Toward Metal- and Catalyst-free Reactions: Deciphering the substituent and external electric field effects on the Diels-Alder reaction between Ethylene and Nitrosoethylene

Letícia dos Santos Braga
Federal University of Lavras

Regina Camargo Bevenino
Federal University of Espírito Santo

Daniel Henrique Soares Leal
Federal University of Itajubá

Teodorico Castro Ramalho (✉️ teo@ufla.br)
Federal University of Lavras

Research Article

Keywords: Electric field catalysis, external electric fields, Lewis acid, Diels-Alder reaction, FERMO

Posted Date: March 2nd, 2023

DOI: https://doi.org/10.21203/rs.3.rs-2631051/v1

License: ☛ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

The substituents on the diene and/or dienophile can contribute to the decrease or increase of this energy. However, there are other artifices to catalyze chemical reactions, in particular the Diels-Alder reactions, such as, for example, the application of an electric field on the reaction axis. The existence of an external electric field (EEF), properly oriented, has the potential to further stabilize or destabilize these charge transfer contributors and thus influence the energy. So, the goal of this study was to compare the activation energies of the Diels-Alder reaction between ethylene and nitrosoethylene, using an electric field, Lewis acid (BH_3) as catalysts and the influence of substituents. All calculations were performed with Gaussian09 software, the compounds were fully optimized using the restricted Hartree-Fock method with the basis set 6-31G, single-point energies determined with MP3 method and basis set 6-31G. The effects of EEFs were studied using the “Field = M ± N” keyword with F values (F=±0,125 au and ±0,080 au) along the preferred axis. The lowest activation barrier is encountered when the electric field is applied, followed by the use of borane as the Lewis acid.

1 Introduction

According to the Lewis definition, acids are molecules or ions capable of coordinating with unshared electron pairs, and bases are molecules or ions with unshared electron pairs available to share with acids [1]. To be acidic in the Lewis sense, a molecule must be deficient in electrons. This is the most general acid-base concept. All Lowry-Brönsted acids are also Lewis acids, but in addition, the Lewis definition includes many other reagents, such as boron trifluoride, aluminum chloride, among others [2].

Lewis acids catalyze Diels-Alder reactions. Some examples of these acids are: $SnCl_4$, $ZnCl_2$, BH_3 or $AlCl_3$, which can accelerate cycloaddition reactions [3, 4], as occurs in the reaction catalyzed by $AlCl_3$ of cycloalkenones with 1,3-butadienes [5, 6]. The effect of substituents in the components of the Diels-Alder reaction affect it according to the Frontier Molecular Orbital (FMO) theory, in which the reactivity, regiochemistry and stereochemistry of the Diels-Alder reaction are controlled by the suprafacial phase interaction of the highest occupied molecular orbital (HOMO) of one component and the lowest unoccupied molecular orbital (LUMO) of the other [7].

The separation between the HOMO-LUMO components controls the reactivity of the Diels-Alder reaction: the smaller the energy difference between these two orbitals, the smaller the difference in activation energy between the transition state and the reaction reactants [8–11]. The substituents on the diene and/or dienophile can contribute to decrease or increase this energy. Electron-withdrawing substituents decrease the energy of LUMO and increase of HOMO, while electron-donor groups increase the energy of LUMO and decrease of HOMO [7]. However, there are other artifices to catalyze chemical reactions, in particular the Diels-Alder reactions, such as, for example, the application of an electric field on the reaction axis [12–14].
Chemical reactions can be described by the movement of electrons as well as the movement of nuclei. Thinking about it, we can understand that they can then be influenced by external electric Fields. If the reaction is redox or not, some theoretical studies [12, 13, 15, 16] reveal that the stability of molecules involved in the reaction can be influenced by electrostatic effects, for instance, stabilizing or destabilizing resonance contributors separated by charge [13]. This fact was announced some time ago by Shaik and collaborators for the Diels-Alder reaction [16] and in another work for simple reactions of halogen and hydrogen transfer by Bertrán and collaborators [17, 18]. Thus, there is a great interest in metal-free catalysis and specifically in catalysis by hydrogen bonding models [19].

In this scenario, the existence of an external electric field (EEF), properly oriented, has the potential to further stabilize or destabilize these charge transfer contributors and thus influence the energy [12, 20–22]. Meir et al (2010) explored by theoretical means the effect of targeted EEFs on the rate, mechanism and endo/exo selectivity of DA reactions between butadiene and ethylene and cyclopentadiene and maleic anhydride. According to the authors, it is necessary then that the electric field is aligned in order to attenuate or strengthen the dipole along the reaction axis [13, 23].

Theoretical predictions were confirmed experimentally in 2016 by means of intermittent tunneling scanning microscopy (STM) experiments [12]. In summary, the experiment was carried out as follows: the diene and the dienophile were "attached" to the tip and plate of the STM, respectively, restricting their orientation, providing a means of controlling the stimulus of the electric field and measuring its effect on the reaction rate [23]. They obtained as results that, in the tested range of field forces, the reaction rate was independent of the positive polarity of the field, but it was catalyzed by increasing the intensity of the field to negative polarization. Parallel quantum-chemical calculations of the same system under experimental conditions, which confirmed that these results were due to the effect of the field on the reaction barriers [23]. Therefore, external electric fields instead of charged chemical species such as the "catalyst", can manipulate a much wider range of reactions, conveniently altering reactivity and selectivity in a tunable way that can be predicted by theory [13].

As electrostatic catalysis is the least developed form of catalysis in synthetic chemistry [12], the aim of this study was to compare the activation energies of the Diels-Alder reaction between ethylene and nitrosoethylene, using an electric field and a Lewis acid as catalysts, in addition to checking the influence of substituents on the reaction's diene and dienophile, in order to determine if the electric field is the best catalyst for the reaction studied.

2 Methodology

Gaussian09 software was used for all calculations [24]. The optimization calculation for all compounds was performed with restricted Hartree-Fock method with the basis set 6-31G(d). No imaginary frequencies were found for the optimized reactants geometries, which were used in all subsequent calculations and had their single-point energies determined with MP3 method and the basis set 6-31G(d). GAMESS software for Linux, version 30 SEPT 2017 (R2) and MOLPROJ software, were used to analyze their MO
eigenvectors and overlapping matrices of the reaction between ethylene and nitrosoethylene, both extracted from output files of single-point energy calculations with GAMESS.

The effects of EEFs were studied using the “Field = M ± N” keyword, which defines in Gaussian09, the axis of the EEFs, its direction along that axis, and its magnitude. For each reaction, we initially evaluated the EEF effects at different \(F_{x,y,z}\) values, using single-point calculations on the critical species with \(F\) values (\(F = \pm 0.125\) au and \(\pm 0.080\) au) along the preferred axis.

In opposition to the conventional definition in Physics, in Gaussian09, the positive direction of the electric field vector is defined from negative to positive charge [14]. Thus, whenever the dipole moment (\(\mu\)) and field vectors (\(F\)) are oriented opposite to each other, the EEF’s will stabilize the dipole, as shown in Scheme 1 for an X-EEF. The EEFs were further oriented along the X, Y and Z axes as defined in Scheme 1, where in each case the X axis defines the "reaction axis", which is approximately the direction along which two new C – C bonds are forming [13, 14, 25].

The optimized compounds, as shown in Fig. 1, were analyzed using the MOLPROJ software [26, 27]. The eigenvectors of the MOs and the matrices of were extracted from output files of single point energy calculations with GAMESS. The degree of location of each MO (2px-z orbitals of the carbon and oxygen atoms involved in the DA reaction) and their respective energies were calculated and analyzed. [28]. For comparison, degree of localization coefficients were calculated for the molecular orbitals \(\Gamma_{HOMO}\) and \(\Gamma_{FERMO}\). We define that the degree of localization \(\Gamma_{FERMO}\) is the norm of an MO projected on the expected set of atomic orbitals (that participate in the reaction), as follows in Eq. 1, where \(C\), is the matrix of molecular orbital coefficients and \(S\) is the overlap matrix:

\[
\Gamma_{FERMO} = \sqrt{\sum_l \sum_{i \in G} \sum_{j \in G} \sum_{k} C_{l \mu} S_{ii} S_{ij}^{-1} S_{jk} C_{k \mu}}
\]

Equation 1: degree of localization \(\Gamma_{FERMO}\)

3 Results

3.1 Validation of the theoretical strategy: The Reaction of Ethylene and Nitrosoethylene - Catalysis of a Diels-Alder reaction using a Lewis acid.

The synthetic versatility of cycloaddition reactions was extended by introducing heterodienes, which allowed rapid access to various heterocycles. Nitrosoethylene compounds lead to valuable heterocyclic compounds with an N-O bond in the cycle. However, the reactivity of these compounds strongly depends on their structure and a catalyst. This is because nitrosoethylenes are generally unstable and are generated by base promoted elimination of \(\alpha\)-haloximes. Jursic and Zdravkovski, in 1995 [29], showed in a study the difference in the activation barrier when BH\(_3\) is used as a catalyst. According to literature, the activation barrier decreased by 2.08 kcal.mol\(^{-1}\) when borane is linked to nitrosoethylene nitrogen.
These same authors [29] used the reaction between ethylene and butadiene to compare the reliability of the results obtained computationally from the reaction between ethylene and nitrosoethylene with the experimental values of the first reaction. The activation energy for the ethylene and butadiene reaction was 25.98 kcal.mol\(^{-1}\) using MP3/6-31G(d), a value which is in reasonable agreement with the experimental value (25.4 and 27.5 kcal.mol\(^{-1}\)) [30]. As our values were obtained with a difference of approximately 0.03 kcal.mol\(^{-1}\) in the activation barrier values of the base article, we consider that our results are also close to the experimental values, since there are no experimental studies of the reaction between ethylene and nitrosoethylene in literature.

Given the importance and versatility of this cycloaddition reaction, we sought validation (Table 1) of the author's results to compare them when we apply the electric field and use substituents as a catalyst. Figure 2 illustrates the energy profile for the reaction without and with the use of borane (bonded to oxygen and nitrogen atoms) as catalyst.

<table>
<thead>
<tr>
<th>Lewis Acid</th>
<th>Activation Barrier of paper [29]</th>
<th>Activation Barrier in this work</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\Delta E^#)</td>
<td>(\Delta E^#)</td>
</tr>
<tr>
<td></td>
<td>(kcal.mol(^{-1}))</td>
<td>(kcal.mol(^{-1}))</td>
</tr>
<tr>
<td>MP3/6-31G(d)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Without BH(_3)</td>
<td>20.3449</td>
<td>20.3624</td>
</tr>
<tr>
<td>BH(_3) bonding oxygen</td>
<td>13.7078</td>
<td>13.7962</td>
</tr>
<tr>
<td>BH(_3) bonding nitrogen</td>
<td>11.6223</td>
<td>11.6025</td>
</tr>
</tbody>
</table>

As can be seen in Table 1, the lowest activation barrier found was for borane bound to nitrosoethylene nitrogen. The borane-catalyzed reaction has a lower activation barrier than the uncatalyzed reaction [29]. Boron reagents are often employed as Lewis acids due to their strong electrophilic nature because of a vacant p orbital that can readily accept electrons from donor molecules [31]. So, as BH\(_3\) is acting as an electron acceptor, the reaction in question occurs with reverse electron demand. Therefore, borane as a catalyst has a profound influence on the reactivity of the system, decreasing the electron density in the diene and decreasing its LUMO energy.

Note that the values of the calculated activation barriers differ slightly from this current work [29]. This minimal difference in \(\Delta E^\#\) occurred because the coordinates of the structures were not made available by the researchers. Therefore, the difference in bond lengths in the optimization had a minimal influence on the activation barriers.
3.2 Effect of the substituents to check if the reaction rate becomes even lower when they are related to some type of catalyst

According to Frontier Molecular Orbital (FMO) theory, the reactivity, regiochemistry, and stereochemistry of the Diels-Alder reaction are controlled by the suprafacial in-phase interaction of the HOMO molecular orbital of one component and the LUMO orbital of the other [7]. When the HOMO of the diene controls the reaction, the reaction can be accelerated by electron-donating substituents on the diene and by electron-withdrawing substituents on the dienophile, thus being a normal electron-demand Diels-Alder reaction. On the other hand, the Diels-Alder reactions controlled by the LUMO of the diene are influenced by the electronic effects of the substituents in the opposite way, that is, it is a Diels-Alder reaction with inverse electron demand.

The influence were studied by considering the following substituents: CH₃, Cl and F. Considering the reaction as a normal demand for electrons, the interactions occur from the HOMO/FERMO of the dienophile to the LUMO of the diene, as can be seen in Fig. 3A. Table 2 shows the activation barrier values when we replace a diene hydrogen with X = methyl and a dienophile hydrogen with a halogen (Y = Cl and F).

<table>
<thead>
<tr>
<th>Electron-donating (X)</th>
<th>Electron-withdrawing (Y)</th>
<th>∆E# (kcal.mol⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₃</td>
<td>Cl</td>
<td>23.3857</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>23.2107</td>
</tr>
</tbody>
</table>

As it can be seen, the substituents did not accelerate the reaction. According to Jursic and Zdravkovski [29], the reaction between ethylene and nitrosoethylene is an inverse demand reaction. Therefore, as we are treating it as a normal electron demand reaction, it is to be expected that the activation barrier will increase in value. This increase was approximately 3.02 kcalmol⁻¹ in relation to the reaction without any type of catalyst (20.3624 kcal.mol⁻¹).

3.3 Effect of the electric field in the reaction between ethylene and nitrosoethylene

Table 3 shows the EEF effects on the barriers for fields oriented along the x-, y- and z-axes in positive and negative directions. It is seen that F_y and F_z do not change the barrier, which remains constant at ~ 18.3(± 2.8) kcalmol⁻¹. This is because the y,z-oriented EEFs stabilize both the reactant (R') and the transition state (TS) to the same extent. However, when the EEF is oriented along the “reaction axis” x, the effect is seen to be different. In the positive fields, with F_x > 0, the barrier remains constant. However, when
F_x is negative ($F_x < 0$) in 0.125 au, the TS is preferentially stabilized, and the barrier gradually decreases. At the highest field strength, the barrier is lowered by 5.28 kcal.mol$^{-1}$, when compared the borane catalyst.

As the field becomes more negative, the dipole moment becomes more positive. This change in dipole moment is accompanied by transferring charge between the reactants in the TS. As the value of F_x increases, the direction of charge transfer is reversed. Thus, the EEF not only reduces the energy of the TS, but also polarizes the TS and affects its electronic structure. In addition, the field also induces a charge transfer in its own direction, from nitrosoethylene to ethylene. In conclusion, it is apparent that when the electric field is oriented along the “reaction axis”, which is the axis along which the two new C-C bonds are formed, it causes the reaction rate to accelerate by preferentially decreasing the transition state.

An EEF oriented in the direction of the “reaction axis”, along which electronic reorganization takes place, can affect the reaction rate by orders of magnitude, becoming faster or slower, depending on the change in direction of the field. At the same time, the endo/exo stereoselectivity of the Diels-Alder reaction can be manipulated at will with EEFs oriented perpendicular to the reaction axis [13]. EEF changes distribution of the electron density. Figure 4 show the molecular orbitals involved in the reaction with/without EEFs. Application of EEFs induce the polarizability of electrons, atoms and dipoles, resulting in an eventual reorientation of the molecules along the applied electric field of the molecules and the electron density redistribution at particular atoms [32]. As a general rule, one can module that two orbitals or states, which cannot mix by symmetry in the absence of a field, will do so when an EEF is applied along the axis that possesses the same symmetry as the direct product of the two orbitals/states [33].

We used the FERMO concept [26] to understand how the electric field acted on the molecular orbitals of the studied reaction. This concept is based on simultaneous analysis of composition and shapes of frontier molecular orbitals to determine the real molecular orbital governing a reaction. According to this approach, a frontier molecular orbital may even correspond to the FERMO for a given reaction and not for

Table 3
values of activation barrier ($\Delta E^\#$) with electric field applied in x-, y- and z-axes for two magnitude values of electric field.

<table>
<thead>
<tr>
<th>F (au)</th>
<th>$\Delta E^#$ (kcal.mol$^{-1}$)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MP3/6-31G(d)</td>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td>0.080</td>
<td>21.0811</td>
<td>18.0074</td>
<td>24.8302</td>
</tr>
<tr>
<td>-0.080</td>
<td>17.9453</td>
<td>18.2201</td>
<td>18.3186</td>
</tr>
<tr>
<td>0.125</td>
<td>20.9811</td>
<td>18.2000</td>
<td>18.6625</td>
</tr>
<tr>
<td>-0.125</td>
<td>6.3938</td>
<td>18.0000</td>
<td>18.4103</td>
</tr>
</tbody>
</table>
another. The HOMO itself would only be the orbital that rules a reaction if it fulfills the requirements to be the FERMO [34].

A strategy to quantify the location of the FERMO was developed, leading to the construction of the MOLPROJ software, based on the use of projection operators to build the molecular orbitals (MOs) by linear combination of atomic orbitals (AOs; the LCAO approach). Thus, the location of the FERMO would indicate the orbital in which the reaction occurs and, consequently, would point to the most favorable location for protonation [26, 28].

The values in Table 4 to four atoms involved in the Diels-Alder reaction (carbons: C2, C8, C9 and O, as shown in the Fig. 3C) exhibit the energy and degree of localization from FERMO to HOMO. The degree of localization from FERMO to HOMO increases with the application of EEF to carbon atoms [26]. External electric fields oriented along the bond axis in a molecule induce significant ionicity, as well as changes in bond lengths, elongation frequencies and electronic characteristics. EEFs cause orbitals, whose mixing was prohibited in the absence of the field, to mix when the symmetry of their product is compatible with the symmetry of the applied field. As the product of the reaction has the same symmetry as an applied field along the bond axis, these two MOs will mix and hybridize, acquiring greater contributions in both the left and right atoms, leading to the development of the energetically stabilized dipole moment by the applied field [35].

<table>
<thead>
<tr>
<th>Table 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Results for the degree of localization of MOs from TS between ethylene and nitrosoethylene.</td>
</tr>
<tr>
<td>Without EEF</td>
</tr>
<tr>
<td>Atom</td>
</tr>
<tr>
<td>O</td>
</tr>
<tr>
<td>C2</td>
</tr>
<tr>
<td>C8</td>
</tr>
<tr>
<td>C9</td>
</tr>
</tbody>
</table>

| With EEF |
Atom	**HOMO**	**Energy (eV)**	**HOMO-1**	**Energy (eV)**	**HOMO-2**	**Energy (eV)**
O	0.637059	-141.4904	0.342834	-185.2480	0.370436	-218.3439
C2	0.167188	-141.4904	0.164733	-185.2480	0.565620	-218.3439
C8	0.042363	-141.4904	0.505992	-185.2480	0.214219	-218.3439
C9	0.188071	-141.4904	0.326526	-185.2480	0.521364	-218.3439
Table 5
Values of activation barrier ($\Delta E^\#$) with an external electric field applied in x-, y- and z-axes for two electric field magnitudes for substituents CH_3/Cl and CH_3/F.

<table>
<thead>
<tr>
<th>F (au)</th>
<th>$\Delta E^#$ (kcal.mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MP3/6-31G(d)</td>
</tr>
<tr>
<td></td>
<td>x-axis</td>
</tr>
<tr>
<td>0.080</td>
<td>23.0306</td>
</tr>
<tr>
<td>-0.080</td>
<td>22.0065</td>
</tr>
<tr>
<td>0.125</td>
<td>22.7501</td>
</tr>
<tr>
<td>-0.125</td>
<td>22.5317</td>
</tr>
<tr>
<td>CH_3/F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MP3/6-31G(d)</td>
</tr>
<tr>
<td></td>
<td>x-axis</td>
</tr>
<tr>
<td>0.080</td>
<td>22.1219</td>
</tr>
<tr>
<td>-0.080</td>
<td>22.2462</td>
</tr>
<tr>
<td>0.125</td>
<td>22.5380</td>
</tr>
<tr>
<td>-0.125</td>
<td>21.4995</td>
</tr>
</tbody>
</table>

As it can be seen in Table 5, only the substituent effect does not show a decrease in activation barriers, the value was 23.3857 and 23.2107 kcal.mol$^{-1}$ to CH_3/Cl and CH_3/F, respectively. However, when the electric field is applied, its value decreases by around ± 1.0 kcal.mol$^{-1}$. We can explain this small change in the barrier by the fact that we replace the hydrogen with electron withdrawing groups in the dienophile and donor groups in the diene. According to Jursic and Zdravkovski [29], the reaction between nitrosoethylene and ethylene, when catalyzed with borane, is a Diels-Alder reaction with inverse electron demand. Therefore, when we introduced electron donor groups in the diene, we would find a higher value in the activation barrier, as it can be seen in the tables. When we added the electric field, we were able to lower this activation barrier. We realize that in fact the electric field acted as a catalyst.

Figure 5 shows the effect of the main catalysts on the activation barrier of the reaction between ethylene and nitrosoethylene. As can be seen, the lowest activation barrier is encountered when the electric field is
applied, followed by the use of borane as the Lewis acid.

Conclusion

In this study, the DA reaction between ethylene and nitrosoethylene with/without BH$_3$, electric field and substituted dienophiles was studied theoretically using RHF and MP3 calculations aimed to determine which was the best catalyst to reaction. When the EEF is oriented along the “reaction axis” x, the effect is seen to be different. In the positive fields, with $F_x > 0$, the barrier remains constant. However, when F_x is negative ($F_x < 0$) in 0.125 au, the TS is preferentially stabilized, and the barrier gradually decreases. At the highest field strength, the barrier is lowered by 5.28 kcal.mol$^{-1}$, when compared the borane catalyst.

We used the FERMO concept to understand how the electric field acted on the molecular orbitals of the studied reaction. The degree of localization from FERMO to HOMO increases with the application of EEF to carbon atoms. Only the substituent effect does not show a decrease in activation barriers. The values were 23.3857 and 23.2107 kcal.mol$^{-1}$ to CH$_3$/Cl and CH$_3$/F, respectively. However, when the electric field is applied, its value decreases by around ± 1.0 kcalmol$^{-1}$. We can explain this small change in the barrier by the fact that we replace the hydrogen with electron withdrawing groups in the dienophile and donor groups in the diene. Therefore, the lowest activation barrier is encountered when the electric field is applied, followed by the use of borane as the Lewis acid.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

All authors fully agree with the content of this work and are aware of the publication.

Availability of data and materials

Along with the manuscript, the authors provide the Supporting Information file that was developed to assist in the results and discussion of the paper. In addition, we are available to send any files, if requested.

Competing interests

The authors declare no conflict of interest.

Funding
This work was carried out with the financial support of the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, 307837/2014-9) and the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG, PPM-00831-15).

Authors' contributions

Letícia dos Santos Braga developed the project. Letícia dos Santos Braga, Teodorico de Castro Ramalho, and Daniel Henrique Soares Leal analyzed the data. Letícia dos Santos Braga, Regina Camargo Bevenino and Teodorico de Castro Ramalho wrote the paper. Teodorico de Castro Ramalho conceived the overarching project.

Acknowledgements

The authors thank the Brazilian agencies CNPq, FAPEMIG and CAPES for the financial support.

References

24. G16_C01 (1)

Figures
Figure 1

Reactants (A) nitrosoethylene and ethylene, (B) nitrosoethylene with borane connected to oxygen and ethylene and (C) nitrosoethylene with borane connected to nitrogen and ethylene.
Figure 2

Difference in the energy of the activation barrier without catalyst and with the catalyst borane bound to the oxygen atom and to the nitrogen atom.
Figure 3

Reaction scheme for the Diels-Alder reaction between ethylene and substituted nitrosoethylene. (A) structures of reactants (left), transition state (middle) and products (right); (B) molecular orbitals involved in the reaction; (C) numbering of the atoms involved in Diels-Alder reaction.
Figure 4

TS between ethylene and nitrosoethylene. A) HOMO of TS without EEF; B) HOMO of TS with EEF; C) LUMO of TS without EEF; and D) LUMO of TS with EEF.

Figure 5

Difference in the energy of the activation barrier without BH₃, with the borane bonding in nitrogen and reaction with EEF.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- CopySpiderreport202302261.pdf
- V3SuplementaryInformation.docx