
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