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Abstract
Background：Herpes simplex virus type I (HSV-1) is a member of the Alphaherpesvirinae family, which
could initiate labial herpes caused by the reactivation of HSV-1 primary infection, and genital herpes
caused by secondary infection, even causes herpes encephalitis. The purpose of this study is to study
potential viral proteins and the mechanism of antiviral activity of new Hsp90 inhibitors (AT-533 and 17-
AAG). In previous studies, the Hsp90 inhibitor geldanamycin has been confirmed to induce the abnormal
localization of HSV-1 pUL30, but it is unclear whether Hsp90 inhibitors affect other viral replication
proteins.

Methods：The anti-HSV-1 activity of AT-533 and 17-AAG were evaluated by CCK-8 assay and fluorescent
virus titer assay. The mechanism of action against HSV-1 DNA replication was determined by the
previous study and this research. Then we assayed the viral RNA transcription, viral DNA replication and
protein expression, respectively. In addition, we identified the replication-related proteins that interact with
Hsp90 through protein docking and co-immunoprecipitation, and determined the effects of AT-533 and
17-AAG on the expression of replication-related proteins.

Results：CCK-8 and fluorescent virus titer determination showed that Hsp90 inhibitors hasve good anti-
HSV-1 activity on HFF cells. Interestingly, AT-533 significantly reduces the synthesis of viral DNA, but it
does not affect the expression of viral mRNA. Further, protein docking stimulation and co-IP assay
revealed that DNA polymerase pUL42 interacted with Hsp90, which was largely degraded via autophagy
by Hsp90 inhibitors. However, AT-533 does not affect the expression of other replication-related proteins,
such as ssDNA binding protein UL9 and helicase-primerase UL5/8/52. The results suggested that Hsp90
inhibitors directly inhibited viral DNA replication by affecting the stability of DNA polymerase pUL42.

Conclusions：Our results indicate that Hsp90 inhibitors may be potential candidates for HSV-1 therapy by
directly inhibiting DNA replication, especially for ACV resistant strains.

Introduction
Herpes simplex virus-1 (HSV-1), a common human pathogenic viruse, belongs to α herpesvirinae
family[1]. HSV-1 could initiate labial herpes caused by the reactivation of HSV-1 primary infection, and
genital herpes caused by secondary infection even causes herpes encephalitis[2]. Specifically, HSV-1
contains at least 7 conserved protein to effect DNA replication, such as origin-binding protein UL9, single-
stranded DNA binding protein ICP8, DNA polymerase complex UL30/42 and helicase-primase complex
UL5/8/52[3]. Among the most important HSV-1 proteins, HSV-1 DNA polymerase and the early enzyme
thymidine kinase (TK) play a key role in the virus replication process, so drugs targeting these proteins
may disrupt the virus replication cycle [4]. At present, nucleic acid analogs have been used as anti-HSV-1
drugs in the clinical frontline, which target the stage of viral DNA replication, especially acting on
thymidine kinase (TK). The representative drug is acyclovir and its derivatives. Due to the limitations of
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nucleoside analog drugs, patients who take these drugs for a long time to treat HSV-1 infection may
induce drug-resistant virus strains and adverse reactions[5].

Recently, many studies have indicated that heat shock protein 90 (Hsp90) is a promising broad-spectrum
antiviral host factor, which is required by many viruses for multiple phases of their life cycle including
viral entry, nuclear import, transcription, and replication[6]. Previous research indicated that Hsp90
inhibitor geldanamycin reduced viral titers and induced the abnormal location of HSV-1 DNA polymerase
catalytic subunit pUL30[7]. However, the particular interaction between Hsp90 and HSV-1 replication-
related proteins still unknown. In this study, we further studied the potency and mechanism of antiviral
activity of novel Hsp90 inhibitor AT-533 against HSV-1 DNA replication-related proteins and ACV-resistant
strains.

Materials And Methods

Inhibitors, antibodies and plasmids
AT-533 was systematically synthesized in a previously reported study [8], and 17-N-allylamino 17-
demethoxygeldanamycin (17-AAG) (S1141) was purchased from Selleck. Cell Counting Kit-8(CCK-8)was
obtained from Beyotime Biotechnology. Trizol Reagent was purchased from Invitrogen (Carlsbad, CA,
USA). Dulbecco’s modified Eagle medium (DMEM), fetal bovine serum (FBS), and penicillin-streptomycin
were bought from Gibco-BRL (Gland Island, NY, USA). Ubiquitin - proteasome inhibitor MG-132 was
purchased from Selleck (S2619), and autophagy inhibitor chloroquine (CQ) was purchased from
SigmaAldrich (C6628). These compounds were dissolved into designated concentration in
dimethylsulfoxide (DMSO) ,whose final concentrations were less than 0.1%. The primary antibodies used
in this study included mouse monoclonal antibodies (MAb) against HSV-1 ICP8 (Santa Cruz,11E2), HSV-1
pUL42 (Abcam, ab19311), LC3B (Cell Siganling technology, 2775) and rabbit monoclonal antibodies
(Mab) against Total Hsp90 (Abcam,ab13492), Ubiquitin-P4D1 (Cell Siganling technology, 3936), Akt (Cell
Siganling technology, 13038S), GAPDH (GeneTex, GTX100118), Flag-tag (Cell Siganling technology,
14793S), HA-tag (Cell Siganling technology, 3724), GFP-tag (Beyotime Biotechnology, AF0159). The
secondary antibodies mainly included anti-rabbit IgG light chain(Abbkine, A25022) and anti-mouse IgG
light chain(Abbkine, A25012). All the eukaryotic expression plasmids, including pLVX-EGFP-C1-UL30,
pCMV-HA-UL42, p3xFLAG-UL5, pCMV-HA-UL8, pLVX-EGFP-UL52 were generated in our laboratory. cDNA
was reverse transcripted using RNA obtained from HSV-1-infected cells as a template to amplify the virus
coding sequence. All constructed plasmids were verified by DNA sequencing (TSINGKE Biological
Technology). For information on the primers and vectors used to construct the plasmids, see Additional
file 1: Table S1.

Cells and viruses
Human foreskin fibroblast(HFF, ATCC SCRC1041), Human embryonic kidney cells (HEK293T,ATCC
CRL1573), African green monkey kidney cells (Vero, ATCC CCL181) were cultured in Dulbecco’s modified
Eagle’s medium (DMEM, Gibco) complemented with 10% fetal bovine serum (FBS, Gibco). The
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maintenance medium used for the dilutions of virus and reagents was DMEM complemented with 2%
FBS. HSV-1/F (ATCC VR-733) was obtained from Hong Kong University. ACV-resistant clinical HSV-1
strain (HSV-1/153), a TK-mutant derived from HSV-1 (KOS)-HSV-1/Blue[8] were a kind present from Tao
Peng (Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences). These above
viruses were propagated in Vero cells and preserved at -80℃ until use.

CCK-8 assay
The CCK-8 assay was manipulated according to the suppliers protocol (Beyotime Biotechnology, C0037).
Briefly, HFF cells were cultured in 96-wells plates and reached at 85% cell confluence. Various
concentrations of compound were added to the plate, with each concentration having three replicates.
After 48 h of incubation, 10 µL CCK-8 solution (5 mg/mL) was added to each well, and the plate was
incubated for 1h protected form light. Then, the plates incubated for 10 min at room temperature with
gently shaking. The optical density (OD) at 450 nm was measured for each well with an enzyme-labeled
reader (Bio-Rad, Hercules, CA, USA). The 50% cytotoxicity concentration (CC50) was defined as the
concentration to reduce 50% cell viability.

Viral titer determination
Vero cells were cultured in 96-wells plates. And the next day, Vero cell monolayers were incubated with
eleven-fold serial dilutions of 100 µl HSV-1 treatment and incubated at 37°C and 5% CO2 for 72h.
Morphological changes of the cells (cytotoxic effects, CPEs) were observed every day under inverted
microscope and cell viability was calculated based on CPEs. Control were cells treated only with
maintenance medium DMEM. The plaque assay was carried out in triplicate. Virus was quantified by
serial dilution and titration assay. The TCID50 (50% tissue culture infectious dose) was calculated using
the formula of Reed and Muench method

Log10 50% end point dilutions = log10 of dilution showing a mortality next above 50% - (difference of
logarithms × logarithm of dilution factor). Difference of logarithms = [(mortality at dilution next above
50%)-50%] / [(mortality next above 50%) - (mortality next below 50%)][9].

Antiviral effect of GFP-HSV-1
HFF cells were cultured in 96-wells plates, and the second day cell monolayers were incubated with
eleven-fold serial dilutions of 100 µl Hsp90 inhibitor treatment and infected MOI = 1 GFP-HSV-1 at 37°C
and 5% CO2 for 72h[10]. The plaque assay was carried out in triplicate. GFP fluorescence was quantified
using a Synergy Neo HTS Multi-Mode Reader (Biotek Instruments). The relative fluorescence intensity
was calculated using the formula as follows: Relative fluorescence intensity= (Hsp90 inhibitors treatment
fluorescence intensity) / (GFP-HSV-1 control fluorescence intensity)×100%.

CPEs Cell viability assay
HFF cells were cultures in 96-well plates. And the next day, HFF cell monolayers were incubated with
eleven-fold serial dilutions of 100 µL HSV-1 treated with or without Hsp90 inhibitors at 37°C and 5% CO2.
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After 72h, 10 µL CCK-8 solution was added to each well, and incubated for 1h in dark. Then, the plates
incubated for 10 min at room temperature with gently shaking. The optical density (OD) at 450 nm was
measured for each well with an enzyme-labeled reader (Bio-Rad, Hercules, CA, USA). The CPEs inhibition
ratio was calculated by the formula as follows. The CPEs inhibition ratio= [(Absorption of treatment
groups) - (Absorption of cell control)] / [(Absorption of virus control) - (Absorption of cell control)] ×100%
[11].

The detection of DNA synthesis
HFF cells were cultured in 12-well plates. And the second day cells infected with HSV-1 (MOI = 20) were
incubated with or without AT-533 or 17-AAG for 12 h. Viral DNA was extracted using GeneJET Viral DNA
and RNA Purification Kit (Thermo). Real-time PCR assay was used to quantify the viral DNA. Then the
HSV-1 DNA copy numbers were expressed relative to the virus control groups. The primer pairs are seen
at Additional file 1: Table S2.

Real-time PCR (Q-PCR)
HFF cells were cultured in 12-well plates. And the second day cells infected with HSV-1 (MOI = 20) were
incubated with or without AT-533 or 17-AAG for 2, 3, 4 h, respectively. Total RNA was isolated using Trizol
(Invitrogen) and subjected to cDNA synthesis using a PrimeScript RT reagent kit (Takara). Real-time PCR
(RT-PCR) was conducted to determine the expression levels of UL9, UL30, UL42 of HSV-1/F and at 2, 3
and 4h.p.i, respectively. The primer pairs were the same as described above.

Protein docking stimulation
ZDock (http://zdock.umassmed.edu/) was manipulated to predict the structures of protein-protein
interaction and symmetric multimers. Prediction of protein-protein interaction was in three steps as
follows[12]. Firstly input ligand and receptor protein structures and choose the ZDock version options;
Secondly select the blocking/contacting residues; Thirdly view docking results online or download in
Pymol. Binding affinity (∆G) and dissociation constant (Kd) predicted values for the protein-protein
interactions was obtained from docking results.

Molecular docking stimulation

LeDock (http://www.lephar.com/index.htm) was manipulated to stimulate the docking between small
molecular compounds and proteins. Docking binding affinity (∆G) ༜0 kJ/mol indicated ligand molecules
can spontaneously bind to receptor proteins, while (∆G)༜5 kJ/mol indicated both of them can bind
stably[13]. The target proteins in all networks were obtained 3D structures from the RCSB PDB database
(http://www.rcsb.org/)[14]. 2D structures of all compounds was obtained from ZINC
(http://zinc.docking.org/)[15]. Top10 docking complexes were docked between each protein and ligand,
and chosen the complexes with the smallest binding energy.

Co-immunoprecipitation (co-IP)
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HFF cells were infected with HSV-1 for 12h in 100 mm2 flask dish, which were collected and lysed in 100
µL SDS Lysis Buffer (Beyotime, China) containing 1% PMSF and centrifuged at 12,000 g. The
supernatant was divided into two parts, one for input and other was incubated with IgG (normal mouse or
rabbit IgG, primary antibody) at 4℃ overnight. Then the mixture was treated with 35µL of volume of
Protein A/G magnetic beads at 4℃for 2 h. Next, the immune-precipitates were collected, washed three
time with PBS, and re-suspended in 30mL 1*SDS-PAGE buffer (Beyotime, China). Finally, the samples
were boiled for 10 min and analysed by western blotting.

Plasmid transfection
HEK293T cells seed in 12-well plates, and the second day the mentioned plasmids were performed with
Lipofectamin-3000 transfection reagent according to the manufacturer’s instructions (Invitrogen). Briefly,
500ng of the corresponding plasmids and Lipofectamine 3000 reagent were diluted in 100µL Opti-MEM I
reduced serum medium (Invitrogen) and the diluted plasmids were then added to the Lipofectamine 3000
(1:1 ratio), mixed, and incubated at room temperature for 10 min. The transfection mixture was then
added to cells at 60–70%, and was replaced with flesh 2% FBS DMEM after transfection 6h.

Western blotting
HFF cells were seeded in 12-well plates with the density of 1.5 × 106 cells/ well. Until 85% cell confluence,
cells were infected with HSV-1 (MOI = 20) at 37°C for 4 h. Therefore, DMEM maintenance medium with or
without AT-533 or 17-AAG was added. At 12h post infection, the cells were washed three times with PBS,
and were lysed with 1*SDS-PAGE buffer (Beyotime). The equal amount (40 µg/sample) proteins were
subjected to Western Blot analysis.

Immunofluorescence assay
HFF cells were cultured in 12-wells plates, and second day cells infected with HSV-1 (MOI = 20) at 37°C
for 4h for viral DNA replication. Cells were transferred into maintain medium with or without AT-533 or 17-
AAG and incubated for 8h. Cells were fixed for 15 min with 4% paraformaldehyde (PFA) and
permeabilized with 0.01% Triton X-100 for 5min, and subsequently incubated with anti-UL42 antibody
(Abcam) at 4℃ overnight and Alexa Fluor 488 (1:1000) secondary antibody (Invitrogen) at room
temperature for 1h. After each step the slides were washed triplicate with PBS, and which finally were
preserved with PBS. Finally, the nuclear staining with 4,6-diamidino-2-phenylindole (DAPI, Molecular
Probes) was performed for 15min. Fluorescence was recorded in a fluorescence microscopy (Canon).

Statistical analysis
Research data were calculated as the mean ± SD, and statistical significance were determined by the
student’s t test. The statistical significance were determined by P values (P < 0.05). More than three times
was performed at each time.

Results
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Cytotoxicity and anti-HSV-1 activity of AT-533 and 17-AAG
To examine the cytotoxic effect of two potent Hsp90 inhibitors AT-533 and 17-AAG on HFF cells, CCK-8
assay was used. Different concentrations of Hsp90 inhibitors were used. AT-533 exhibited a larger
cytotoxicity than 17-AAG (Fig. 1A), and achieved TC50 (50% toxicity concentrations) of AT-533 and 17-
AAG (Table 1). Hence, to examine the antiviral activities of these Hsp90 inhibitors, CPE (virus-induced
cytopathic effect) reduction assay was used [11, 16, 17]. AT-533 (0.125 µM) and 17-AAG (0.20 µM)
exhibited reasonable inhibition of induced CPE (Fig. 1B). To further clarify the antiviral effect of Hsp90
inhibitors, obtaining IC50 (50% inhibition concentrations) in Table 1,antiviral assay of GFP-HSV-1 was
used (Fig. 1C)[10, 18]. Morphologically, gradient Hsp90 inhibitors were exhibited well recovery of HSV-1
cytopathic effects with concentration dependent (Fig. 1D). We next investigated anti-GFP-HSV-1 efficacy
of HFF cell. GFP-HSV-1 was used to infect cells and the Hsp90 inhibitors were treated at the same time.
Infected cells were imaged using a fluorescence microscope at 12h.p.i, and the treatment of Hsp90
inhibitors had preferable fluorescence inhibition with concentration dependent (Fig. 1E).

Table 1
Cytotoxicity, anti-HSV-1 activity and TI of AT-533 and 17-AAG

Hsp90 inhibitors TC50(µM) IC50(µM) TI

17-AAG 14.24 ± 0.26 0.30 ± 0.20 47.90 ± 1.87

AT-533 1.37 ± 0.32 0.05 ± 0.01 25.35 ± 1.03

Regulation of HSV-1 replication phase
Next, we analyzed regulation of HSV-1 replication phase was affected by Hsp90 inhibitors AT-533 and 17-
AAG.The detection of DNA synthesis was performed to demonstrate that AT-533 and 17-AAG significantly
reduced genome copy production (Fig. 2A).To evaluate whether Hsp90 exerts specific function in HSV-1
immediately early and early life cycle, AT-533 and 17-AAG were added at 1h.p.i and obtained at different
time points (2 ~ 6h.p.i) in HSV-1-infected HFF cells (Fig. 2B).Cell monolayers were then fixed and
extracted DNA, both inhibitors significantly reduced the HSV-1 DNA production at different time points(2 
~ 6h.p.i). Notably, HSV-1 that was not treated with Hsp90 inhibitors started to replicate in large numbers
at 4h.p.i (Fig. 2C). Besides, to analyze the effects of Hsp90 inhibitors on HSV-1 gene expression, the
mRNA expression levels of viral immediate-early gene (α0) were quantified at 3 ~ 6h.p.i, respectively
(Fig. 2D). Both AT-533 and 17-AAG treatment significantly reduced the mRNA expression of viral
immediate-early gene (α0). To further clarified whether Hsp90 exerts directly or indirectly function in HSV-
1 replication phase, AT-533 and 17-AAG were added at different time points(2,3,4h.p.i) and obtained at
12h.p.i(Fig. 2D). Hsp90 inhibitors treatment both significantly reduced the DNA copy number of UL9,UL30
and UL42(Fig. 2D).Interestingly, Hsp90 inhibitors treatment could not reduce the mRNA expression of viral
gene UL9,UL30 and UL42 at 4h.p.i and significantly reduced at 2,3h.p.i Generally, HSV-1 treated in HFF
cells largely initiated DNA replication at 4h.p.i, meanwhile Hsp90 inhibitors treatment directly reduced
DNA copy numbers instead influencing viral gene transcriptions.
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A.HFF cells was infected with HSV-1(MOI = 1) and extracted viral DNA to assess infectious and progeny
virus DNA copy number at 12, 24, 48, 72h.p.i B. Diagrammatic sketch of time-addition assay to assess
HSV-1 DNA copy number and mRNA expression. C.HSV-1 DNA copy number with or without AT-533 and
17-AAG was detected at different time points (2,3,4,5h.p.i). D.HSV-1 mRNA expression was detected at
different time points (2,3,4,5h.p.i). E.Diagrammatic sketch of HFF cells treated with Hsp90 inhibitors in
different time points to assess HSV-1 DNA copy number and mRNA expression. F.HFF cells was infected
with HSV-1(MOI = 20) and treated with Hsp90 inhibitors at different time points (2,3,4h.p.i), and then viral
DNA copy number was detected. G. HFF cells was infected with HSV-1(MOI = 20) and treated with Hsp90
inhibitors at different time points (2,3,4h.p.i), and then viral mRNA expression was detected.

Interaction between Hsp90 and HSV-1 replication-related
proteins
In previous researches, Hsp90 inhibitor geldanamycin induced the abnormal location of HSV-1 DNA
polymerase catalytic submit UL30, however few direct experimental evidences proved the interaction
between Hsp90 and UL30 or other replication-related proteins[7].Thus,we further investigated the
interaction and function between Hsp90 and HSV-1 replication-related protein.To prepare for the protein
modeling and construct the viral proteins model, phylogenetic analysis of HSV-1 DNA polymerase UL30
and UL42 were individually retrieved from GenBank and showed in Fig. 3A&B. The crystal structure of
DNA polymerase catalytic subunit UL30 (PDB:2GV9) and processivity factor UL42 model from
Swissmodel (PDB:1DML) interacted with Hsp90 (PDB:4BQG) were protein docking
stimulated(Fig. 3C&D).Hence, Homology analysis of HSV-1 UL30/42 and other Herpesviridae DNA
polymerase were exhibited(Table 2&3). Altogether, the binding affinity (∆G), dissociation constant (Kd)
(Table 4) and higher number of protein-protein contacts (Table 5) between Hsp90 and viral proteins were
showed. In conclusion, protein docking stimulation were proved that Hsp90 interact with both UL30 and
UL42.To further confirm the interaction between Hsp90 and HSV-1 DNA polymerase, co-IP assay were
manipulated (Fig. 3E).HFF infected with HSV-1 treatment with DMSO were indicated Hsp90 interact with
UL42, and at the same time treated with 17-AAG were indicated the reducing interaction between Hsp90
and UL42.In short,Hsp90 interacted with HSV-1 DNA polymerase UL42 via protein docking stimulation
and CO-IP assay.Because of the insufficiency of commercial HSV-1 UL30 antibody,the interaction
between Hsp90 and UL30 is still need further studies.
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Table 2
Homology analysis of HSV-1 UL30 and other

Herpesviridae DNA polymerase catalytic subunit
Description Query Cover Percent Identity

HSV-2 UL30 100% 90.40%

HHV-3/VZV ORF28 95% 55.42%

HHV-4/ZBV BALF5 92% 41.75%

HHV-5/HCMV UL54 82% 34.81%

HHV-6 Pol 92% 31.21%

HHV-7 Pol 93% 31.81%

HHV-8/KSHV Pol 95% 55.42%

Table 3
Homology analysis of HSV-1 UL42 and other

Herpesviridae DNA polymerase processivity factor
Description Query Cover Percent Identity

HSV-2 UL42 100% 71.14%

HHV-3/VZV ORF16 56% 25.44%

HHV-5/HCMV UL44 9% 40%

HHV-6 p41 2% 50%

HHV-7 U27 10% 32.50%

HHV-8/KSHV PF-8 19% 39.58%
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Table 4
Binding affinity (∆G) and dissociation constant (Kd) predicted values for the interaction between viral

proteins and Hsp90β
Complex Subtype ΔG(Kcal mol− 1) Mean ΔG

(Kcal mol− 1)

Kd(M)

at 25℃

Mean Kd(M)at 25℃

Hsp90 & BALF5 Hsp90β -9.3 -9.3 1.4E-07 1.4E-07

Hsp90 & AKT Hsp90α -20.0 -15.55 2.3E-15 4.5E-12

Hsp90β -11.1 6.7E-09

Hsp90 & UL30 Hsp90α -11.6 -13.35 3.2E-09 5.8E-11

Hsp90β -15.1 8.3E-12

Hsp90 & UL42 Hsp90α -14.2 -13.25 3.9E-11 2.5E-10

Hsp90β -12.3 1.0E-09

Table 5
Number of protein-protein contacts (PPC) between viral proteins and Hsp90β

Complex Hsp90 &
BALF5

Hsp90 & AKT Hsp90 & UL30 Hsp90 & UL42

Subtype Hsp90β Hsp90α Hsp90β Hsp90α Hsp90β Hsp90α Hsp90β

ICs charged-
charged

2 14 12 12 11 13 6

ICs charged-polar 8 25 15 23 19 15 8

ICs charged-apolar 8 81 20 42 45 37 25

ICs polar-polar 6 4 5 4 6 6 1

ICs polar-apolar 25 25 21 12 33 24 20

ICs apolar-apolar 28 32 15 21 29 33 23

Total Number of
Contacts

77 181 88 114 143 128 83

Mean Number of
Contacts

77 134 128 105

Effects of AT-533 and 17-AAG on UL42 protein expression
In order to determine whether AT-533 and 17-AAG affect viral DNA replication by affecting UL42 protein
expression, analysis was performed by Western blotting. HFF cells were infected with HSV-1 (MOI = 20)
and treated with or without AT-533 or 17-AAG, while proteins were extracted at different time points (2, 4,
6, 8,h.p.i) showed in Fig. 4A. Hsp90 inhibitors treatment reduced the protein expression of viral early
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proteins UL42 and host protein AKT instead of influencing the protein expression of Hsp90 and ICP8,
which indicated Hsp90 inhibitors blocked the activity of Hsp90 and reduced the client protein expression
of UL42 instead of ICP8. Interestingly, Hsp90 inhibitors reduced the protein expression of UL42 only in
early stage(2,4h.p.i) rather than 6,8h.p.i, which was consistent with time-addition DNA and mRNA
detection. To further confirm the key time point of Hsp90 affecting DNA replication, HFF cells
synchronously treated with HSV-1(MOI = 20) and Hsp90 inhibitors at 4h.p.i as showed in Fig. 4B, AT-533
and 17-AAG didn’t affect the protein expression of ICP8 and affected UL42 indeed. To prepare plasmids
transfection in HEK293T cells, the cytotoxicity detection of AT-533 and 17-AAG in HEK293T were assayed
(Fig. 4B).To prepare the plasmid transfection in HEK293T cells, the CCK8 assay of AT-533 and 17-AAG in
HEK293T cells are used. AT-533 exhibited a larger cytotoxicity than 17-AAG which was showed in Fig. 4C.
HEK293T cells were transfected with HA-UL42 and HA-Vector plasmid, and at 6 h.p.i flash 2% DMEM were
added with and without AT-533 or 17-AAG.AT-533 and 17-AAG treatment reduced the HA-UL42 expression
and didn’t affect the transfection of HA-Vector (Fig .4D).Consistently, the results of immunofluorescence
assay was the same as western blotting of HA-UL42 transfection treated with Hsp90
inhibitors(Fig. 4E).Verifying the functionality and importance of HA-UL42 plasmid in HEK293T cells,
which were first infected with HSV-1 (MOI = 20)with or without Hsp90 inhibitors,and transfected with HA-
UL42 to detect DNA production(Fig. 4F).Over-expression of HA-UL42 in HSV-1 infection with AT-533 and
17-AAG could restore the Hsp90 inhibitors inducing DNA replication reduction. In short, AT-533 and 17-
AAG via suppressing viral and plasmid UL42 expression hindered HSV-1 DNA replication.

Hsp90 inhibition induced autophagy-mediated degradation
of UL42
Next, we attempted to identify the specific mechanisms responsible for the Hsp90 inhibition-induced
UL42 degradation. In our previous study and those of others, Hsp90 client proteins were degraded via two
main ways such as ubiquitination-proteasome pathway and autophagy-induced pathway. Hence, we first
assessed the levels of ubiquitinated proteins in HFF cells treated with different Hsp90 inhibitors and
found that all treatments did not accumulate the polyubiquitin proteins(Fig. 5A). Besides, the proteasome
inhibitors MG-132 was treated and did not restore the UL42 reduction of Hsp90 inhibitors inducing.
Consistently, HEK293T cells also were treated with or without Hsp90 inhibitors and MG-132, which was
not restored the reduction of HA-UL42 (Fig. 5B). To examined whether Hsp90 inhibition-induced UL42
degradation was dependent on the autophagy pathway. HFF cells were infected with HSV-1 (MOI = 20)
and treated with or without concentration gradient Hsp90 inhibitors and Chloroquine (CQ), an inhibitor of
the fusion of the lysosome and autophagosome. Chloroquine (CQ) could reverse the degradation of UL42
mediated by Hsp90 inhibition (Fig. 5C).Similarly,HEK293 cells were transfected with HA-UL42 and treated
with Hsp90 inhibitors and CQ, as a result CQ treatment restored the degradation of UL42 (Fig. 5D).

Effects of AT-533 and 17-AAG on helicase-primase
UL5/8/52
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HSV-1 helicase-primase UL5/8/52 have the function of untying DNA double strands and coordinating the
synthesis of leading and lagging chains. It is also indispensable for DNA proper and efficient synthesis.
Therefore, to further examine the effect of AT-533 and 17-AAG on helicase-primase UL5/8/52, the
immunofluorescence assay was used. HEK293T cells were transfected with Flag-UL5 and treated with or
with AT-533 and 17-AAG after 6 hours post transfection. Hsp90 inhibitors didn’t affect the protein
expression of UL5 as showed in Fig. 6A. Consistently, Hsp90 inhibitors treatment were not reduced the
protein expression of HA-UL8 and EGFP- UL52 (Fig. 6B&C).

Effects of AT-533 and 17-AAG on ACV-resistant HSV-1
Finally, we evaluated the potent antiviral activity of AT-533 and 17-AAG on ACV-resistant HSV-1 via
performing viral titer determination and DNA synthesis detection. Vero cells were infected with HSV-1/153
(MOI = 1) and Hsp90 inhibitors, after 24h.p.i were extracted to analysis viral titer (Fig. 7A). Indeed, AT-533
and 17-AAG treatment reduced the viral titer of HSV-1/153 with favorable concentration dependent.
Therefore, the extraction from above was manipulated for viral DNA detection (Fig. 7B). In addition, AT-
533 and 17-AAG reduced the DNA production of HSV-1/153.Consistently, AT-533 and 17-AAG treatment
reduced the viral titer and DNA production of HSV-1/Blue (Fig. 7C&D). Among these data, Hsp90
inhibitors induced degradation of UL42 may played critical roles in antiviral activities of ACV-resistant
HSV-1.

Discussion
Several studies have demonstrated that Hsp90 participates in many HSV-1 infectious stages including
early and late stages, which indicated Hsp90 is a promising candidate of novel drug targets[19]. In our
laboratory, previous studies found that Hsp90 could promote capsid protein nuclear transport via
interacting with acetylated α-tubulin[20]. Further, Hsp90α knockdown or inhibition treated with 17-AAG
and SNX-2112 significantly inhibited the promoter activity of HSV-1 α genes via destroying the stability of
VP16[21]. In addition, novel Hsp90 inhibitor AT-533 could hinder HSV-1 nuclear egress and assembly[22].
Many studies have described the function of Hsp90 in HSV-1 DNA replication stage. For example, Hsp90
inhibitor geldanamycin reduced viral titers and induced the abnormal location of HSV-1 DNA polymerase
catalytic subunit pUL30[7, 23]. However, the function of Hsp90 inhibitors and the interaction of Hsp90
between other HSV-1 replication-related proteins is still unknown.

In particular, it has been reported that Hsp90 has a regulatory roles in different virus particularly in DNA
replication stages including DNA viruses, negative chain RNA virus and double chain RNA viruses[24].
ORF29F, is a single-stranded DNA binding protein in Varicella-zoster virus (VZV), whose nucleic
localization is depend in the activity of Hsp90[25]. Nuclear transport of epstein-barr virus (EBV) DNA
polymerase catalytic subunit BALF5 is dependent on the molecular chaperone Hsp90[26].Hence, the
formation of dengue virus DNA polymerase NS5 protein was required by Hsp90[27]. These findings
indicated that Hsp90 likely plays important roles in viral replication. In previous research, Hsp90 inhibitors
geldanamycin induced the abnormal location of HSV-1 DNA polymerase catalytic subunit pUL30 indeed.
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However, explicit and direct research data of interaction between Hsp90 and UL30 is absent. Hence, in
this study we focused on elucidating the role and specific mechanism of Hsp90 inhibitors in DNA
replication phase, and assessing the antiviral activity especially in ACV-resistant strains.

CPE assay and GFP-HSV-1 antiviral experiment showed that Hsp90 inhibitors AT-533 and 17-AAG had a
significant antiviral effect in a concentration-dependent manner. Time-addition assay infected with HSV-1
and treated with or without AT-533 and 17-AAG, which indicated deletion of Hsp90 activity reducing the
viral titer and infectious DNA copy number. Detection of viral gene expression and DNA copy number in
different time point indicated that Hsp90 inhibitors treatment directly blocked DNA replication instead of
influencing viral gene expression at 4 h.p.i.

The three-dimensional and atomic structures of protein complexes can provide useful information for
protein engineering, systems biology, drug design, and understanding pathology. If the structures of the
subunits are known, then it is benefited to model the complex computationally[28]. Protein docking
stimulation was first manipulated in this study, which indicated Hsp90 may both interact with DNA
polymerase catalytic subunit UL30 and processivity factor UL42. Therefore, co-immunoprecipitation
experiment confirmed that UL42 interacted with Hsp90 as its client proteins. Moreover, through Western
blotting and immunofluorescence assay, Hsp90 inhibitors induces the degradation of virus and plasmid-
expressed pUL42 via autophagy pathway, and over expression of pUL42 can revert HSV-1 DNA copy
number. Through Western blotting and immunofluorescence experiments, Hsp90 inhibitors could not
affect the expression of HSV-1 helicase-primerase, further highlighting the indispensable role of Hsp90
inhibitors regulating HSV-1 DNA polymerase processivity factor pUL42 in DNA replication phase.

The abuse of acyclovir and its derivatives caused the gene mutation of HSV-1 Thymokinase (TK) and
DNA polymerase UL30, as a consequence ACV-resistant strains was bloomed dramatically[29, 30].
Notably, Hsp90 inhibitors AT-533 and 17-AAG reduced the viral titer and infectious DNA production of
ACV-resistant strains (HSV-1/106 and HSV-1/Blue). The DNA polymerase processivity factor UL42 may
play a indispensable roles in antiviral effect upon ACV-resistant strains, which is still need to further
explore and research.

Conclusion
Summarizing these data, novel Hsp90 inhibitor AT-533 is assessed to be a potential candidate at HSV-1
replication phase, especially for ACV-resistant strains. First of all, the time-addition detection of DNA copy
number and mRNA expression indicated Hsp90 inhibitors AT-533 and 17-AAG directly block HSV-1 DNA
replication phase. Secondly, protein docking stimulation and co-immunoprecipitation approved pUL42
interacted with Hsp90 as its client proteins. Besides, the results of western blot indicated Hsp90 inhibitors
AT-533 and 17-AAG induced the degradation of pUL42 via autophagy pathway. Finally, Hsp90 inhibitors
AT-533 and 17-AAG exhibited favorable antiviral activity towards ACV-assistant strains, which indicated
pUL42 may be an antiviral active target for ACV-assistant strains. Comparing with previous work, this
study identified pUL42 as a Hsp90 client protein in the HSV-1 replication stage and potential antiviral
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active target for ACV-assistant strains. It laid a solid theoretical foundation for other scholars to develop
new anti-virus strategies and agents by focusing pUL42 as anti-virus targets.
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