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Abstract 10 

Classifying satellite images with medium spatial resolution such as Landsat, it is usually difficult to 11 

distinguish between plant species, and it is impossible to determine the area covered with weeds. In this 12 

study, a Landsat 8 image along with UAV images was used to separate pistachio cultivars and separate 13 

weed from trees. In order to use the high spatial resolution of UAV images, image fusion was carried out 14 

through high-pass filter, wavelet, principal component transformation, BROVEY, IHS and Gram Schmidt 15 

methods, and ERGAS, RMSE and correlation criteria were applied to assess their accuracy. The results 16 

represented that the wavelet method with R2, RMSE and ERGAS 0.91, 12.22 cm and 2.05 respectively had 17 

the highest accuracy in combining these images. Then, images obtained by this method were chosen with 18 

a spatial resolution of 20 cm for classification. Different classification methods including unsupervised 19 

method, maximum likelihood, minimum distance, fuzzy artmap, perceptron and tree methods were 20 

evaluated. Moreover, six soil classes, Ahmad Aghaei, Akbari, Kalleh Ghoochi, Fandoghi and a mixing 21 

class of Kalleh Ghoochi and Fandoghi were applied and also three classes of soil, pistachio tree and weeds 22 

were extracted from the trees. The results demonstrated that the fuzzy artmap method had the highest 23 

accuracy in separating weeds from trees, differentiating various pistachio cultivars with Landsat image and 24 

also classification with combined image and had 0.87, 0.79 and 0.87 kappa coefficients respectively. The 25 

comparison between pistachio cultivars through Landsat image and combined image showed that the 26 

validation accuracy obtained from harvest has raised by 17% because of combination of images. The results 27 

of this study indicated that the combination of UAV and Landsat 8 images affects well to separate pistachio 28 

cultivars and determine the area covered with weeds. 29 
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Introduction 32 

Accurate data and statistics could be really important to manage agricultural land areas well (Wardlow et 33 

al., 2007) Also, the accurate classified information on a variety of agricultural crops plays a significant role 34 

in managing agricultural land areas and it can help evaluate net national product. Precision agriculture (PA) 35 

can also help experts maximize production efficiency by providing instant information on cultivated land 36 

(Hamidy et al., 2016).  37 

The traditional methods applied only through observation of the land to estimate the cultivation area and 38 

classification of tree cultivars were very high-priced, time consuming, and not widely applicable. Experts 39 

used remote sensing data to discover the type and level of cultivation of each crop, which could give proper 40 

information to decision makers (Tatsumi et al., 2015). Satellite data decreases not only human error, but 41 

also it can affect in various agricultural programs and lower costs and time. 42 

Since there is a balance in the design of satellites between spatial, temporal, and spectral separation power 43 

(Emelyanova et al., 2015), because of technical limitations, most satellites cannot simultaneously bring 44 

images together with high spatial, temporal, and spectral resolution, and this is a major limitation in using 45 

satellite images. 46 

Nowadays, as science advances, there has been access to aerial images taken by UAVs1 (Chianucci et al., 47 

2016). One of the biggest advantages of UAV images to satellite images is the determination of the imaging 48 

time, high spatial resolution, no restrictions on climatic conditions (cloud cover, etc.) (Zhou et al., 2018). 49 

However, taking large-scale UAV images is often expensive and time consuming. One of the most 50 

innovative ways is the fusion of UAV and satellite images in order to improve spectral resolution. The 51 

fusion of images is a process of mixing two or more images with various spatial and spectral separation in 52 

order to provide a new multispectral image by a variety of algorithms (Walker et al., 2014). 53 
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The algorithms are divided into three general categories in order to combine images: A) Methods based on 54 

substitution such as IHS2, PCS3, PCA4, Gram Schmidt (Shettigara, 1992). B) Multiplication-based methods 55 

like Brovey and SVR5 (Pohl & Van Genderen, 1998). C) Multi-precision decomposition methods, in which 56 

spatial features are extracted from a monochrome image and applied to multispectral images (Wilson et al., 57 

1997). During the past three decades, many researchers have suggested different methods for image fusion 58 

to raise the spatial resolution of multidimensional images (Barbedo et al., 2019). Yilmaz et al. (2019) 59 

studied different methods of combining Worldview as well as UAV images. The results indicated that 60 

wavelet and HCS6 fusion methods were more accurate than other ones. Murugan et al. (2016 and 2017) 61 

studied the how to combine UAV and Landsat 8 satellite images and realized that the fusion of these two 62 

images could be a great solution in order to monitor the crops accurately and it would be an appropriate 63 

way for separation of dense and scattered coatings. Jenerowicz et al. (2017) argued that Gram Schmidt 64 

method would be suitable to combine UAV and Landsat 8 images. Agarwal et al. (2018) analyzed the 65 

limitations of classification methods for accurate agricultural monitoring using Sentinel 2 satellite and UAV 66 

images and believed SVM7 method would be the most accurate method to classify images obtained by 67 

combining UAVs and Sentinels. Zhao et al. (2019) classified the crops precisely by combining UAV and 68 

Sentinel 2 images and classified the images of UAVs with spatial resolution of 0.03, 0.10, 0.50, 1.00 and 69 

3.00 m. The results showed that the combined image with spatial resolution of 0.03 demonstrates the most 70 

accurate information. In another research, after UAV images were combined with satellite images to create 71 

image-based (red, green, and blue) RGB and detect the distance between rows of crops, the results showed 72 

that the DSM-based method has far better accuracy compared to the RGB method (Fareed & Rehman, 73 

2020). Since UAV images have not been combined with satellite images to distinguish tree species in weed 74 

areas, the aim of this study was to investigate the feasibility of combining UAV images with satellite images 75 

                                                           
2 The Intensity-Hue-Saturation 
3 Principal Component Substitution 
4 Principal component analysis 
5 Synthetic variable ratio 
6 Hyperspherical color space 
7 Support Vector Machine 



to increase the accuracy of classification of different pistachio cultivars and separate weeds from trees. 76 

Therefore, a combination of UAV and Landsat 8 images was first used to classify farm density. Then the 77 

pistachio cultivars and the weed area were separated at the same time. The results of this study can be used 78 

in planning and managing farms and also it can be applied to compare the production of different cultivars.  79 

 80 

2. Materials and methods 81 

2.1. Area of study and data sources 82 

The region under study with an area of 423 hectares is situated in the southwest of Yazd province and on 83 

the edge of Abarkooh desert. The region is located at longitude 53o 42’ 15” to 53o 44’ 00” and latitude 31o 84 

14’ 15” to 31o 16’ 00”. The average annual rainfall at the nearest weather station is 65 mm and generally it 85 

has a hot and dry climate. The area under study is a pistachio farm that is irrigated by drip irrigation and 86 

different pistachio cultivars are cultivated there. Figure 1 shows the location of the area in Iran and Yazd 87 

province. Moreover, the supplied UAV and Landsat 8 images have been shown on this figure. 88 



 89 

Figure 1. The study area A) Iran B) Yazd province C) Landsat image D) UAV image (08/18/2019) 90 

An OLI8 image of Landsat 8 satellite and a UAV image were used in order to classify different cultivars of 91 

the pistachio tree and also to separate the weeds around the trees. OLI sensors of Landsat 8 gather data for 92 

spatial resolution of 30 meters and 8 bands in the visible spectrum, near-infrared, infrared short wavelength 93 

and a panchromatic band with a spatial resolution of 15 meters. The UAV image used is an RGB color 94 

image, the general specifications of which are given in Table 1. Images of the UAV were taken using Canon 95 
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EOS M3 18-55 Digital Camera, the general specifications of which are given in Table 2. The date of 96 

imaging was chosen in summer and at the peak of vegetation period. Pistachio phenology includes steps; 97 

bloom, leaf out, shell expansion, shell hardening, nut filling, shell splitting, null split, harvest and 98 

postharvest. In order to classification, the images related to the nut filling stage have been used, which 99 

according to the studies done by Goldhammer, (2005) the peak of vegetation period is related to this stage. 100 

Figure 2 shows the diagram of the present study steps. 101 

Table 1. General specifications of the images used 102 

General specification of images applied in the study 

 Spatial resolution Date Number of bands 

Landsat 8 30 meters 
2019-8-18 

11 

UAV 20 cm 3 

Table 2. General specifications of the camera used in the UAV 103 

General specifications of the camera used 

Sensor 

type 

Sensor 

dimensions 

Aperture 

range 

Focal 

length 

Maximum 

photo 

resolution 

Effective 

sensor 

accuracy 

Sensor 

accuracy 

Optical 

zoom 

Minimum 

normal 

focusing 

distance 

 

 

22.3 × 14.9 

mm 

F3.5–6.3, 

F22–40 

15 - 45 

mm 
4000×6000 24.2 MP 24.7 MP 3 times 25 cm 
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Figure 2. General perspective of the research steps 105 

2.2. Image fusion methods 106 

Image fusion is a useful way to provide a more accurate classification which could be an efficient tool to 107 

raise the spatial resolution of multispectral images through two images with different spatial, spectral, and 108 

temporal resolution. The history of image fusion goes back to the 1950s and 1960s, and it was started to 109 

identify the natural and artificial topography, and also the image fusion of different sensors (Wald, 1999). 110 

 111 

2.2.1. Gram-Schmidt method 112 

Gram-Schmidt method has been one of the most popular methods for image fusion since 1998 (Laben & 113 

Brower, 2000). The steps for combining multispectral images with a panchromatic image in this method 114 



are as follows: 1) simulating a panchromatic image of a spectral band with low spatial resolution 2) 115 

Applying GS9 to a simulated panchromatic image and spectral band using simulation panchromatic band 116 

as the first band 3) replacing the high-resolution panchromatic band with the first GS band 4) Using reverse 117 

GS to create a panchromatic spectral band (Maurer, 2013). The equation for simulating a panchromatic 118 

image using a linear relationship with n multispectral image bands is as follows: 119 

 120 

(1)    
1

n

i i

i

PAN w MS


   121 

 122 

Where PAN is the simulated panchromatic image, i = {1, 2,…, n} is the number of multispectral bands, w 123 

is the weighted coefficient and MS is the multispectral image band (Aiazzi et al., 2007). 124 

 125 

2.2.2. Fusion of High-Pass Filter (HPF) 126 

In this method, a high-pass filter is used to get the details of the spatial information of the image with high 127 

spatial resolution and to apply those details to the multispectral image (Pohl & van Genderen, 2014). The 128 

image created this way is the same as the original multidimensional image, to which the details of the spatial 129 

information of the panchromatic image have been added. This method includes the following steps: 1) 130 

Applying the high-pass filter on the panchromatic image with high spatial resolution 2) Adding the filtered 131 

image to all multispectral images by applying a weighted coefficient on the standard deviation of 132 

multispectral bands 3) Adapting the histogram of the combined image with original multispectral image. 133 

The HPF method is based on increasing the spatial resolution of a multispectral image using a high-pass 134 
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filter that extracts high-frequency information and then applies a multispectral image to each band. The 135 

general equation for image fusion through method is based on Equation 2. 136 

 137 

(2)       _HPF resMS MS PAN HPFw   138 

 139 

In which MSHPF is the image obtained by combining with the high-pass filter method, MSres is a 140 

multispectral image measured with a panchromatic image, PAN_HPF is a panchromatic image with the 141 

application of a high-pass filter, and w is calculated as a weighted coefficient, which is calculated from 142 

Equation 3. 143 

 144 

(3)     
_

MSi
i

PAN HPF

w



  145 

 146 

Where σMSi is the standard deviation of multispectral image bands and σPAN_HPF is the standard deviation of 147 

the panchromatic image by applying a high-pass filter. In order to implement the HPF method successfully, 148 

the size of the main core filter must be specified, which depends on the R factor. 149 

 150 

(4)      MS

PAN

PR
R

PR
  151 

Where PRMS is a multispectral image and PRPAN is a panchromatic image and the optimal size of the core 152 

is R2 (Aiazzi et al., 2007). 153 

 154 



3.2.2. IHS Method 155 

The IHS fusion method is one of the most common methods for combining remote sensing images, and this 156 

algorithm has been used widely due to the high spatial resolution of the output image and the high efficiency 157 

of this algorithm in satellite images (Carper et al., 1990). In fact, IHS is a spectral replacement method that 158 

extracts spatial (I) and spectral information (H, S) from a standard RGB image. This method converts the 159 

multispectral image color space from RGB space to IHS space, replaces its spatial component with 160 

panchromatic image, and then applies reverse conversion and returns to RGB color space (Zhang et al., 161 

2008). The mathematical principles of this method are based on Equations 5, in which I represent the 162 

intensity, H the color, S the saturation, and v1 and v2 represent the intermediate variables required to 163 

convert (Pohl & Van Genderen, 1998). 164 

(5)                    
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 168 

4.2.2. BROVEY method 169 

Brovey is a numerical method in which images are combined by normalizing the pixel values in 170 

multispectral image bands and then multiplied by the value of the corresponding pixels in the panchromatic 171 



image. In numerical methods, addition and multiplication and the ratio between different bands of 172 

multispectral image and panchromatic image are used (Aiazzi et al., 2007). The general equation of this 173 

method is as follows: 174 

(6)         

i
i n

ii

MS
BT PAN

MS



 175 

In which the BTii of the band i from combined image, the MSi of the band i from the multispectral image, 176 

and PAN is a panchromatic image with high spatial resolution. 177 

 178 

5.2.2. Wavelet method 179 

In this method, the spatial information in the panchromatic and multispectral image is extracted by direct 180 

wavelet conversion, and the spatial information in the panchromatic image is replaced with or added to the 181 

spatial information in the multispectral image. Then, reverse wavelet conversion is done on the conversion 182 

coefficients of the converted wavelet of multispectral image (Park & Kang, 2004). The basis of this method 183 

is resembles the IHS method and includes the following 6 steps: 184 

1) Converting pixel dimensions of multispectral image to panchromatic image 2) Applying IHS conversion 185 

to multispectral image and using I, H and S parameters 3) Creating new “P” panchromatic image according 186 

to figure I 4) “P” decomposition through wavelet decomposition, also two components of the wavelet image 187 

y1
(p) and y2

(p) , and an approximate image of P2 are estimated. Moreover, it is repeated for I. Two components 188 

of wavelet image y1
(1) and y2

(1), and an approximate image of I2 are estimated. 5) Calculation of the 189 

difference: 
( ) (1)p

k kK k
I I y y     % where 

( ) ( ) ( )

1 2

p p p

kk
y y y   and 

( ) (1) (1)

1 2

I

kk
y y y    190 

6) Adding spatial information of panchromatic images to multispectral images by reverse IHS conversion 191 

(Gungor & Shan, 2004). 192 

 193 
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6.2.2. Principal Component Transformation Method 195 

Multispectral data can be visualized in a multidimensional space. The dimensions of this space will be the 196 

same as the number of image bands, in which each pixel is considered as a vector. The main goal in principal 197 

component transformation is to get new components in which the data variance is higher and the 198 

dependence between the components is less than the initial state of the images. The fusion of data at the 199 

pixel level, which is also called image fusion, has a great variety of algorithms. For this reason, in various 200 

applications, researchers have tried to study and analyze the methods used to combine images, and consider 201 

classifying the methods, their advantages and disadvantages (Rockinger, 1996). In this research, PCS 202 

method is used as one of the main methods of principal component transformation. 203 

 204 

3.2. Evaluation methods for image fusion quality 205 

Approximate evaluation itself is not adequate for image fusion, and different quantitative criteria have been 206 

suggested for evaluating combined images (Yang et al., 2012). The aim of spectral quality assessment is to 207 

measure the qualitative similarity of the image combined with the original one and to determine the degree 208 

of changes and disturbances in the image quality as a result of calculations and combination process. 209 

In this research, three evaluation criteria have been used such as correlation criteria, ERGAS and RMSE. 210 

In table 3, calculation method and the concept of each of these indices have been mentioned completely. 211 

 212 

 213 

 214 



Table3. indices for evaluation of image combination quality 215 

Index Formula Comments 

CC10 

1 1

2 2

1 1

( ( , ) ( ))( ( , ) ( ))

( )

(( ( , ) ( )) ( ( , ) ( ))

N M

J i

N N

i i

R i j R F i j F
R

CC
F

R i j R F i j F

 

 

 

 

 



 

 



 

 

F and R are basic and combined images, 

μ (R) and μ (F) are the mean of the two 

images 

The closer this value is to 1, the greater the 

degree of correlation between the two 

images. In order for the data to be more 

homogenized with the mean, this index 

provides a better estimation to compare the 

combination result (Choi et al., 2013). 

RMSE11 
RMSE = 

2

1 1

( ( , ) ( , ))
M N

i j

R i j F i j

M N

 






 

 

Pixels N * M 

Image dimension 

The closer this value is to zero, the better 

combination and the less error is (De 

Carvalho & Meneses, 2000). 

ERGAS12 

2

2

1

1 (
100 )

N

i

h RMSE
ERGAS

Ll N 

   

h: The spatial resolution of the 

panchromatic band and 

l: The resolution of the primary image 

band, 

N: Number of bands used 

L: radiation mean 

It is sensitive to the displacement mean 

and change of dynamic rate. If the value is 

less than 3, it means that the result of the 

combination is satisfactory and the 

combined image is of good quality. 

Because this index is independent of the 

unit, it somehow involves the spatial 

resolution of the source images (Alparone 

et al., 2004). 
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 217 

3.3. Classification methods 218 

In this section, in order to summarize the article, classification methods in this study will be explained 219 

briefly. Readers are kindly asked to follow available references in each section.  220 

 221 

3.3.1. Maximum Likelihood method 222 
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The maximum likelihood method (the most similarity) is one of the most popular and practical methods of 223 

supervised information classification (Zurita-Milla et al, 2006). In this method, the likelihood that a pixel 224 

might belong to all classes is calculated, and that pixel will belong to the most likely class (Chen et al., 225 

2009). 226 

3.3.2. Fuzzy Artmap method 227 

Fuzzy artmap is a neural network introduced in 1991 by Carpentz et al. It is based on adaptive resonance 228 

theory (Mather & Koch, 2011). In this method, the classification is controlled by three parameters: the 229 

consciousness parameter (), the learning parameter (), and the base parameter (α). The value of 230 

consciousness parameter () is between 0 and 1. Values close to 1 indicate strong clustering.  231 

Learning parameter (β) demonstrates the speed of network learning. Finally, the weight vector layer (Wj) 232 

is obtained, which depends on the classification of each output and the input data. Furthermore, a weight 233 

matrix is also provided with all output clusters. The α parameter shows the number of subclasses that have 234 

been created and is usually a number close to zero (Carpenter et al., 1991) 235 

3.3.3. Classification of multilayer perceptron layer 236 

Multilayer perceptron network is usually taught by back propagation (Bp) method. There is no connection 237 

between neurons of a layer in the back propagation learning law (Bp). However, the output of each neuron 238 

is connected to the input of the next layer neurons. 239 

The teaching and learning process requires a set of educational models with optimal inputs and outputs 240 

(Gil-Sánchez et al., 2015). In general, there are two steps to classify a neural network. The first step is the 241 

educational process by input data and instructional examples. The second stage is the validation stage, 242 

which determines the success of the educational stage and the accuracy of the network (Wijaya, 2005). 243 

 244 

4.3.3. Tree classification method 245 



Tree classification by sequentially dividing the data in each internode proceeds to new internodes 246 

containing more homogeneous subsets of educational pixels. A newly created internode may create a leaf 247 

if the teaching pixels contain only one class or the majority of the pixels with a class. When there is no 248 

branch for separation, the final rules of tree classification are formed (Yuan et al., 2005). 249 

 250 

5.3.3. Minimum-distance-to-means classification method 251 

In this method, first the mean of all classes, which have been previously separated by the method of 252 

determining the educational areas, is determined, and then the Euclidean distance calculates the reflection 253 

of each pixel from the mean of all classes. This type of classification is mathematically simple and 254 

computationally efficient. However, its theoretical foundations are not as strong as those of maximum 255 

likelihood classification (Vogelmann et al., 2001). 256 

Kappa coefficient parameters and overall accuracy were used to estimate the validation of classification 257 

maps. The overall accuracy calculates the precision based on the ratio of the correct classified pixels to the 258 

sum of the total known pixels, but the Kappa coefficient calculates the accuracy of the classification over a 259 

completely random classification (Mather & Tso, 2016). To compare the classification maps, 1,700 points 260 

were selected as a regular network at the study area (Figure 3), and in these areas the estimated type of 261 

coverage was compared with the combined images. In the separation of pistachio trees from weeds, the 262 

original image taken with the UAV was used as a basis, and in the classification of different pistachio 263 

cultivars, a map prepared through harvesting was used for validation. 264 



 265 

Figure 3.  Location of land harvesting points to evaluate accuracy 266 

 4. Result and Discussion  267 

4.1. Selection of optimal method to combine UAV and Landsat images 268 

The ultimate goal of image fusion is to get an image that has a higher spatial resolution. The main necessity 269 

of all proposed methods in the process of image fusion is to maintain or make the least change in the spectral 270 

information of the input images. The purpose of quality assessment is to obtain quantitative and qualitative 271 

estimation of the image and also to compare the relative efficiency of different image fusion algorithms. 272 

Figure 4 shows the results of using data combination algorithms at the pixel level such as based on high-273 

pass filter, wavelet, Principal Component Transformation, BROVEY, IHS, and Gram Schmidt. After 274 

combining Landsat 8 bands with UAV images using the mentioned algorithms, it was observed that these 275 

images could be interpreted visually more than the main images. Based on the results, each of these 276 

algorithms have had different functions. Mostly these differences are due to keeping details. Meanwhile, 277 

the results from PCS algorithm show that there are more blurring parts. Nearly all algorithms functioned 278 

well in terms of visual quality (blurring and keeping details and sides), except for the HPF algorithm, which 279 



significantly degrades image quality. Approximate assessment alone is not adequate to combine images, 280 

and different quantitative criteria have been suggested to evaluate the combined images. When Landscape 281 

and UAV images are combined to create a new image with a spatial resolution of 20 cm, there is no image 282 

as a reference for comparison to assess its accuracy, and primary Landsat images are used to assess spectral 283 

accuracy. The results of quality assessment present six methods of combining the images applied on the 284 

desired bands in table 4. The parameters used to evaluate accuracy indicate the superiority of the wavelet 285 

method over other methods. The value of the linear correlation between each band was calculated from the 286 

combined and the reference images, and the average value of the correlation was the final criterion for 287 

evaluation. The value of correlation in the combined images and the base image using the methods based 288 

on high-pass filter, wavelet, Principal Component Transformation, BROVEY, IHS and Gram Schmidt 289 

methods were 0.63, 0.91, 0.74, 0.88, 0.8, and 0.79 respectively, which indicates a strong resemblance 290 

between the combined images and the base images. In the RMSE component, the wavelet method with a 291 

value of 12.22 cm has a better result than other combined methods. This index is better than the correlation 292 

coefficient and has a higher sensitivity compared to the correlation coefficient index (McHugh, 2012). 293 

Therefore, if the function of the two fusion methods is the same compared to the correlation coefficient, the 294 

RMSE index can be used to distinguish the better method. The wavelet and BROVEY methods have a close 295 

correlation coefficient, but the RMSE rate is lower in the wavelet method and has led to better quality in 296 

spectral accuracy evaluation. ERGAS error evaluation criteria in methods based on high-pass filter, 297 

wavelet, Principal Component transformation, BROVEY, IHS, and Gram Schmidt methods are 8.43, 2.05, 298 

7.98, 3.79, 4.17 and 5.52 respectively. In fact, this criterion indicates the amount of spectral deviation in 299 

the final image fusion. The lower the ERGAS value, the closer the combined image is to the reference 300 

image. The results of this criterion indicate the higher efficiency of the wavelet method over other methods. 301 

The results of the evaluation of three criteria showed that the wavelet method increases the spatial resolution 302 

accuracy by maintaining the spectral information of the image. 303 



Since spatial resolution is one of the factors which determines the accuracy of classification, the combined 304 

image was used by the wavelet method to classify and separate weed cover and pistachio tree cultivars. In 305 

fact, it will help to classify different vegetation. 306 

Table 4. Values of evaluation indices between the corresponding bands in the combined images and 307 
Landsat image bands 308 

Wavelet gram-schmidt HPF PCS IHS Brovey Index 

0.91 0.79 0.63 0.74 0.8 0.88 CC 

12.22 28.4 47.80 34.9 20.55 16.09 RMSE (cm) 

2.05 5.52 8.43 7.98 4.17 3.79 ERGAS 



 309 

Figure 4. Compare the false color combination of the images A) UAV B) Landsat C) Image obtained 310 

from IHS method D) Wavelet E) HPF F) PCS G) Grammy Schmidt H) BROVEY 311 

4.2. Comparison between different methods of classification of pistachio cultivars and weed separation 312 

from trees 313 

(A) (B) 

(C) (D) 

(E) (F) 

(G) (H) 



Researchers have identified the date of satellite imagery and its proximity to the time of growth and 314 

emergence of the agricultural crop as essential for identifying areas covered by plants and crops (Pradhan 315 

et al,. 2006). In this study, according to the information obtained from the vegetative period of the products 316 

and their phenology, the imaging date of the UAV was determined and the closest Landsat 8 image to that 317 

time was prepared so that the separation of different products would be possible through having maximum 318 

absorption and reflection of the plant in different bands. 319 

Classification of land areas was carried out to categorize different cultivars of pistachios and separate weed 320 

and pistachio trees via UAV images, Landsat images and combined images. Moreover, different 321 

classification methods including unsupervised classification methods, maximum likelihood, minimum 322 

distance, fuzzy artmap, perceptron, and tree classification was evaluated. Six classes including soil, 323 

pistachio cultivars of Ahmad Aghaei, Akbari, Kalleh Ghoochi, Fandoghi and combined class of Kalleh 324 

Ghoochi and Fandoghi were extracted to classify pistachio cultivars. Also, three soil classes, pistachio tree 325 

and weed were chosen to separate weeds from trees. In order to evaluate the accuracy of the classified maps 326 

by different methods, classified maps were compared with the map obtained from the field studies. Then, 327 

confuse matrix was formed, and the overall accuracy and kappa coefficient were calculated (Tables 5 and 328 

6). It is impossible to identify the weed-covered area and separate it from pistachio trees through Landsat 329 

images, and this classification was done only with the combined images and UAV images. The results of 330 

the accuracy assessment indicated that the kappa coefficient, overall accuracy and validation using 331 

harvesting in the fuzzy artmap classification method by the combined image were 87.0, 84.2 and 87.34 and 332 

in the UAV image were 0.76, 81.6 and9 5.12 respectively and it was higher in comparison with other 333 

methods and it is correspondent to the results of Farsani et al. (2015) and Williams (1992). They are 334 

followed by the maximum likelihood, minimum distance, unsupervised, tree classification, and perceptron 335 

methods respectively. The perceptron method could not distinguish pistachio areas from weeds and only 336 

recognized weed and soil use. Also, unsupervised classification did not distinguish weeds from pistachio 337 

trees. Landsat images alone cannot distinguish weeds from pistachio trees, and the use of combined images 338 



of UAVs and Landsat, with a spatial resolution of 20 cm, can detect weeds and prevent the mixing of soil 339 

reflections and vegetation. The results of this study are based on the results of the research done by of An 340 

& Shi (2014), Dhruval & Richard (2015), and Gungor, & Shan (2004). And that is about improvement of 341 

satellite data interpretation through wavelet fusion and the ability to combine UAV images with other 342 

sensors to accurately manage agriculture with the results of Morgan et al. (2017). 343 

 344 

Figure 5. Comparison of weed, soil and tree area in different classification methods (unsupervised 345 

method, maximum likelihood, minimum distance, fuzzy artmap) using combined UAV and Landsat 346 

images 347 

A section from the area under study with six classification methods is shown in Figure 6. In all classification 348 

methods, soil contains the highest area, then pistachio and weed are in the following. In the fuzzy artmap 349 

method, which is known as the optimal method to separate weeds from pistachio trees, 6% of the area is 350 

covered with weeds, 22% contains pistachio trees and 70% is soil. Figure 7 shows a map of separation of 351 

pistachio trees from weeds by fuzzy artmap method. 352 

Table 5. Comparison between the accuracy of different classification methods for weed separation from 353 
trees through combined image and UAV images. 354 
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Classification 

method 

combined UAV and Landsat images UAV images 

Kappa 

coefficient 

Overall 

accuracy 

(%) 

Validation 

through 

harvesting 

(%) 

Kappa 

coefficient 

Overall 

accuracy 

(%) 

Validation 

through 

harvesting (%) 

Minimum 

distance 
0.76 83.2 80.05 0.65 76.9 76.91 

Fuzzy artmap 0.87 89 94.48 0.76 81.6 95.12 

Perceptron 0.21 23.09 67.26 0.20 21.57 63.76 

Tree network 0.70 79.56 75.3 0.62 73.91 71.49 

Maximum 

likelihood 
0.85 84.2 87.34 0.77 81 74.23 

Unsupervised 0.73 74.3 90.23 0.65 69.8 88.68 

 355 

Figure 6. Comparison between different classification methods to separate weeds from pistachio trees 356 
using combined UAV and Landsat images A) maximum likelihood B) fuzzy artmap C) minimum 357 

distance D) tree network E) unsupervised F) perceptron 358 
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(A) (B) 

Figure 7. A) Map of separating the use of pistachio trees from weeds by fuzzy artmap method using 359 
combined UAV and Landsat images, B) Close perspective of 3 points in the map of separation of 360 

pistachio trees from weeds 361 

 362 

Then, the classification of different pistachio cultivars was done by Landsat and combined images. The 363 

results of the accuracy assessment showed that the kappa coefficient, overall accuracy and validation 364 

through harvesting in the fuzzy artmap classification method based on Landsat images were 0.79, 0.82 and 365 

73.05 respectively. Also, in comparison with other methods of accuracy, it was more accurate. In the 366 

classification using combined images and UAV images, the highest accuracy was related to fuzzy artmap 367 

method with kappa coefficient of 0.87 and 0.83. The results of the validation through harvesting showed 368 

that out of 1700 selected points, pistachio cultivar points were correctly identified in 90.47%. Estimation 369 

of the area of different pistachio cultivars showed that 70% of the area was soil and 8.2, 8.7, 9.5, 1.8 and 370 

1.1%, contained Akbari, Fandoghi, Kalleh Ghooch & Fandoghi, combined class of Ahmad Aghaei and 371 



Kalleh Ghoochi cultivars respectively. The present study showed the results of the study of Perma et al. 372 

(2009) [71] who stated that in preparing forest maps using LISS III and ETM + satellite data, due to the 373 

openness of the canopy and mixing of soil reflection and vegetation, it prevents the achievement of more 374 

desirable results. It has been corrected and shown that by combining Landsat and UAV images and 375 

increasing spatial resolution, it is possible to prevent the mixing of soil reflection and vegetation in 376 

classifying vegetation types. The classified maps, which are used to separate pistachio cultivars and usually 377 

prepared by Landsat, combined and base image through ground sampling, are shown in Figure 8. 378 

Table 6. Comparison between the accuracy of pistachio cultivar classification methods using Landsat 379 
image and combined image 380 

 

Classification 

method 
 

 

Landsat image UAV images combined image 

Kappa 
coeffi

cient 

Overall 
accuracy 

(%) 

Validation 

through 

harvesting 
(%) 

Kappa 

coefficient 

Overall 
accuracy 

(%) 

Validation 

through 

harvesting 
(%) 

Kappa 

coefficient 

Overall 
accuracy 

(%) 

Validation 

through 

harvesting 
(%) 

Minimum 

distance 
0.56 75 50.19 0.55 59 60.82 0.58 61 62.13 

Fuzzy artmap 0.79 82 73.05 0.83 86 87.03 0.87 88 90.47 

Perceptron 0.46 48 37.81 0.21 22 36.43 0.23 26 38.40 
Tree 

classification 
0.67 70 58.2 0.71 74 67.09 0.74 77 72.69 

Maximum 

likelihood 
0.74 75 69.51 0.78 80 76.38 0.80 83 83.23 

Unsupervised 0.34 35 21.68 0.49 57 37.41 0.60 0.64 53.64 

 381 

 382 
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 383 

Figure 8.A) Classification of different pistachio cultivars based on the initial cultivation pattern B) 384 
Classification of pistachio cultivars using Landsat image C) Classification of different pistachio cultivars 385 

using a combined image D) Close view of three points in the map of pistachio cultivars with Use a 386 
combined image of UAVs and Landsat 387 

 388 



5. Conclusion 389 

Methods of satellite image fusion improve the quality of the spatial resolution of the image and increase 390 

the details of the combined image. Different methods have been suggested to combine images. If the goal 391 

of image fusion is to study agricultural uses, natural resources, and to separate plant species, in addition to 392 

increasing the spatial resolution of the image, spectral characteristics must also be kept. Therefore, in order 393 

to combine images, a method must be used that has acceptable accuracy and can, in addition to improving 394 

the location, maintain the spectral content of multispectral images well. Using the appropriate method 395 

through image quality evaluation indices depends on the researcher's goal of combining images. Since the 396 

accuracy of classification depends on the spatial information in the image, by comparing the results of 397 

combining images, it can be observed that by keeping the spectral information of the image, the spatial 398 

accuracy is increased to 20 cm. 399 

The results of comparison between different classification methods to determine different pistachio 400 

cultivars and separate weed from trees indicated that the fuzzy artmap method has the highest accuracy 401 

following the maximum likelihood method. This study demonstrated that the product resulted by combining 402 

UAV and Landsat images gives the chance to separate weeds that cannot be identified with Landsat images, 403 

and also increases the accuracy of classification of pistachio tree cultivars. Moreover, it has a high accuracy 404 

of land area and cultivation pattern. The present investigation corrected the map of different forest types, 405 

which has prevented the achievement of more desirable results because of the openness of the canopy, 406 

mixing of soil, and vegetation reflections. In addition, it showed that by combining Landsat and UAV 407 

images and increasing spatial resolution, it would be possible to stop the mixing of soil reflection and 408 

vegetation. The study of the area under cultivation of different cultivars through satellite data and preparing 409 

land maps and determining the area covered by weeds can be effective in optimal management of these 410 

land areas and it is a great way to increase efficiency in the area as well. 411 

 412 
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