
�*�V�E�K�M�P�M�X�]���*�Y�R�G�X�M�S�R�W���J�S�V���0�S�G�E�P���*�E�M�P�Y�V�I���1�I�G�L�E�R�M�W�Q�W���M�R
�9�R�V�I�M�R�J�S�V�G�I�H���1�E�W�S�R�V�]���&�Y�M�P�H�M�R�K�W
�1�E�V�G�S���2�E�P�I�Á�������¦ ���Q�E�V�G�S���R�E�P�I�$�Y�R�M�J�I���M�X���

�9�R�M�Z�I�V�W�M�X�]���S�J���*�I�V�V�E�V�E�����9�R�M�Z�I�V�W�M�X�E���H�I�K�P�M���7�X�Y�H�M���H�M���*�I�V�V�E�V�E���L�X�X�T�W�������S�V�G�M�H���S�V�K����������������������������������������

�*�E�F�M�S���1�M�R�K�L�M�R�M�Á
�9�R�M�Z�I�V�W�M�X�]���S�J���*�I�V�V�E�V�E�����9�R�M�Z�I�V�W�M�X�E���H�I�K�P�M���7�X�Y�H�M���H�M���*�I�V�V�E�V�E

�%�R�H�V�I�E���'�L�M�S�^�^�M�Á
�9�R�M�Z�I�V�W�M�X�]���S�J���*�I�V�V�E�V�E�����9�R�M�Z�I�V�W�M�X�E���H�I�K�P�M���7�X�Y�H�M���H�M���*�I�V�V�E�V�E

�%�R�X�S�R�M�S���8�V�E�P�P�M�Á
�9�R�M�Z�I�V�W�M�X�]���S�J���*�I�V�V�E�V�E�����9�R�M�Z�I�V�W�M�X�E���H�I�K�P�M���7�X�Y�H�M���H�M���*�I�V�V�E�V�E

�6�I�W�I�E�V�G�L���%�V�X�M�G�P�I

�/�I�]�[�S�V�H�W�����Y�R�V�I�M�R�J�S�V�G�I�H���Q�E�W�S�R�V�]���F�Y�M�P�H�M�R�K�W�����J�V�E�K�M�P�M�X�]���J�Y�R�G�X�M�S�R�W�����S�Y�X���S�J���T�P�E�R�I���J�E�M�P�Y�V�I�����P�S�G�E�P���G�S�P�P�E�T�W�I

�Q�I�G�L�E�R�M�W�Q�W

�4�S�W�X�I�H���(�E�X�I�����1�E�V�G�L�����V�H������������

�(�3�-�����L�X�X�T�W�������H�S�M���S�V�K���������������������V�W�������V�W�����������������Z��

�0�M�G�I�R�W�I�����q ���O���8�L�M�W���[�S�V�O���M�W���P�M�G�I�R�W�I�H���Y�R�H�I�V���E���'�V�I�E�X�M�Z�I���'�S�Q�Q�S�R�W���%�X�X�V�M�F�Y�X�M�S�R�����������-�R�X�I�V�R�E�X�M�S�R�E�P���0�M�G�I�R�W�I�����Á

�6�I�E�H���*�Y�P�P���0�M�G�I�R�W�I

https://doi.org/10.21203/rs.3.rs-263582/v1
mailto:marco.nale@unife.it
https://orcid.org/0000-0003-4565-3489
https://doi.org/10.21203/rs.3.rs-263582/v1
https://creativecommons.org/licenses/by/4.0/


1 

Fragility functions for local failure mechanisms in unreinforced masonry buildings 

Marco Nalea, Fabio Minghinia, Andrea Chiozzia, Antonio Trallia 

a Department of Engineering, University of Ferrara, Via Saragat 1, Ferrara, Italy 

Abstract 

The unreinforced masonry buildings can be present frequent local failure mechanisms and represent 

a serious life-safety hazard as recent strong earthquakes have shown. Compared to new building, 

existing unreinforced masonry buildings prone to be more vulnerable, not only because they have 

been designed without seismic or limited loading requirements, but also because horizontal structures 

and connections amid the walls are not always suitable. Out-of-plane collapse can be caused by 

important slenderness of walls also when connections are effective. 

The purpose of this paper is to evaluate fragility functions for unreinforced masonry walls in the 

presence of local failure mechanisms considering the out-of-plane response. The wall response, very 

often, can be idealized as rigid bodies undergoing rocking motion. Depending on its configuration, a 

wall is assumed either as a rigid body undergoing simple one-sided rocking or an assembly of two 

coupled rigid bodies rocking along their common edge. A set of 44 ground motions from earthquake 

events occurred from 1972 to 2017 in Italy is used in this study. The likelihood of collapse is 

calculated via Multiple Stripe Analysis (MSA) from a given wall undergoing a specific ground 

motion. Later, the single fragility functions are suitably combined to define a typological fragility 

function for a class of buildings. The procedure is applied to a historical aggregate in the city center 

of Ferrara (Italy) as a case study. The fragility functions developed in this research can be a very 

helpful tool for estimating damage and economic loss for unreinforced masonry buildings and for a 

seismic assessment on a regional scale. 

Keywords: unreinforced masonry buildings, fragility functions, out-of-plane failure, local collapse 

mechanisms 
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1. INTRODUCTION 

UnReinforced Masonry (URM) buildings represent a large part of the Italian building stock. 

Compared to new buildings, existing URM buildings tend to be even more vulnerable to earthquakes. 

In Italian historical centers, this is essentially due to the following causes. 

1) Old buildings may have been strongly altered over time, often resulting in a reduction of cross-

section areas of masonry walls, a general weakening of mutual connections between walls 

and floors, and sometimes a significant increase in the seismic masses. 

2) Materials may be seriously degraded due to weathering, rising damp, and poor maintenance. 

3) In some territories, such as a large part of the Po River plain, seismic design has become 

mandatory only since 2005, and most of the buildings have been designed in the absence of 

specific provisions for earthquake resistance. 

Recent seismic events (Decanini et al. 2004; Indirli et al. 2013; Penna et al. 2014; Sorrentino et al. 

2019) have provided evidence that Out-Of-Plane (OOP) collapse mechanisms in URM structures still 

represent a serious life-safety hazard. In fact, under seismic actions, existing URM buildings are often 

subjected to local collapse mechanisms involving partial or whole OOP failure of façade walls. Both 

activation and evolution up to collapse of these mechanisms strictly depend on stiffness and strength 

of connections between facade walls and other structural elements such as partition walls, floors and 

roof. 

In Italy, the seismic analysis of historical URM buildings based on the assessment of collapse 

mechanisms starts with Giuffrè (1996). Kinematic limit analysis is considered one of the most reliable 

tools to assess OOP failure of masonry walls, and is currently adopted by Italian building code 

(Ministero delle Infrastrutture e dei Trasporti 2018). This analysis method is based on the following 

steps: 

1) use of the kinematic theorem of limit analysis to select, among various OOP mechanisms, that 

leading to the minimum seismic load multiplier; 
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2) imposition, for the selected mechanism, of equilibrium conditions corresponding to a generic, 

deformed configuration; 

3) evaluation of the capacity curve for the mechanism as a continuous function of the horizontal 

displacement of a control point; 

4) transformation of the capacity curve for the mechanism into the capacity curve corresponding 

to an equivalent Single Degree-Of-Freedom (SDOF) system; 

5) location, on the SDOF curve, of a limiting displacement corresponding to the considered limit 

state and comparison with the displacement demand. 

Various authors showed the drawbacks related with the use of such an approach, which often 

underestimates the actual resources of URM walls (Shawa et al. 2012; Giresini et al. 2015; Sorrentino 

et al. 2016). 

A more performing approach appears to be the nonlinear dynamic analysis of the walls considered as 

rigid rocking blocks. The study of rocking oscillators began with the seminal paper by Housner 

(1963), that derived a SDOF equation of motion for the out-of-plane response of a parapet wall (PW). 

Following that study, the research focused on the description of the dynamic response of rocking 

blocks subjected to either earthquake excitations or pulse (Yim et al. 1980; Spanos and Koh 1984). It 

has been found that this response may be characterized by dynamic instability and strong nonlinearity. 

Later, other models were adopted introducing equivalent SDOF models to govern the dynamic 

behavior of complex multi-block rocking systems (Sorrentino et al. 2008; DeJong and 

Dimitrakopoulos 2014). A SDOF force-displacement idealization of the rocking behavior of URM 

walls was proposed by Doherty et al. (2002). 

A unified, probabilistic approach taking account of uncertainties, vulnerability, and risk can provide, 

with the use of nonlinear dynamic analysis, a better estimate of structural safety levels. One of the 

main tools in PEER - PBEE framework is the fragility function (Deierlein et al. 2003; Krawinkler 

and Miranda 2004). For the rocking block, various studies provided fragility functions in terms of 
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different intensity measures (Dimitrakopoulos and Paraskeva 2015; Lagomarsino 2015; Chiozzi et 

al. 2017). The methods available in the literature to derive fragility functions can be divided into four 

categories (Pitilakis et al. 2014; Silva et al. 2019): analytical, empirical, expert judgment, and hybrid. 

Fragility functions have also been proposed to describe the global behavior of masonry structures 

(Lagomarsino and Giovinazzi 2006; Rota et al. 2010; Spillatura et al. 2014). Most of these researches 

consider only the in-plane response of masonry walls. More recent studies propose fragility functions 

for OOP mechanisms based on kinematic limit analysis (Zuccaro et al. 2017). Simões et al. (2019a, 

b, 2020) developed fragility functions for URM buildings combining in- and out-of-plane wall 

responses. In particular, for the OOP response, nonlinear kinematic analyses are used. 

This paper presents a procedure to derive fragility functions for OOP mechanisms in URM buildings 

based on nonlinear dynamic analysis. A rigid block model is adopted for load-bearing walls. Fragility 

functions are derived considering the uncertainties associated with the peculiarities of masonry 

structures. These uncertainties are both aleatory and epistemic. The aleatory variables involved, such 

as wall geometry, masonry mass density, loads transferred from floors and roof, are treated by the 

Monte Carlo method (Zio 2013). Epistemic uncertainty is treated through the use of logical trees 

(Simões et al. 2019b). In the end, the individual fragility functions obtained are combined to define a 

typological fragility function for a class of masonry buildings. The approach adopted for the 

derivation of fragility functions is described in detail in the following sections. The method is then 

applied to a case study concerning a historical aggregate in the city center of Ferrara (Italy). This 

historical aggregate was studied in Nale et al. (2020) where some preliminary results have been 

exposed. 

2. BUILDINGS DATABASE 

2.1. Cartis database 

The Cartis database (Zuccaro et al. 2016) is an inventory of buildings typologies on regional scale 

funded by the Italian National Civil Protection Department and elaborated by ReLUIS (Rete dei 
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Laboratori Universitari di Ingegneria Sismica e Strutturale). The data collection is based on an 

interview, which consists of filling out a form on a city, divided into compartments. For each 

compartment, a technician (i.e. engineers, architects) collects the relevant information on the relevant 

types of buildings (e.g. age of structures, type of structures, geometrical data, etc.). This information 

is more detailed than available standard methods (ISTAT data, Census Database) and can more 

effectively support to the creation of vulnerability models. In this paper, this database is used to create 

typological fragility functions for local failure mechanisms in unreinforced masonry structures. 

2.2. Case study 

The historic center of Ferrara is made up of 92% masonry buildings and the remainder is made up of 

reinforced concrete and mixed structures. The structures are mainly by less than 3 stories for 83%, 

albeit unevenly distributed concerning the construction periods of the city from the 14th to the 19th 

century (Dolce et al. 2015). In addition to the data extrapolated from the Cartis database, it was 

decided to survey a historical aggregate of buildings in the center of Ferrara to improve the knowledge 

of masonry buildings. Table 1 shows the main parameters of the buildings in the historic center of 

Ferrara from Cartis Database. 

For the selected compartment there are two typologies of buildings present in the city center of Ferrara 

(MUR 1 and MUR 2) (Figure 1). The MUR1 typology refers to buildings from two to four stories, 

belonging to the oldest part of the historic center (medieval area) but also to the Renaissance area up 

to the 1800s and early 1900s (Figure 2). The MUR2 typology is more recent (from 1920 to 1945) and 

has a different percentage of tie rods on the total of the buildings, even though it also has a wooden 

floor and a wooden roof. The buildings of these types are for residential, commercial, tourist-

accommodation, and office use (Figure 3). The structural behavior of URM buildings is directly 

dependent on the materials and constructive details and indirectly dependent on the usage and state 

of conservation. One of the main challenges when assessing existing buildings is the definition of the 

mechanical properties of the materials (e.g. quality of clay brick wall see Figure 4). In general, the 
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weakest points of URM buildings are the poor connections (between walls or between walls and 

floors or roof) and the limited stiffness of timber floors (Figure 5). 

3. SEISMIC ASSESSMENT 

3.1. Description of the approach 

For the seismic assessment, the local response is related to the activation of out-of-plane collapse 

mechanisms of parts of the buildings insufficiently connected to the rest of the structure. Furthermore, 

fragility curves were used to describe the local response in the probabilistic context. These curves are 

useful for defining related vulnerability models. The intensity measure (IM) adopted in this work is 

the peak ground acceleration (PGA) as required by Italian building code (Ministero delle 

Infrastrutture e dei Trasporti 2018) and which represents a common choice in the case of URM 

buildings. Epistemic uncertainty was treated using a logic tree approach that allows describing the 

vulnerability of each mechanism (Section 4.1). The aleatory uncertainty of each mechanism deriving 

from the properties of the materials, the geometry of the elements, and the loads applied on the 

mechanism have been treated with the Monte Carlo method (Section 4.2). The input parameters for 

a given mechanism were treated as one of the possible combinations of existing walls. To create a 

group of walls representative of the type of structures considered, a number of 1000 walls have been 

created. Such walls are the final result of all the uncertainties considered deriving from the epistemic 

and aleatory ones.  

To create the topological fragility curves we proceeded as follows: 

�x identification of all possible configurations of the collapse mechanisms and relative weights 

(Section 4.1) 

�x extrapolation of the main collapse mechanisms from the logic tree (Section 4.1) 

�x generation of walls for the various mechanisms (Section 4.2) 

�x multiple stripe analysis and creation of fragility curves (Paragraph 5.2.4) 

�x typological fragility curves by combining the weights of mechanisms (Section 5.3) 
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3.2. Comparison between the Italian code and non-linear dynamic analysis 

In this section, a critical review of seismic response assessment techniques for local collapse 

mechanisms in existing masonry structures is discussed. To have statistically robust results, three 

type of walls with the two different configurations of constraints are subjected to non-linear dynamic 

analyses (Table 2). Each wall was subjected to 44 accelerograms with 2 constraint configurations for 

10 different amplitude scale of ground motion. A total of 1320 non-linear dynamic analyses were 

performed. The results of the dynamic analysis are expressed by the ratio between energy demand 

(ED) and capacity (EC) (Shawa et al. 2012; Sorrentino et al. 2016). The energy demand (ED) is 

calculated as the maximum potential energy during the seismic action or as the sum of the potential 

and kinetic energy at instability. The capacity energy (EC) is calculated as the difference in the 

potential energy of the system. In Figure 7, the results obtained from the non-linear dynamic analysis 

are compared with the methods proposed by the Italian code (Ministero delle Infrastrutture e dei 

Trasporti 2018, 2019). In the Italian code, the evaluation of local collapse mechanisms is 

recommended with two approaches: the force-based approach and the displacement-based approach. 

The force-based approach defines the acceleration capacity (a0
*). The relative acceleration demand is 

the peak ground acceleration (PGA) divided by behavior factor q = 2.0. The ratio between demand 

acceleration and capacity acceleration is used to compare the force-based approach to a dynamic 

approach. The displacement-based approach, on the other hand, defines a displacement capacity (du
*). 

The corresponding demand displacement is evaluated using the spectral displacement (SDe(TS)) at the 

secant period (TS) of the local mechanism. The ratio between demand and capacity is used to compare 

the displacement-based approach to the dynamic approach. As it can be observed in Figure 7, the 

number of non-conservative cases is less for the one-sided mechanism, while it increases in the case 

of two-blocks mechanism. Furthermore, it is possible to see how displacement-based approach can 

reduce the number of non-conservative cases. Both approaches confirm that they are less conservative 
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than non-linear dynamic analyses. This evidence is due to several factors, for more details see (Shawa 

et al. 2012; Mauro et al. 2015; Sorrentino et al. 2016). 

3.3. Dynamic analysis of local collapse mechanisms 

Modeling unreinforced masonry walls, subjected to seismic loads, represents an important challenge, 

from both engineers and researchers because of its complexity of being described with nonlinear 

dynamic analysis. In this study, a single degree of freedom (SDOF) numerical model is used for the 

analysis of their dynamic behavior under seismic action. 

3.3.1. Modeling strategy 

The equation of motion for rocking block associated with a given local mechanism can be derived 

�X�V�L�Q�J���/�D�J�U�D�Q�J�H�¶�V���H�T�X�D�W�L�R�Q�� 
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where T  is the kinetic energy, V  potential energy, �� �� gB u�I�� &&  is the generalized inertial force induced 

by earthquake excitation and Q  the generalized force provided by static forces and �I  is the 

lagrangian parameter that describes the motion. Equation 1 can be written in the following form: 

 �� �� �� �� �� �� �� �� �� ��2
gI J G B u Q�I �I �I �I �I �I �I�� �� � �� ��&& & &&  (2) 

where �� ��I �I , �� ��J �I , �� ��G �I  and �� ��B �I are non-linear functions of �I . It is also possibly derived from 

Eq 2 for different local mechanisms, the static load multiplier that activates the mechanism, assuming 

in the resting position null acceleration and velocity (0,  0,  0�I �I �I�  �  �  && & ), we obtain: 
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where g is the gravity acceleration. The same load multiplier can be obtained by the limit analysis 

approach. In rocking systems, the energy dissipation is associated with the impact of the blocks 

(Housner 1963; Yim et al. 1980; Spanos and Koh 1984). The restitution coefficient is defined, indeed, 

as the ratio of angular velocity after and before the nth impact. 

3.3.2. One-sided rocking 

A one-sided rocking can be assumed for a wall even though the presence of internal constraints such 

as transverse walls and horizontal structural elements. The equation of one-sided rocking can be 

written similarly to the equation on the two-sided rocking rigid body: 

 �� �� �� ��0 sin cosb b gI gM R M Ru�I �D �I �D �I�� �� � �� ��&& &&  (4) 

where I0 is the polar moment of inertia with the pivot point 0, Mb �L�V���W�K�H���P�D�V�V���R�I���W�K�H���E�O�R�F�N���D�Q�G���.���L�V���W�K�H��

internal angle and R is the length of the half-diagonal. In the case of vertical restraint, the rotation �¥ 

of the system remain positive (Figure 8). For one-sided cases, experimental evidence shows that 

energy dissipation depends on the interface between the constraint and the block (Sorrentino et al. 

2011). 

 
2

2 2
1

3 3
1 sin 1 cos

2 2s�K �D �D�§ �· �§ �·� �� ���¨ �¸ �¨ �¸
�© �¹ �© �¹

 (5) 

For better and more accurate modeling of the seismic behavior of the wall, a tri-linear moment-

curvature relationship with a finite initial stiffness can be assumed on the basis of experimental test 

(Doherty et al. 2002). The tri-linear function takes into account initial imperfections, non-linear 

material behavior, and the second-order effects. If this configuration is assumed with the tri-linear 

moment-rotation relationship, the motion equations can be written as follows (Boscato et al. 2014): 
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where R is the distance of the center of gravity from the rotation pivot, ki is the initial stiffness (
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(Table 3). 

3.3.3. Two block mechanism 

The two-block mechanism can be used to describe the dynamic behavior of a wall that is characterized 

by the formation of the classical pivot interface at the wall top, bottom, and mid-height. The top and 

bottom pivot can rotate if they are under a ground motion excitation. The mechanism is described by 

these main parameters: �.1 and �.2 the describe the slenderness of the two blocks; I01 and I02 that are 

the polar moment of inertia regarding the relative mass centers Mb1 and Mb2 that are the masses of the 

bottom and the top blocks (Figure 9). The resulting equation of motion is equivalent to those prosed 

in the literature (Sorrentino et al. 2008; DeJong and Dimitrakopoulos 2014; Mauro et al. 2015) and 

can be written as follows; 

 
�� �� �� ��

�� �� �� ��

2 2 2 2
01 1 02 2 2 2 1 02 2 2 2 2 1 2 2

1 2 2 1

1
4

cot

b b b b

b b g

B
I B I B M R C I C M R gAR M M

A

A M M R u Q

� I � I

� D � I

� ª � º� § � ·�� �� �� �� �� �� �� � � ¨ � ¸� « � »
� © � ¹� ¬ � ¼

�� �� �� ��

&& &

&&

 (7) 

with the following system coefficients that are not constant but are functions of rotation �I . 
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The critical rotation and the horizontal load multiplier of the system become: 
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and the coefficient of restitution tb�K  is defined as follows: 
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The coefficient of restitution depends on the slenderness of the wall and the position of the hinge. For 

the stockier wall and lower intermediate hinge, the energy dissipation will decrease. For this type of 

mechanism, the value of the coefficient of restitution is between 0.84 and 0.90 from experimental 

tests (Graziotti et al. 2016). Using this model is not considered the progressive damage (Doherty et 

al. 2002) and no energy damping term (Tomassetti et al. 2019). 

The rocking response results are obtained from a MATLAB code that numerically solves the 

nonlinear equations by means of a 4th-5th order Runge-Kutta integration technique (The Mathworks 

Inc. 2016). 
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4. EVALUATION OF UNCERTAINTIES 

To characterize the behavior of these buildings, the main epistemic and aleatory uncertainties are 

briefly defined in the next sections to account for the possible variations within this class of buildings. 

The geometry of the building is not considered an uncertainty as the layout of the buildings is similar. 

Aleatory uncertainty is classified as irreducible uncertainty and refers to a property of the system 

associated with variability, whereas epistemic uncertainty can be reduced and it is associated with a 

lack of knowledge by the analyst (Beer et al. 2013). 

4.1. Epistemic uncertainties 

The epistemic uncertainties for the analysis of the local behavior are related to the incomplete 

knowledge about the structure of the buildings. These features are treated by the logic-tree approach 

(Simões et al. 2020). Figure 10 presents the logic-tree for the URM buildings in Ferrara for different 

categories of buildings (MUR1 and MUR2). The end of a branch of the tree represents a class of 

possible mechanisms with specific features and the final weights. The weight attributed to the class 

of mechanisms is determined by multiplying the weight of all the component branches of the tree. 

More in detail, from the first logic tree it is possible to obtain for the two main classes of masonry 

buildings with the relative associated weights for the various types of collapse mechanisms (Figure 

11). The main mechanisms obtain from the logic tree are: overturning 1 floor, overturning 2 floor, 

overturning 3 floor, overturning 4 floor and vertical bending. With the expression overturning n floor, 

we mean a one-sided rocking with a height of the block corresponding to n floors. The relative 

mechanism is obtained for the sum of the weights that contain that mechanism. Only for the two-

block mechanism, we consider a mechanism at the top floor of the building. The vertical bending in 

the lower floors have been exclude because the walls are more loaded than the top floor. This increase 

the stability of the wall (Mauro et al. 2015). 

These weights will be used to create the typological curve for out-of-plane mechanisms. 
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4.2. Aleatory uncertainties 

Aleatory uncertainties are related to the randomness of a certain phenomenon. For the analysis of the 

global behavior, the aleatory variables account for variations on the mechanical properties of masonry 

and geometrical properties of the wall. It is proposed to treat these aleatory variables by the Monte 

Carlo Method (Zio 2013) to define, in a random way, the properties to be assigned to the numerical 

models. The parameter ranges were chosen using the ranges extrapolated from the Cartis database 

and possible mechanisms. The random generation of the parameters was done considering an interval 

set described by a lower and higher value. Generation occurs assuming a uniform distribution. This 

choice was made due to the fact that the information about the parameters was vague. The possible 

choice of a normal or lognormal probability distribution was not compliant because there were not 

enough tests for the relative parameters. The walls vary with a height between 3.00 m and 12.50 m 

and a thickness between 0.28 and 0.43 m. The thickness was also defined considering causal values 

compatible with the possible combination of the bricks (i.e. single-leaf wall). A total of 1000 

simulations are considered to have a sufficient number of results to reach a good convergence in the 

estimation. In the random generation of the walls, the variability of the loads, the percentages of 

openings in the walls (Figure 12) and the presence of transverse connections were considered. 

5. FRAGILITY ANALYSIS 

5.1. General approach 

A fragility function is defined as a lognormal cumulative distribution function: 

 �� �� �� ��ln x
P C IM x

�T
�E

� § � ·
� � �) � ¨ � ¸

� © � ¹
 (11) 

where �� ��P C IM x�  is the probability that a ground motion with IM x�  will cause the collapse of the wall, 

�-���� ���� �L�V�� �W�K�H�� �V�W�D�Q�G�D�U�G�� �Q�R�U�P�D�O�� �F�X�P�X�O�D�W�L�Y�H�� �G�L�V�W�U�L�E�X�W�L�R�Q�� �I�X�Q�F�W�L�R�Q�� ���&�'�)�������� is the mean of the fragility 

function and �� is the standard deviation of ln IM . To create a fragility curve, it is necessary to estimate 
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the parameters that describe the curve, in particular the mean value and the standard deviation for a 

lognormal cumulative distribution function. The parameters of the fragility curves can be estimated 

by various methods. The two most common are the incremental dynamic analysis (IDA) and multiple 

stripe analysis (MSA). A multi-stripe analysis (MSA) is used in this work (Figure 13). 

5.2. Derivation of fragility curves 

5.2.1. Selection of ground motions 

In this paper, we used ground motion records from the ESM and ITACA databases (Bindi et al. 2011). 

The 46 ground motion records used for this study have been derived from 22 different events, 

recorded in different regions of the Italian territory between 1972 and 2017 (Table 4). These ground 

motions are within a specified range: magnitude Mw between 5.0 and 7.0, Joyner-Boore distance Rjb 

between 0 and 30 km, EC8 soil classification from B to E, and strike-slip, reverse or reverse-oblique 

faults. The number of ground motions is in accordance with NEHRP Guidelines (Whittaker et al. 

2011). The ground motions are mainly obtained by the Italian accelerometric network (Rete 

Accelerometrica Nazionale, RAN) managed by the Italian Civil Protection Department (DPC) and 

the national seismic network managed by Istituto Nazionale di Geofisica e Vulcanologia (INGV). 

The selected ground motions take into account a wide range of PGA as well as PGV (Suzuki and 

Iervolino 2017). 

5.2.2. Intensity Measure (IM) 

The intensity measure is a parameter that quantifies the intensity of ground motion and serves as a 

connection between probabilistic seismic hazard analysis and probabilistic structural response 

analysis. The choice of this parameter has relevant effects on structural response. In this study, the 

peak ground acceleration (PGA) is selected as an intensity measure. In the Italian Building code, PGA 

is an index for seismic design but it has long been known that this type of intensity measure is, in 

general, inefficient for evaluating seismic risk (Housner 1965). For low masonry buildings, as those 
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presented in the case study, PGA is considered a reliable parameter (Lagomarsino and Giovinazzi 

2006). 

5.2.3. Engineering demand parameter (EDP) 

For the correct evaluation of the fragility curve, an appropriate engineering demand parameter (EDP) 

is necessary for association with the damage state. In this paper, the damage state considered is the 

collapse damage state that corresponds to the complete overturn of the block. The absolute peak 

rocking rotation max�I  �G�L�Y�L�G�H�G���Z�L�W�K���W�K�H���V�O�H�Q�G�H�U�Q�H�V�V���.���L�V���W�K�H���(�'�3�� 

 maxEDP
�I
�D

�  (12) 

The choice of this dimensionless EDP is physically explained: the large value of EDP implies that 

the block starts rocking (EDP >0), high values (e.g. EDP > 1.0) show overturning as a consequence 

of rocking (Table 5). The parameter �. for the vertical bending is assumed equal to the slenderness �.1 

of lower block (Sorrentino et al. 2008). The collapse is considered with a EDP =1.0. This choice is 

conventional. In fact, this value occurs when there is a static instability. It is possible that the block 

rocking without overturning with EDP>1 because the problem is strongly nonlinear (Dimitrakopoulos 

and Paraskeva 2015). 

5.2.4. Multiple stripe analysis (MSA) 

The parameter estimators were obtained using the maximum likelihood method. This method is 

widely used in literature as an alternative to the moments method to estimate the parameters. This 

method is briefly described hereinafter. 

The rocking analyses are performed for a level of intensity jIM x�  which will give a number of 

collapses over the total number of the ground motions set. The probability of having zj collapses in nj 

ground motion per fixed intensity level is expressed as follows 
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 �� �� �� �� collapses in  ground motions 1 j jj
n zj z

j j j j
j

n
P z n p p

z
��� § � ·

�  � �� ¨ � ¸
� © � ¹

 (13) 

where the collapse of the block can be caused with a probability pj for a certain level of intensity IM 

= xj. The observations of non-collapse and collapse can be assumed as ground motion independent of 

each other. The purpose of deriving the various collapse probabilities for different intensity levels is 

to derive a function with the highest probability from the collapse data observed by the rocking 

analysis. This is possible due to the likelihood method. The likelihood for the entire set of data 

obtained from multiple levels of IM is expressed by the product of the binomial probabilities 

(equation 13) and is described as follows. 

 �� ��
1

Likelihood 1 j jj

m n zj z
j j

jj

n
p p

z
��

� 

� § � ·
�  � �� ¨ � ¸

� © � ¹
�–  (14) 

�Z�K�H�U�H�� �I��indicates the product of all m level of IM. The probability function is made explicit by 

substituting equation 13 for pj 
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Maximizing the likelihood function, it is possible to obtain the estimator parameters of the fragility 

curve that can be written: 

 �^ �` �� �� �� �� �� ��
, 1

ln ln� Ö � Ö, argmax ln ln ln 1
m

j ji
j j j

jj

x xn
z n z

z� T � E

� T � T
� T � E

� E � E� 

�  � ½� § � ·�§ �· �§ �·� § � ·� ° � °� ¨ � ¸�¨ �¸ �¨ �¸� �� �) �� �� �� �)� ® � ¾� ¨ � ¸ �¨ �¸ �¨ �¸� ¨ � ¸� © � ¹� ° � °�© �¹ �© �¹� © � ¹� ¯ � ¿
�¦  (16) 

5.3. Proposed typology fragility curves 

The creation of typological fragility curves allows to include all uncertainties and describe a general 

behavior of the structure or element. Figure 14 shows the sensitivity analysis made for the mechanism 
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of vertical bending. The parameters considered are the position of the formation of the hinge (Figure 

14a) and the influence of the vertical force N (Figure 14b). In our case, we consider a wall 0.3 3.0�u

m. The position of the hinge has been changed considering the 1 /h h ratio which varies from 0.5 to 

0.8 (ABK 1981; Graziotti et al. 2016). This parameter has little influence on the variation of the 

fragility curve. Instead, the vertical force affects the vulnerability of the wall. The vertical force was 

considered as the effect of the load due to the span of the slab. This force was applied in the center of 

the wall thickness. The type of floor chosen is a wooden slab at the roof of the structure (load of 2.5 

kN/m2). The span of the slab varies from 1 to 5 meters found in the masonry structures in Ferrara 

(Table 1). In Figure 14b, the span of the floor L varies from 0 m (where the floor does not discharge 

on the wall) to 5.0 m. It is possible to see how this parameter has small influence. It can be seen that 

the vertical force at the top is a stabilizing component for the wall, making it less vulnerable. This 

can also be seen with static and dynamic analyses (Mauro et al. 2015). Subsequently, the fragility 

curves for the various mechanisms were created by varying the parameters. Each fragility curve was 

obtained by carrying out 44 nonlinear dynamic analyses for 9 different levels of intensity. For each 

curve, 396 nonlinear dynamic analyses were carried out for each wall considered. From the data 

extrapolated from Cartis, intervals of parameters were obtained which were then inserted to carry out 

the analysis. The distributions could not be extrapolated due to the lack of information on the 

individual buildings. The database allows us to provide general data on a group of buildings. For each 

mechanism identified, a population of walls was created with randomly generated geometric 

parameters. This choice is the most reasonable for the availability of data. For the mechanisms, a 

Monte Carlo method was applied with a population of 1000 walls. From here a group of fragility 

curves has been obtained (Figure 15). For each group of fragility curves, it is possible to obtain its 

average curve (bold black curves in the figures). 

In addition to the fragility curves for the various collapse mechanisms derived from the creation of a 

population of walls, the fragility curves for the mechanisms present in the case study were created 
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(Figure 16) with its average curve (bold black curves in the figures). The most significant comparison 

is between the average curve obtained from the population of MUR1 (this category constitutes 90% 

of the total of the buildings surveyed) with the curve obtained from the survey of the compartment. 

For completeness, the comparison between the curves of the MUR2 population with those obtained 

from the survey is also reported (Figure 17). The typological fragility curves MUR1 and MUR2 are 

very similar despite being in two different typological categories because the parameters vary not 

much (Table 1). Also, the buildings have good masonry qualities and textures, good transversal 

connections, and the presence of tie rods or tie beams. It is possible to say in general that un seismic 

action, buildings from different historical periods do not have great differences. From both graphs, it 

can be seen how the average population curve is more conservative than that obtained from the 

survey. This evidence is due to the greater number of walls analyzed for the various mechanisms 

obtained by the population than the number of walls obtained from the survey. The difference 

between the curves obtained is due to the level of knowledge of the walls. The survey increases the 

level of knowledge about the walls therefore the curve reduces the uncertainty associated with the 

geometry of the wall and provides a more detailed description of the walls for the historic aggregate. 

Moreover, the curves obtained from the survey consider the good masonry quality of the walls and 

the connection with the transverse walls (while in the Cartis database there is no information about 

it). This information allows us to have representative curves than the curves database. Transversal 

connections help to greater stability of the wall compared to its absence. 

Figure 17 shows the overall global typological curves for out-of-plane mechanisms. These curves are 

obtained by weighting the mean values and variances previously obtained for the individual class of 

mechanisms. These weights are obtained from the logical trees created to evaluate the relative 

possible collapse configurations (Figure 11). 
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6. CONCLUSIONS 

This paper presents a procedure for the derivation of fragility functions for local failure mechanisms 

in unreinforced masonry buildings. The proposed method starts with the data processing of the Cartis 

database. A qualitative description of the building stock and associated relevant uncertainties 

(material, geometrical, loads) are initially considered. Epistemic uncertainties are included through 

the use of logical trees. Mechanical models, the validity of which is documented in the literature also 

from results of experimental campaigns, are introduced to analyze the out-of-plane response of 

masonry walls. A dynamic approach is used, adopting a multiple stripe analysis method to derive 

punctual fragilities. Finally, fragility functions are fitted to the computed fragilities.  

The method is applied to historical aggregates of URM buildings. For the selected compartment in 

the city center of Ferrara, two building typologies (MUR 1 and MUR 2) are identified. MUR1 

typology refers to buildings belonging to the oldest part of the historic center (medieval area) but also 

to the Renaissance area up to the 1800s and early 1900s, whereas MUR2 typology is more recent 

(from 1920 to 1945) and has a different percentage of tie rods on the total of the buildings. 

The final fragility functions provide an overall assessment of the seismic vulnerability for these 

classes of buildings. The results show the moderate quality of the building stock. However, the 

introduction of effective tie rods, modifying the out-of-plane failure mechanisms from rocking to 

vertical bending, can dramatically reduce the vulnerability of aggregates, keeping the streets of 

historic centers operational even after strong earthquakes. 

Typological fragility curves for these local mechanisms then provide a useful tool for the evaluation 

of damages and the assessment of economic losses. In future research, we will analyse the influence 

of the interaction between the floor effect of masonry structures and the local collapse mechanisms 

in the evaluation of damage states. Furthermore, we will integrate these results into a comprehensive 

assessment method including the global behavior of masonry structures. 
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FIGURES 

Figure 1: the historical aggregate in the center of Ferrara, Italy (aerial view). 

Figure 2: example of buildings MUR1 class 

Figure 3: example of buildings MUR 2 class 

Figure 4: types of clay brick wall in Ferrara for MUR1 and MUR2 class 

Figure 5: Out-of-plane collapse mechanisms taking into account connections with transversal walls 
(de Felice and Giannini 2001). 

Figure 6: example of out-of-plane wall overturning in unreinforced masonry buildings a) overturning 
of a wall at first-floor b) partial overturning of the facade, c) total overturning of the facade, d) flexural 
mechanism of a wall, e) flexural mechanism of the facade 

Figure 7: Comparison between Italian code (NTC 2018) and non-linear dynamic analysis: a) static 
force-based approach for one-sided rocking, b) displacement-based approach for one-sided rocking, 
c) static force-based approach for vertical bending, b) displacement-based approach for vertical 
bending. 

Figure 8: a) geometry of a rigid block under the one-sided rocking under ground motion, b) 
normalized moment-rotation relationship. 

Figure 9: (a) wall parameters, (b) cracked vertical spanning strip wall parameters, (c) displaced 
configuration and ground acceleration component acting in the mass centers of the two bodies 

Figure 10: logic-tree for URM buildings in Ferrara of the possible local mechanisms with relative 
weights (green for the MUR 1 typology and blue for MUR2 typology) 

Figure 11: diagram of the relative weights for each type of collapse mechanism 

Figure 12: different possible combinations of wall with different types of openings 

Figure 13: example MSA analysis results; a) analyses causing collapse are plotted at a critical angle 
of greater than 1.0 and are offset from each other to aid in visualizing the number of collapses. b) 
Observed fractions of collapse as a function of IM, and a fragility function estimated using equation 
16 

Figure 14: sensitivity of the fragility parameters for vertical bending mechanism: a) variation of the 
position of hinge (h1/h from 0.5 to 0.8), b) variation of the vertical force N; as effect of the span of 
the slab (L from 0 m to 5 m) on vertical force (red lines) 

Figure 15: fragility curves from CARTIS database: a) top floor vertical bending, b) overturning of 
the first floor, c) overturning of two floors for MUR1, d) overturning of two floors for MUR2 class, 
e) overturning of three floors for MUR1 class f) overturning of three floors for MUR2 class, g) 
overturning of four floors for MUR1 class, h) overturning of four floors for MUR2 class 

Figure 16: fragility curves from the survey of the historical aggregate in the center of Ferrara: a) 
vertical bending, b) overturning of the first floor, c) overturning of two floors, e) overturning of three 
floors 
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Figure 17: comparison between the average curves obtained from the population created from the 
Cartis database and the average curves obtained from the survey of the historical aggregate: difference 
between the typological survey curve (back line), the typological curve MUR1 (blue line) and the 
typological curve MUR2 (red line) 
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Figure 1: the historical aggregate in the center of Ferrara, Italy (aerial view). 

 

 
a) 

 
b) 

Figure 2: example of buildings MUR1 class 
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a) 

 
b) 

Figure 3: example of buildings MUR 2 class 

 

 
a) 

 
b) 

 
c) 

 
d) 

Figure 4: types of clay brick wall in Ferrara for MUR1 and MUR2 class 

 

 

Figure 5: Out-of-plane collapse mechanisms taking into account connections with transversal walls (de Felice and Giannini 2001). 
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

Figure 6: example of out-of-plane wall overturning in unreinforced masonry buildings a) overturning of a wall at first-floor b) partial 
overturning of the facade, c) total overturning of the facade, d) flexural mechanism of a wall, e) flexural mechanism of the facade 
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Non conservative case: 3% 

 
a) 

Non conservative case: 2% 

 
b) 

Non conservative case: 5% 

 
c) 

Non conservative case: 3% 

 
d) 

Figure 7: Comparison between Italian code (NTC 2018) and non-linear dynamic analysis: a) static force-based approach for one-sided 
rocking, b) displacement-based approach for one-sided rocking, c) static force-based approach for vertical bending, b) displacement-
based approach for vertical bending. 
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a) 

 
b) 

Figure 8: a) geometry of a rigid block under the one-sided rocking under ground motion, b) normalized moment-rotation relationship. 

 

 

Figure 9: (a) wall parameters, (b) cracked vertical spanning strip wall parameters, (c) displaced configuration and ground acceleration 
component acting in the mass centers of the two bodies 
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Figure 10: logic-tree for URM buildings in Ferrara of the possible local mechanisms with relative weights (green for the MUR 1 
typology and blue for MUR2 typology) 
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Figure 11: diagram of the relative weights for each type of collapse mechanism 

 

 

Figure 12: different possible combinations of wall with different types of openings 

 

URM buildings in 
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a) 

 

b) 

Figure 13: example MSA analysis results; a) analyses causing collapse are plotted at a critical angle of greater than 1.0 and are offset 
from each other to aid in visualizing the number of collapses. b) Observed fractions of collapse as a function of IM, and a fragility 
function estimated using equation 16 

 

 
a) 

 
b) 

Figure 14: sensitivity of the fragility parameters for vertical bending mechanism: a) variation of the position of hinge (h1/h from 0.5 to 
0.8), b) variation of the vertical force N; as effect of the span of the slab (L from 0 m to 5 m) on vertical force (red lines) 
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a) 

 

 
b) 

 
c) 

 

 
d) 

 
e) 

 

 
f) 

 
g) 

 

 
h) 

Figure 15: fragility curves from CARTIS database: a) top floor vertical bending, b) overturning of the first floor, c) overturning of two 
floors for MUR1, d) overturning of two floors for MUR2 class, e) overturning of three floors for MUR1 class f) overturning of three 
floors for MUR2 class, g) overturning of four floors for MUR1 class, h) overturning of four floors for MUR2 class 
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

 

Figure 16: fragility curves from the survey of the historical aggregate in the center of Ferrara: a) vertical bending, b) overturning of the 
first floor, c) overturning of two floors, e) overturning of three floors 
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Figure 17: comparison between the average curves obtained from the population created from the Cartis database and the average 
curves obtained from the survey of the historical aggregate: difference between the typological survey curve (back line), the 

typological curve MUR1 (blue line) and the typological curve MUR2 (red line) 
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Table 1: parameters of buildings 

Parameters MUR 1 MUR 2 

Number of floors 2 - 4 2 - 4 
Average floor height [m] 2.5 �± 3-5 2.5 �± 3.5 
Average ground floor height [m] 3.5 �± 5.0 2.5 �± 3.5 
Average floor area [m2] 100 �± 230 70 �± 170 

Age of building 
before 1860 
1861 �± 1919 

1919 - 1945 

Type of masonry Clay brick wall Clay brick wall 
Transversal connections No information No information 
With tie rods or tie beams 70% 60% 

Average thickness of ground floor walls [cm] 30 30 
Average distance between walls parallel to the facade [m] 5.5 4.5 
type of slab wood wood 
type of roof Wooden - not pushing Wooden - not pushing 

 

Table 2: block used in the analysis, b is the thickness of the wall whereas h is the height of the wall 

Wall b [m] h [m] boundary conditions 

1 0.25 4 one-sided rocking 
   two-block mechanism  
2 0.25 7.5 one-sided rocking 
   two-block mechanism  
3 0.25 11.2 one-sided rocking 
   two-block mechanism  

 

Table 3: the trilateral moment rotation curves parameters 

State of degradation �¨1��� ü �¨2��� ü 

New 6 % 28 % 
Moderate 13 % 40 % 
Severe 20 % 50 % 
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Table 4: Italian ground motion records with important recorded PGA and PGV (�‚EC8 classification (CEN 2004), *Epicentral distance, 
[I] = ITACA, [E]=ESM). 

Year Event Event id 
Station 
(Station code, Soil 
class�‚) 

Focal 
mechanism 

Magnitude 
Mw (M L) 

Distance* 
[km] 

PGA 
[g] 

PGV 
[cm/s] Source 

1972 Ancona IT-1972-0005 Ancona, Rocca (ANR,B) Unknown (4,7) 7.7 0.55 9,9 [I]  

1976 Friuli 1st shock IT-1976-0002 Tolmezzo Centrale 
(TLM1,B) 

Thrust 6.4 27.7 0.35 30,2 [I]  

1976 Friuli aftershock IT-1976-0027 Gemona (GMN, B) Thrust 5.9 6.2 0.63 68,4 [I]  

1976 Friuli 3rd shock IT-1976-0030 Folgaria Cornino (FRC, B) Thrust 6.0 16.2 0.34 23,7 [I]  

1976 Friuli 3rd shock IT-1976-0030 Gemona (GMN, B) Thrust 6.0 4.0 0.25 30,5 [I]  

1979 Norcia IT-1979-0009 Cascia (CSC, B) Normal 5.8 9.3 0.21 14,5 [I]  

1980 Irpinia IT-1980-0012 Sturno (STR, B) Normal 6.9 33.3 0.32 70,4 [I]  

1984 Lazio-Abruzzo IT-1984-0004 Cassino-Sant'Elia (SCN0, C) Normal 5.9 19.7 0.14 11,2 [I]  

1990 Potenza IT-1990-0001 Brienza (BRN, B) Strike-slip 5.8 29 0.10 6,8 [I]  

1997 Umbria Marche 
2nd shock 

IT-1997-0006 Nocera (NCR. E) Normal 6.0 10.1 0.49 32,6 [I]  

2002 Molise 1st shock IT-2002-0045 S. Severo (SSV, B) Strike-slip 5.7 38.1 0.57 2,1 [I]  

2009 L'Aquila IT-2009-0009 L'Aquila - Valterno - Centro 
Valle (AQV, B) 

Normal 6.1 4.9 0.64 42,7 [I]  

2009 L'Aquila IT-2009-0010 L'Aquila - Valterno - Colle 
Grilli (AQG, B) 

Normal 6.1 5 0.48 35,8 [I]  

2009 L'Aquila IT-2009-0011 L'Aquila - Valterno - F. 
Aterno (AQA, B) 

Normal 6.1 5 0.43 31,9 [I]  

2009 L'Aquila IT-2009-0012 L'Aquila - Valterno - Aquil 
Park Ing. (AQK, B) 

Normal 6.1 1.8 0.35 35,8 [I]  

2009 L'Aquila 
aftershock 

IT-2009-0102 S. Eusanio Forconese (MI05, 
B) 

Normal 5.5 3.6 0.65 23,6 [I]  

2012 Emilia 1st shock IT-2012-0008 Mirandola (MRN, C) Thrust 6.1 16.1 0.26 46,3 [I]  

2012 Emilia 2nd shock IT-2012-0011 Carpi (T0814, C) Thrust 6.0 9.3 0.49 23,6 [I]  

2012 Emilia 2nd shock IT-2012-0011 Medolla (MIR01, C) Thrust 6.0 0.5 0.41 52,4 [I]  

2016 Central Italy EMSC-
20160824_0000006 

Amatrice (AMT, B) Normal 6.0 8.5 0.85 43,5 [ESM] 

2016 Central Italy EMSC-
20160824_0000006 

Nocera (NRC, B) Normal 6.0 15.3 0.36 29,8 [ESM] 

2016 Central Italy EMSC-
20161030_0000029 

Rocchetta (MZ24, C) Normal 6.5 24.5 1.00 14,3 [ESM] 

 

Table 5: performance criteria for rocking behavior 

EDP Damage state Structural behavior Mechanism 

max / 1.0� I � D�  Collapse Overturning One-sided rocking 

max 1/ 1.0� I � D�  Collapse Overturning Two-block mechanism 

 



�*�M�K�Y�V�I�W

�*�M�K�Y�V�I����

�X�L�I���L�M�W�X�S�V�M�G�E�P���E�K�K�V�I�K�E�X�I���M�R���X�L�I���G�I�R�X�I�V���S�J���*�I�V�V�E�V�E�����-�X�E�P�]�����E�I�V�M�E�P���Z�M�I�[���

�*�M�K�Y�V�I����

�I�\�E�Q�T�P�I���S�J���F�Y�M�P�H�M�R�K�W���1�9�6�����G�P�E�W�W



�*�M�K�Y�V�I����

�I�\�E�Q�T�P�I���S�J���F�Y�M�P�H�M�R�K�W���1�9�6�������G�P�E�W�W

�*�M�K�Y�V�I����

�X�]�T�I�W���S�J���G�P�E�]���F�V�M�G�O���[�E�P�P���M�R���*�I�V�V�E�V�E���J�S�V���1�9�6�����E�R�H���1�9�6�����G�P�E�W�W



�*�M�K�Y�V�I����

�3�Y�X���S�J���T�P�E�R�I���G�S�P�P�E�T�W�I���Q�I�G�L�E�R�M�W�Q�W���X�E�O�M�R�K���M�R�X�S���E�G�G�S�Y�R�X���G�S�R�R�I�G�X�M�S�R�W���[�M�X�L���X�V�E�R�W�Z�I�V�W�E�P���[�E�P�P�W�����H�I���*�I�P�M�G�I���E�R�H

�+�M�E�R�R�M�R�M�����������



�*�M�K�Y�V�I����

�I�\�E�Q�T�P�I���S�J���S�Y�X���S�J���T�P�E�R�I���[�E�P�P���S�Z�I�V�X�Y�V�R�M�R�K���M�R���Y�R�V�I�M�R�J�S�V�G�I�H���Q�E�W�S�R�V�]���F�Y�M�P�H�M�R�K�W���E����S�Z�I�V�X�Y�V�R�M�R�K���S�J���E���[�E�P�P���E�X

�¦�V�W�X���§�S�S�V���F����T�E�V�X�M�E�P���S�Z�I�V�X�Y�V�R�M�R�K���S�J���X�L�I���J�E�G�E�H�I�����G����X�S�X�E�P���S�Z�I�V�X�Y�V�R�M�R�K���S�J���X�L�I���J�E�G�E�H�I�����H����§�I�\�Y�V�E�P���Q�I�G�L�E�R�M�W�Q���S�J

�E���[�E�P�P�����I����§�I�\�Y�V�E�P���Q�I�G�L�E�R�M�W�Q���S�J���X�L�I���J�E�G�E�H�I



�*�M�K�Y�V�I����

�'�S�Q�T�E�V�M�W�S�R���F�I�X�[�I�I�R���-�X�E�P�M�E�R���G�S�H�I�����2�8�'��������������E�R�H���R�S�R���P�M�R�I�E�V���H�]�R�E�Q�M�G���E�R�E�P�]�W�M�W�����E����W�X�E�X�M�G���J�S�V�G�I���F�E�W�I�H

�E�T�T�V�S�E�G�L���J�S�V���S�R�I���W�M�H�I�H���V�S�G�O�M�R�K�����F����H�M�W�T�P�E�G�I�Q�I�R�X���F�E�W�I�H���E�T�T�V�S�E�G�L���J�S�V���S�R�I���W�M�H�I�H���V�S�G�O�M�R�K�����G����W�X�E�X�M�G���J�S�V�G�I��

�F�E�W�I�H���E�T�T�V�S�E�G�L���J�S�V���Z�I�V�X�M�G�E�P���F�I�R�H�M�R�K�����F����H�M�W�T�P�E�G�I�Q�I�R�X���F�E�W�I�H���E�T�T�V�S�E�G�L���J�S�V���Z�I�V�X�M�G�E�P���F�I�R�H�M�R�K��



�*�M�K�Y�V�I����

�E����K�I�S�Q�I�X�V�]���S�J���E���V�M�K�M�H���F�P�S�G�O���Y�R�H�I�V���X�L�I���S�R�I���W�M�H�I�H���V�S�G�O�M�R�K���Y�R�H�I�V���K�V�S�Y�R�H���Q�S�X�M�S�R�����F����R�S�V�Q�E�P�M�^�I�H���Q�S�Q�I�R�X��

�V�S�X�E�X�M�S�R���V�I�P�E�X�M�S�R�W�L�M�T��

�*�M�K�Y�V�I����

���E����[�E�P�P���T�E�V�E�Q�I�X�I�V�W�������F����G�V�E�G�O�I�H���Z�I�V�X�M�G�E�P���W�T�E�R�R�M�R�K���W�X�V�M�T���[�E�P�P���T�E�V�E�Q�I�X�I�V�W�������G����H�M�W�T�P�E�G�I�H���G�S�R�¦�K�Y�V�E�X�M�S�R���E�R�H

�K�V�S�Y�R�H���E�G�G�I�P�I�V�E�X�M�S�R���G�S�Q�T�S�R�I�R�X���E�G�X�M�R�K���M�R���X�L�I���Q�E�W�W���G�I�R�X�I�V�W���S�J���X�L�I���X�[�S���F�S�H�M�I�W



�*�M�K�Y�V�I������

�P�S�K�M�G���X�V�I�I���J�S�V���9�6�1���F�Y�M�P�H�M�R�K�W���M�R���*�I�V�V�E�V�E���S�J���X�L�I���T�S�W�W�M�F�P�I���P�S�G�E�P���Q�I�G�L�E�R�M�W�Q�W���[�M�X�L���V�I�P�E�X�M�Z�I���[�I�M�K�L�X�W�����K�V�I�I�R���J�S�V

�X�L�I���1�9�6�������X�]�T�S�P�S�K�]���E�R�H���F�P�Y�I���J�S�V���1�9�6�����X�]�T�S�P�S�K�]�



�*�M�K�Y�V�I������

�H�M�E�K�V�E�Q���S�J���X�L�I���V�I�P�E�X�M�Z�I���[�I�M�K�L�X�W���J�S�V���I�E�G�L���X�]�T�I���S�J���G�S�P�P�E�T�W�I���Q�I�G�L�E�R�M�W�Q



�*�M�K�Y�V�I������

�H�M�J�J�I�V�I�R�X���T�S�W�W�M�F�P�I���G�S�Q�F�M�R�E�X�M�S�R�W���S�J���[�E�P�P���[�M�X�L���H�M�J�J�I�V�I�R�X���X�]�T�I�W���S�J���S�T�I�R�M�R�K�W

�*�M�K�Y�V�I������

�I�\�E�Q�T�P�I���1�7�%���E�R�E�P�]�W�M�W���V�I�W�Y�P�X�W�����E����E�R�E�P�]�W�I�W���G�E�Y�W�M�R�K���G�S�P�P�E�T�W�I���E�V�I���T�P�S�X�X�I�H���E�X���E���G�V�M�X�M�G�E�P���E�R�K�P�I���S�J���K�V�I�E�X�I�V���X�L�E�R

���������E�R�H���E�V�I���S�J�J�W�I�X���J�V�S�Q���I�E�G�L���S�X�L�I�V���X�S���E�M�H���M�R���Z�M�W�Y�E�P�M�^�M�R�K���X�L�I���R�Y�Q�F�I�V���S�J���G�S�P�P�E�T�W�I�W�����F����3�F�W�I�V�Z�I�H���J�V�E�G�X�M�S�R�W���S�J

�G�S�P�P�E�T�W�I���E�W���E���J�Y�R�G�X�M�S�R���S�J���-�1�����E�R�H���E���J�V�E�K�M�P�M�X�]���J�Y�R�G�X�M�S�R���I�W�X�M�Q�E�X�I�H���Y�W�M�R�K���I�U�Y�E�X�M�S�R������

�*�M�K�Y�V�I������

�W�I�R�W�M�X�M�Z�M�X�]���S�J���X�L�I���J�V�E�K�M�P�M�X�]���T�E�V�E�Q�I�X�I�V�W���J�S�V���Z�I�V�X�M�G�E�P���F�I�R�H�M�R�K���Q�I�G�L�E�R�M�W�Q�����E����Z�E�V�M�E�X�M�S�R���S�J���X�L�I���T�S�W�M�X�M�S�R���S�J���L�M�R�K�I

���L�����L���J�V�S�Q�����������X�S��������������F����Z�E�V�M�E�X�M�S�R���S�J���X�L�I���Z�I�V�X�M�G�E�P���J�S�V�G�I���2�����E�W���I�J�J�I�G�X���S�J���X�L�I���W�T�E�R���S�J���X�L�I���W�P�E�F�����0���J�V�S�Q�������Q���X�S



�����Q����S�R���Z�I�V�X�M�G�E�P���J�S�V�G�I�����V�I�H���P�M�R�I�W�

�*�M�K�Y�V�I������

�J�V�E�K�M�P�M�X�]���G�Y�V�Z�I�W���J�V�S�Q���'�%�6�8�-�7���H�E�X�E�F�E�W�I�����E����X�S�T���§�S�S�V���Z�I�V�X�M�G�E�P���F�I�R�H�M�R�K�����F����S�Z�I�V�X�Y�V�R�M�R�K���S�J���X�L�I���¦�V�W�X���§�S�S�V�����G�

�S�Z�I�V�X�Y�V�R�M�R�K���S�J���X�[�S���§�S�S�V�W���J�S�V���1�9�6�������H����S�Z�I�V�X�Y�V�R�M�R�K���S�J���X�[�S���§�S�S�V�W���J�S�V���1�9�6�����G�P�E�W�W�����I����S�Z�I�V�X�Y�V�R�M�R�K���S�J���X�L�V�I�I

�§�S�S�V�W���J�S�V���1�9�6�����G�P�E�W�W���J����S�Z�I�V�X�Y�V�R�M�R�K���S�J���X�L�V�I�I���§�S�S�V�W���J�S�V���1�9�6�����G�P�E�W�W�����K����S�Z�I�V�X�Y�V�R�M�R�K���S�J���J�S�Y�V���§�S�S�V�W���J�S�V���1�9�6��

�G�P�E�W�W�����L����S�Z�I�V�X�Y�V�R�M�R�K���S�J���J�S�Y�V���§�S�S�V�W���J�S�V���1�9�6�����G�P�E�W�W



�*�M�K�Y�V�I������

�J�V�E�K�M�P�M�X�]���G�Y�V�Z�I�W���J�V�S�Q���X�L�I���W�Y�V�Z�I�]���S�J���X�L�I���L�M�W�X�S�V�M�G�E�P���E�K�K�V�I�K�E�X�I���M�R���X�L�I���G�I�R�X�I�V���S�J���*�I�V�V�E�V�E�����E����Z�I�V�X�M�G�E�P���F�I�R�H�M�R�K�����F�

�S�Z�I�V�X�Y�V�R�M�R�K���S�J���X�L�I���¦�V�W�X���§�S�S�V�����G����S�Z�I�V�X�Y�V�R�M�R�K���S�J���X�[�S���§�S�S�V�W�����I����S�Z�I�V�X�Y�V�R�M�R�K���S�J���X�L�V�I�I���§�S�S�V�W



�*�M�K�Y�V�I������

�G�S�Q�T�E�V�M�W�S�R���F�I�X�[�I�I�R���X�L�I���E�Z�I�V�E�K�I���G�Y�V�Z�I�W���S�F�X�E�M�R�I�H���J�V�S�Q���X�L�I���T�S�T�Y�P�E�X�M�S�R���G�V�I�E�X�I�H���J�V�S�Q���X�L�I���'�E�V�X�M�W���H�E�X�E�F�E�W�I

�E�R�H���X�L�I���E�Z�I�V�E�K�I���G�Y�V�Z�I�W���S�F�X�E�M�R�I�H���J�V�S�Q���X�L�I���W�Y�V�Z�I�]���S�J���X�L�I���L�M�W�X�S�V�M�G�E�P���E�K�K�V�I�K�E�X�I�����H�M�J�J�I�V�I�R�G�I���F�I�X�[�I�I�R���X�L�I

�X�]�T�S�P�S�K�M�G�E�P���W�Y�V�Z�I�]���G�Y�V�Z�I�����F�E�G�O���P�M�R�I������X�L�I���X�]�T�S�P�S�K�M�G�E�P���G�Y�V�Z�I���1�9�6�������F�P�Y�I���P�M�R�I����E�R�H���X�L�I���X�]�T�S�P�S�K�M�G�E�P���G�Y�V�Z�I

�1�9�6�������V�I�H���P�M�R�I�


