Juxtaglomerular cell tumor: how to identify this rare disease by ultrasound?

Li Wang
Peking Union Medical College Hospital

Melying Li
Peking Union Medical College Hospital

Siqi Jin
Peking Union Medical College Hospital

Yunshu Ouyang
Peking Union Medical College Hospital

Fenglan Wang
Tangshan Central Hospital

Ke Lv
Peking Union Medical College Hospital

Jianchu Li
Peking Union Medical College Hospital

Yuxin Jiang
Peking Union Medical College Hospital

He Liu (liuhebj@126.com)
Peking Union Medical College Hospital

Qingli Zhu
Peking Union Medical College Hospital

Research Article

Keywords: Juxtaglomerular cell tumor, Ultrasound, Diagnosis, Imaging

 Posted Date: March 6th, 2023

 DOI: https://doi.org/10.21203/rs.3.rs-2637862/v1

 License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Purpose: To study the value of ultrasound in the diagnosis of juxtaglomerular cell tumor (JGCT).

Methods: From January 2005 to July 2020, fifteen patients diagnosed as JGCT by surgical pathology in Peking Union Medical College Hospital were collected. All patients underwent preoperative ultrasound examination. The clinical, laboratory, ultrasound, computed tomography (CT), surgical, and pathological features of the patients were analyzed retrospectively.

Results: The 15 patients were 5 males and 10 females with a median age of 29 years (10~72 years). 14 of them had hypertension and one had normal blood pressure. The tumors were all solitary, with a median diameter of 1.5 cm (0.9-5.9 cm). Among the fifteen patients, eleven were correctly detected by preoperative ultrasound, and four were missed. There was a significant difference in tumor size (2.64±1.48 cm vs. 1.23±0.21 cm) and whether the tumor protruded outward (9/11 vs. 0/4) between the ultrasound-detected group and the ultrasound-missed group (p=0.010, p=0.011). Of the 11 tumors detected by ultrasound, four were extremely hypoechoic, two were hypoechoic, three were isoechoic, and two were hyperechoic. Color Doppler showed no blood flow in five tumors no more than 2cm, and mild blood flow in six tumors more than 2cm.

Conclusions: JGCT is rare, and has characteristic clinical manifestations. Diagnosis should be suspected in case of secondary hypertension, particularly in young women, if no renal vascular cause is found. Ultrasound, combined with clinical manifestations, was helpful for the diagnosis.

Introduction

JGCT is a rare and benign renal tumor that originate from the juxtaglomerular cells of the capillary adventitia in the juxtaglomerular complex. The tumor is also called reninoma because it can secrete renin[1, 2]. Since the first report of JGCT in 1967[3], fewer than 200 cases have been reported in the literature[4]. It is more common in young females aged 20-39 years, with a male: female ratio of 1:2[5]. Occasionally cases in children and elderly patients were reported[2, 6, 7]. Typical clinical manifestations are hypertension, high renin activity, secondary aldosteronism, and hypokalemia[8], but some patients may have atypical clinical manifestations. Surgery is an effective treatment for JGCT[9-11]. Improvements in imaging techniques have led to a shorter interval between the occurrence of hypertension and the diagnosis of JGCT[12]. However, the diagnosis of JGCT remains challenging because it is rare, generally small, located in the renal cortex or subcortical regions, and may be missed or misdiagnosed[5]. Ultrasound could be helpful, however, the ultrasound manifestations of JGCT have not been fully studied. This study retrospectively summarized the clinical, laboratory, ultrasound and computed tomography (CT) characteristics of 15 JGCT patients and reviewed the literature to study the value of ultrasound in the diagnosis of JGCT.

Methods

Patients

This study was approved by the institutional review board of our hospital. From January 2005 to July 2020, fifteen patients diagnosed as JGCT by surgical pathology in Peking Union medical college hospital were collected. The clinical, laboratory, ultrasound, CT, surgical, and pathological features of the patients were analyzed retrospectively.

Ultrasound examination

The ultrasound examination was performed by the PHILIPS HDI 5000, PHILIPS IU 22 machine (Philips Healthcare, Amsterdam, Netherland) and GE LOGIQ 9 (GE Healthcare, Wauwatosa, WI), equipped with 3.5~5 MHz probe, kidney presets. The grayscale and color Doppler images of each patient were acquired and saved by radiologists with more than 5 years of experience in ultrasound examination. Image analysis was carried out by two radiologists with more than 5 years of experience with no knowledge of any clinical information. In case of disagreement between the two radiologists, the consensus was reached by discussion.

Image analysis included the location of the tumor (right/left kidney, cortex/cortex and medulla, protruded outward or not), size (the longest diameter), echo pattern (hypoechoic/isoechoic/ hyperechoic), shape (regular/irregular), margin (clear/indistinct), capsule (existent/ inexistent), blood flow signal (no/mild/abundant). Compared with the adjacent renal cortex, the echo pattern is divided into hypoechoic, isoechoic, and hyperechoic. The shape is classified as regular (round or lobulated), and irregular [13]. Clear margin meant that the tumor had a clear demarcation with the surrounding tissues. Otherwise, the margin was defined as indistinct. The capsule referred to the fibrous connective tissue membrane around the tumor, which appeared as a hyperechoic line on ultrasound. The blood flow was classified as no, mild (1-2 blood flows), and abundant (≥3 blood flows) according to Adler's grading [14].

Surgery and histopathological examinations

Surgical procedures were performed after the completion of necessary examinations. The location and size of the tumors were recorded during surgeries. Histopathological results were considered as the golden standard.

Statistical analysis

SPSS 20.0 software was used for statistical analysis. Shapiro-wilk test was used to determine the normality of the data. Independent-samples T test or Fisher's exact test was used to compare the differences between the two groups. P-values < 0.05 were considered statistically significant.
Results

Baseline characteristics

The clinical, ultrasound, and CT manifestations of 15 patients with JGCT were shown in Table 1. Among the 15 patients, there were 5 males and 10 females with a median age of 29 years (min-max, 10-72 years). Eleven (73.3%, 11/15) patients had grade III hypertension, three (20.0%, 3/15) patients had grade II hypertension, and one (6.7%, 1/15) patient had normal blood pressure. Six patients had blurred vision, six had dizziness or headache, and one had cerebral hemorrhage. The median interval from the diagnosis of hypertension to JGCT was 27 months (min-max, 1 month-12 years). Serum potassium was low in 10 patients (median 2.75 mmol/L, min-max, 2.3-3.2 mmol/L), and normal in 5 patients. The renin activity test was conducted in nine patients, and the results all showed high activity (median 6.17 ng/ml/h, min-max, 3.07-17.6 ng/ml/h). Plasma renin was tested in three patients, two of whom showed high levels (859 μIU/ml, 583 pg/ml) and one normal. The aldosterone test was performed in eleven patients, yielding ten elevated results (median: 348.95 pg/ml, min-max, 164.7-967 pg/ml) and one normal. Three patients were hospitalized for renal tumor surgery with no blood tests for reninoma, two of them had hypertension, and one had normal blood pressure. The serum potassium was normal in these three patients.

Table 1 Clinical, ultrasound, and CT manifestations of 15 patients with JGCT
No.	Year of diagnosis	Sex	Age	Clinical manifestations	Course of disease (m)	Disease site	Ultrasound Echo	Shape	Margin	Capsule	Blood flow	P	Tumor size, cm	Ultrasound Echo	Shape	Margin	Capsule	Blood flow	
1	2020	Female	27	Hypertension, high renin, high aldosterone, low potassium	7	Left /cortex and medulla	1.5	Missed	-	-	-	S	di						S
2	2019	Female	29	Asymptomatic	1	Left /cortex/protrusion outward	3.7	Hyperechoic	Regular	Clear	Inexistent	Mild	M						Is
3	2019	Female	29	Hypertension, high renin, high aldosterone, low potassium	48	Right /cortex	0.9	Isoechoic	Regular	Indistinct	Inexistent	No	L						Is
4	2018	Female	29	Hypertension, high renin, high aldosterone, low potassium	18	Left /cortex and medulla	1.3	Isoechoic	Regular	Clear	Inexistent	No	Is						S
5	2012	Male	40	Hypertension, increased renin activity	144	Right/cortex/protrusion outward	1.5	Isoechoic	Regular	Clear	Inexistent	No	S						di
6	2012	Female	29	Hypertension, increased renin activity, low potassium	6	Left/cortex	1.2	Missed	-	-	-	M							
7	2012	Male	10	Hypertension, high renin, high aldosterone, low potassium	24	Right/cortex	1.2	Missed	-	-	-	S	di						S
8	2011	Male	46	Hypertension	72	Left/cortex and medulla/protrusion outward	2.0	Extremely hypoechoic	Regular	Indistinct	Inexistent	No	M						
9	2010	Female	37	Hypertension, high renin, high aldosterone, low potassium	84	Left /cortex and medulla/protrusion outward	5.9	Extremely hypoechoic	Irregular	Indistinct	Inexistent	Mild	L						
10	2009	Female	18	Hypertension, high renin, high aldosterone, low potassium	1	Right /cortex and medulla/protrusion outward	3.8	Hypoechoic	Regular	Clear	Existent	Mild	S						S
11	2008	Female	72	Hypertension	36	Left/cortex and medulla/protrusion outward	3.0	Extremely hypoechoic	Regular	Clear	Inexistent	Mild	L						
protrusion outward

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

12 2008 Male 16 Hypertension, high renin, high aldosterone, low potassium Headache, dizziness, fatigue 1 Right/cortex/protrusion outward 3.0 Hypoechoic Regular Clear Inexistent Mild L

13 2007 Male 39 Hypertension, high renin, high aldosterone, low potassium 132 Right/cortex/protrusion outward 1.2 Extremely hypoechoic Regular Clear Existent No Is

14 2006 Female 15 Hypertension, high renin, high aldosterone, low potassium Headache, blurred vision, fundus hemorrhage 12 Right/cortex 1.0 Missed - - - - M

15 2005 Female 26 Hypertension 4 Left/cortex and medulla/protrusion outward 2.8 Hyperechoic Regular Clear Inexistent Mild Is

All 15 JGCTs were solitary tumors, including seven in the right kidney and eight in the left kidney. The median longest diameter of the tumors was 1.5 cm (min-max, 0.9-5.9 cm).

Ultrasound manifestations

Among the 15 JGCTs, 11 were correctly detected by preoperative ultrasound, and 4 were missed.

Of the 11 tumors detected by ultrasound, the median longest diameter of the tumors was 2.8 cm (min-max, 0.9-5.9 cm). Nine protruded outward, one protruded toward the collecting system, and one was completely in the renal cortex with no protrusion. Four were extremely hypoechoic (Figure 1), two were hypoechoic, three were isoechoic (Figure 2), and two were hyperechoic. The morphology was regular in ten cases and irregular in one case. The margin was clear in eight cases and indistinct in three cases. Ultrasound showed a capsule in two cases and no capsule in nine cases. Color Doppler showed no blood flow in five tumors no more than 2 cm, and mild blood flow in six tumors more than 2 cm. The preoperative diagnosis was one reninoma, one renal cell carcinoma, and nine undetermined tumors.

Of the 4 tumors missed by ultrasound, the longest diameter was 1.0 cm, 1.2 cm, 1.5 cm, and 1.2 cm respectively. All of them located in the renal cortex with no protrusion outward.

There was a significant difference in tumor size (2.64±1.48 cm vs. 1.23±0.21 cm, Independent-samples T test, p=0.010) between the ultrasound-detected group and ultrasound-missed group. There was also a significant difference in whether the tumor protruded outward (9/11 vs. 0/4, Fisher's exact test, p=0.011) between the two groups (Table 2).

Table 2 Comparison of whether the tumor protruded outward between the ultrasound-detected group and ultrasound-missed group

<table>
<thead>
<tr>
<th>Protrusion outward or not</th>
<th>Ultrasound</th>
<th>Protrusion</th>
<th>No Protrusion</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detected</td>
<td>9</td>
<td>2</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Missed</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
<td>6</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

CT manifestations

Of the 11 tumors detected by ultrasound, plain scan showed five low density, three isodensity, one slightly high density and two mixed density. Dynamic contrast-enhanced scan showed nine mild enhancement, and two moderate enhancement. The preoperative CT diagnosis was three reninoma, one renal cell carcinoma, and seven undetermined tumors.

Of the 4 tumors missed by ultrasound, two showed slightly high density, and two showed similar density to renal cortex, leading to difficulty in identifying them on plain scan. Three showed mild enhancement and one showed moderate enhancement on dynamic contrast enhanced scan. The preoperative CT diagnosis was three reninoma, and one renal cell carcinoma.
Surgery and follow-up

All 15 patients underwent partial nephrectomy. Two of them underwent intraoperative ultrasound localization, which successfully guided the laparoscopic partial nephrectomy. The blood pressure returned to normal in 13 patients after operation. No tumor relapse was found in any of the 15 patients during the follow-up of 6 months to 15 years.

Discussion

JGCT is a rare renal tumor. Haab et al. reported eight cases of JGCT among 30,000 hypertensive patients in a 15-year period[15]. The tumor is usually solitary, small in size (<3 cm, rarely > 4 cm) [1, 5]. Surgery is an effective treatment. To our knowledge, this is the largest report describing the clinical, laboratory, ultrasound and CT manifestations of JGCT, providing detailed descriptions of the ultrasound characteristics of 15 cases.

In our series, JGCT showed extremely hypoechoic, hypoechoic, isoechoic or hyperechoic, with no or mild blood flow, as described previously[4-8, 10, 11, 15-23]. Hypoechoic, especially extremely hypoechoic, may be explained by the closely packed cellular, highly organized, and compact architectural organization, as seen in other endocrine tumors. Extremely hypoechoic might be the characteristics, however, the data remained insufficient and further study is needed. The tumor showed no or mild blood flow might be related to the vasoconstriction caused by renin and the decreased blood flow caused by the proliferation of intima and middle layer of tumor arterioles[23]. Pathologically, JGCT generally has fibrous capsule[11, 19, 22], however we observed capsule in only two patients, which might be due to the thin capsule hardly detected by ultrasound.

The ultrasound diagnosis of JGCT is still challenging. In our study, four tumors, with small size (1.0~1.5cm) and located completely in the cortex with no protrusion, were missed by ultrasound. Contrast enhanced ultrasound might be helpful[4, 18]. Li et al reported two cases of JGCT, invisible by previous conventional ultrasound, found by contrast enhanced ultrasound. They were complete endophytic, and showed hypoenhancement, slow wash in and slow wash out. One was 1.0×1.0×0.7cm, the other was 3.0×2.0×1.0cm[18]. However, the small sample size precluded a firm recommendation of contrast enhanced ultrasound for JGCT diagnosis. Contrast enhanced CT is a valuable tool for JGCT, and the sensitivity was reported to be 92%~100%[24]. Our fifteen JGCTs were all detected by contrast enhanced CT, showing a sensitivity of 100%.

The limitation of our study was the small number of cases and techniques such as contrast enhanced ultrasound was not applied. More in-depth prospective studies should be conducted in the future to provide a more comprehensive information of this rare tumor.

Conclusion

JGCT is rare, and has characteristic clinical manifestations. Diagnosis should be suspected in case of secondary hypertension, particularly in young women, if no renal vascular cause is found. Ultrasound, combined with clinical manifestations, was helpful for the diagnosis.

Abbreviations

JGCT: juxtaglomerular cell tumor; CT: computed tomography.

Declarations

Acknowledgements

Not applicable.

Authors' contributions

All authors have contributed significantly to this paper. LW and ML collected and analyzed the data, then wrote the manuscript; SJ, YO, FW, and KL provided professional opinions about JGCT and ultrasound manifestations; JL and YJ revised the manuscript; HL and QZ designed and supervised the study. All authors read and approved the final manuscript.

Funding

This research did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector.

Availability of data and materials

The data and material can be provided if asked on a basis of good reasons.

Declarations:

Ethics approval and consent to participate

The study was conducted in accordance with the Declaration of Helsinki. The Institutional Review Board of Peking Union Medical College Hospital has reviewed the protocol of this manuscript and determined that this study is a retrospective study and the need for informed consent is waived.

Consent for publication
Not Applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1 Department of Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1, Dongcheng District, Beijing 100730, China.

2 Department of Ultrasound, Tangshan Central Hospital, West of Youyi Road, Lubei District, Tangshan City, Hebei 063000, China.

References

18. Qiuyang Li M, Ying Zhang, MD, Yong Song, MD, Aitao Guo, MD, Nan Li, BS, Yukun Luo, MD, Jie Tang, MD. Clinical Application of Ultrasound in the Diagnosis and Treatment of Reninoma. Advanced Ultrasound in Diagnosis and Therapy, 2020,4:211-216.

Figures
Figure 1
A 39-year-old male with JGCT in the right kidney. Ultrasound showed extremely hypoechoic lesion (arrow), 1.2×1.0×0.8 cm, with regular morphology and clear boundary.

Figure 2
A 29-year-old female with JGCT in the left kidney. (a) Grayscale ultrasound showed isoechoic lesion (arrow), 4.0 × 3.4 × 3.1 cm, with regular morphology and clear boundary. (b) Color Doppler ultrasound showed mild blood flow.