Incipient carbonate melting drives metal and sulfur mobilization in the mantle

Isra Ezad (isra.ezad@mq.edu.au)
Macquarie University

Martin Saunders
The University of Western Australia

Syatoslav Scheka
Macquarie University

Marco Fiorentini
University of Western Australia https://orcid.org/0000-0001-8079-9606

Lauren Gorojovsky
Macquarie University

Michael Foerster
Macquarie University https://orcid.org/0000-0002-0778-5811

Stephen Foley
Macquarie University https://orcid.org/0000-0001-7510-0223

Research Article

Keywords:

Posted Date: August 28th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-2610331/v2

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

We present results from high-pressure, high-temperature experiments that generate incipient carbonate melts at mantle conditions (~90 km depth and temperatures between 900–1050°C). We show that these primitive carbonate melts can sequester sulfur in its oxidized form of sulfate, as well as base and precious metals from mantle lithologies of peridotite and pyroxenite. It is proposed that these carbonate-sulfur-rich melts may be more widespread than previously thought, and that they may play a first order role in the metallogenic enhancement of localized lithospheric domains. They act as effective agents to dissolve, redistribute and concentrate metals within discrete domains of the mantle and into shallower regions within the Earth, where dynamic physico-chemical processes can lead to ore genesis at various crustal depths.

Green metals could be transported and concentrated into ores by their interaction with low temperature carbonate rich melts.

Introduction

The mobilization and anomalous concentration of chalcophile and siderophile elements into discrete mantle domains has been intimately linked to the behavior and mobility of sulfur (S), which is known to complex with base and precious metals into a variety of compounds (1-3). Much attention has therefore been directed towards understanding the solubility, saturation, and speciation of sulfur, as well as the partitioning behavior of chalcophile and siderophile elements into primitive melts (4-7). Specifically, most work has concentrated on basaltic compositions, which represent relatively large degrees, 12 – 15% partial melting of their mantle sources (8), whereas the behavior of sulfur and metals in the presence of incipient melts (< 5% partial melting) is still very much poorly known. These incipient melts may, however, persist over a temperature range up to 300°C before major melting of silicates occurs (9).

The S solubility in silicate melts is strongly controlled by f_{O_2}: under reduced conditions sulfur is present as sulfide, whereas sulfate is the soluble species under oxidized conditions (8). The transition of sulfide to sulfate also varies in f_{O_2} space as a function of melt composition, pressure and temperature, as experimentally determined for silicate melts at pressures between 0.5 – 1.0 GPa (4, 10). In addition, the solubility of sulfur increases by an order of magnitude in silicate melts under oxidized conditions when stable as sulfate (11). Therefore, melts which are oxidized above the sulfide-sulfate transition at ~DFMQ+1 should incorporate higher concentrations of sulfur. Furthermore, in the absence of sulfide, chalcophile and siderophile elements (5, 12) will partition preferentially into melt as their compatibility into coexisting oxides (e.g., chromite (13)), silicates (14) and alloys (15) may only occur at significantly more reducing conditions. Primitive oxidized melts (16) are therefore expected to be effective agents to dissolve, redistribute and concentrate sulfur as well as chalcophile metals within the mantle and from the mantle to shallower regions within the Earth (12, 17, 18).
Incipient melts may be locally generated in the mantle due to a significant reduction in the solidus temperature associated with the presence of small amounts of volatile components such as H$_2$O and CO$_2$ (19-22). Incipient melts exist over a large temperature interval (~300°C) and are one of the most effective metasomatizing agents in the deep Earth (23, 24). Incipient melts are defined here as melts which are generated due to a depression in the solidus by the presence of volatiles (25). These low volume and low degree partial melts will rapidly leave their source regions without pooling to develop larger degrees of partial melting (24). Therefore, in this study, incipient melts are not considered to be the initial or parental melts of mid ocean ridge basalts or arc magmas, which reflect larger degrees of partial melting at higher temperatures than considered here.

Incipient melts generated from partial melting of volatile-bearing peridotite (1, 12) are carbonate-rich as long as conditions are sufficiently oxidizing (>IW+3), which are expected at depths of 200 km or less in the mantle (26). The carbonate-rich incipient melts gradually change their composition with increasing degrees of partial melting ranging from carbonatite melts with typically <10 wt.% SiO$_2$ and >40wt% CO$_2$, to carbonate silicate melts with >25 wt.% SiO$_2$ and < 25wt% CO$_2$ (27). We use the term carbonate melts hereafter to encompass this full geochemical diversity of carbonatite-like incipient melts, which are thought to be responsible for widespread metasomatism within the sub-continental lithospheric mantle (SCLM) (18, 23, 28, 29). Mantle xenoliths which sample the SCLM commonly show evidence of carbonate metasomatism, and may contain sulfides associated with carbonate minerals suggesting a common association between S and carbon (C) (18, 23, 28-30). Despite the numerous experimental studies on the behavior S in silicate melts, relatively few experiments have explored the behavior of S in carbonate systems (5, 31). Nonetheless, these experiments demonstrate that sulfur solubility in carbonate melts also appears to be controlled by fO$_2$ and Fe content, akin to silicate systems (31).

Incipient carbonate melts are unlikely to ever reach the surface unmodified but may be responsible for the (re-)enrichment of the SCLM (32) and the lower crust in chalcophile and siderophile elements, such as sulfur (S), nickel (Ni), copper (Cu) and the platinum group elements (PGEs) (12, 28). The role of oxidized incipient carbonate melts in mobilizing sulfur, chalcophile and siderophile elements from the mantle has not been experimentally investigated, despite growing evidence from natural samples that conditions to liberate and concentrate S are favored during the earliest stages of mantle melting (12, 28, 33). Here, we present new high-pressure, high-temperature experiments in combination with high-precision nano-scale analyses to demonstrate that carbonate melts are effective transport agents for S, as well as base and precious metals during the initial stages of mantle melting.

Results

High-pressure experiments

Near-solidus melting experiments were conducted on two natural mantle compositions: a mica pyroxenite from western Uganda and a fertile spinel Iherzolite from Lake Nyos, Cameroon. Both compositions were doped with small amounts of H$_2$O (1.5 and 1 wt.%), CO$_2$ (3 and 2.5 wt.%), S (0.8 and 0.5 wt.%) and PGEs
(800 and 500 ppm), respectively (full experimental details in Methods). Experiments were performed in Pt-lined double chambered graphite capsules at temperatures between 750 and 1050°C, and pressures of 2.5 GPa were generated in a rapid quenching piston cylinder (34). The double chambered capsules allowed for both compositions to be run simultaneously in the same experiment ensuring that both compositions were subject to the same pressure and temperature conditions.

Incipient carbonate melts coexist with olivine (Olv), orthopyroxene (Opx), clinopyroxene (Cpx), spinel (Sp), and clinohumite (Ch) within the peridotite, and phlogopite (Phl), calcium titanite (Ca-titanite), Cpx, and Olv within the pyroxenite. The stable carbonate phase for both rock compositions at sub-solidus and near-solidus conditions at 2.5 GPa is dolomite. The initial melts for both compositions are carbonatites (1.91 - 2.30 wt.% SiO$_2$, 32.33 - 42.61 wt.% CaO; supplementary information), which occur as poorly quenched glasses segregated towards one end of the experimental capsule (Figures 1-2), as is typical for these low viscosity highly mobile melts (19, 21, 35, 36).

Coexistence of sulfide and carbonate melts

Carbonate melts and sulfide blebs are concentrated along grain boundaries between silicate phases: whilst the sulfide blebs are easily visible in SEM micrographs, the co-existing carbonate melts are not (Fig. 3 b, d). In order to carry out cross-sectional imaging of the experimental samples and identify carbonate melts present along grain boundaries, TEM-imaging and TEM-EDS analysis were conducted.

The TEM images of the peridotite sample reveal the presence of ca. 1mm sulfide blebs surrounded by a matrix of clinohumite, with a thin veneer of quenched carbonate melt at the interface between sulfide and clinohumite (Fig. 3 a-b). High concentrations of Ca were found in thin coatings surrounding the sulfide blebs by TEM-EDS analysis (Fig. 3 b, d). The calcium cannot be attributed to the surrounding silicate minerals as the sulfide bleb within the peridotite was located between olivine and clinohumite, neither of which contain significant concentrations of Ca. Also, TEM-EDS of the clinohumite did not show any appreciable Ca. The thin carbonate melt veneer did not contain any Si and Mg either, with concentrations only increasing towards the olivine and clinohumite phases adjacent to the carbonate melt testifying to this being a separate phase from the silicate mineral network.

Quenched carbonate melt also surrounds sulfide blebs in the pyroxenite sample, where a larger volume of melt was identified around them (Fig. 3 c-d). The crystallized quenched components (5, 19, 20, 35, 36) of the carbonate melt are visible in STEM images (Fig. 3c) and TEM-EDS (Fig. 3d). Four distinct quenched phases were identified with TEM-EDS in the carbonatite that formed during melting of the pyroxenite sample: calcite (CaCO$_3$), calcium fluoride (CaF$_2$), brucite (Mg(OH)$_2$) and graphite (C), as shown in Fig. 3 c-d.

The tiny sulfide blebs (<1 mm) are common along grain boundaries in both peridotite and pyroxenite experiments where melt-present interfaces are visible in the SEM images (Figs. 1-2). There is no evidence
to suggest that any sulfide melts were interconnected along grain boundaries, as discrete blebs occur
tens of microns apart. This regular dispersion of micro-scale sulfide blebs is commonly attributed to
dissolved sulfur in melts, which quench out of experimental melts to form tiny sulfide droplets as seen in
Fig. 4 (5, 12, 31). The clinohumite within the peridotite sample displays dislocations close to the sulfide
blebs (Fig. 3a), suggesting that space was generated for the sulfide blebs that precipitated out from the
carbonate melt. The required space for the incompressible sulfide blebs was accommodated by the
silicate network, inducing strain in the clinohumite crystals (Fig 3a). Sulfide melts typically require at least
5 vol% of sulfide liquid to interconnect within a four-phase peridotite matrix (37). As it is unlikely that any
sulfide liquids would have reached this interconnectivity threshold in the experiments presented here, their
presence along grain boundaries implies physical mobilization coupled to the extremely mobile
carbonate melts, which are able to interconnect at melt volumes of just 0.3% (38).

Distribution of chalcophile and siderophile elements in carbonate melts

The scanning TEM (STEM) analysis of the sulfide blebs revealed the presence of high-density cores,
which were chemically analysed using TEM-EDS and found to be inclusions of PGEs. The PGE inclusion
within the peridotite-hosted sulfide bleb comprises Pt, Re, Ru and Ir (Fig. 4), whilst the sulfide bleb in the
pyroxenite is rich in Pt and Rh (Fig. 5, Supp. Table 7).

Platinum group elements are known to strongly partition into sulfides and refractory metal alloys (6)
during melting of silicate mantle rocks. However, the partitioning behaviour of PGEs during low-degree
melting to produce carbonate melts has not been determined, and neither have coefficients. In-situ LA-
ICP-MS analyses of the pooled carbonate melts segregated at one end of the experimental charge
confirmed the presence of elevated PGE concentrations in the carbonate melts, which were also free of
sulfide droplets. LA-ICP-MS proved to be advantageous over EDS to circumvent the challenge of
interpreting spectral overlaps, allowing easy detection of all PGEs in the ablated melt pockets.

The experiments presented here were not designed to determine coefficients, but our results attest to: (1)
the mobilization of PGEs in carbonate melts and (2) the preferential partitioning of PGEs into sulfides in
the presence of carbonate melts (Figs. 4 and 5). Similar observations have been experimentally
demonstrated in experiments assessing S and PGE solubility in sodic-carbonate systems (39). Texturally
the sulfide blebs appear to have quenched from a liquid, as evidenced by strain and dislocations induced
into the surrounding silicate minerals (Fig. 3) and by the variation of the sulfide compositions between
the peridotite and pyroxenite assemblages. The sulfides in the peridotite sample are Fe-Ni-sulfide (Fig. 4),
whilst those present in the pyroxenite sample are Fe-Rh-sulfide. The sulfides in both mantle compositions
have sequestered some chalcophile elements (Ni, Cu, Co, and Fe) requiring diffusion of these elements
from the silicate mineral network to the sulfides. The chalcophile elements Ni, Cu and Co were not added
to the starting materials and their uptake into sulfides must have been assisted by the carbonate melts
that percolated along grain boundaries of silicate minerals, such as olivine, exchanging Mg and Ca
cations for Fe, Cu, and Co. Additional LA-ICP-MS measurements on the peridotitic olivine and neighbouring clinohumite confirmed the removal of Fe, Cu and Co from the mantle olivine into the carbonate melts (Fig. 6).

Carbonate melts typically do not remobilize chalcophile elements, but are generally associated with metasomatism and localized enrichments in incompatible elements (40). However, elevated PGE contents have recently been reported in carbonatites, which also contain abundant quenched sulfides (30, 40, 41). Akizawa et al. (2017) reported similar micro-scale features of quenched sulfides associated with carbonate melts, as described here, from Tahitian mantle xenoliths. STEM-EDS was also employed in this study to constrain the nano-scale variations within the quenched sulfides, which had partitioned base metals and PGEs.

Sulfur speciation in carbonate melts

We analyzed the segregated carbonate melts using synchrotron S-XANES to determine sulfur speciation of the experimental carbonate melts. Multiple S-XANES spot analyses were taken across the quenched carbonate melts (Fig. 7). Following normalization and peak fitting, S-XANES (8, 42) spectra indicated that the majority of sulfur present within the analysed regions was sulfate (= 0.92). Experimentally calibrated models for determining oxygen fugacity from sulfate to total sulfur ratios exist only for silicate melts over a restricted pressure, temperature space (8, 10), which cannot be applied simply to carbonate systems. Whilst oxygen fugacity cannot be precisely determined, the high ratio of sulfate to total sulfur implies the system was oxidized and at an oxygen fugacity approximate to the sulfide-sulfate transition, which is ~DFMQ -1 to +2 for silicate melts at 1.5 GPa (10). Similar constraints on carbonates are not yet available, but recent work investigating sulfur concentration at sulfide saturation in carbonated silicate melts at pressures greater than 2.5 GPa have yielded sulfur concentrations of ~800-3000 ppm (5). Sulfur concentrations within our experimental melts were 600 – 1000 ppm in the peridotite and 800 – 900 ppm in the pyroxenite, suggesting that the carbonate melts generated here had not reached sulfide saturation.

In addition to S-XANES, photo-induced force microscopy (PiFM) maps were acquired at infrared wavenumbers known to correspond to the n_3 stretching vibration of aqueous sulfate anions () at 1100 cm$^{-1}$ (43) (Fig. 8). The PiFM maps highlight multiple nanometre-sized sulfate particles along grain boundaries, which we interpret to occur as anions within the melt as the n_3 band splits into several spectral features when the sulfate anion is present within a solid-state medium such as a mineral (43). The distortion of sulfate polyhedral by the incorporation of cations (such as Ca$^{2+}$ and Ba$^{2+}$) also results in the appearance of n_1 stretching vibrations (1000 cm$^{-1}$) (43). The lack of splitting or additional peaks suggests there was no solid-state bonding of cations to the sulfate anions within the melts. Both the S-XANES (Fig. 7b) and PiFM maps (Fig. 8) testify to the presence of sulfur predominately as dissolved sulfate anions in the melt, which would have required oxidized conditions.
Mobilization of base and precious metals by carbonate melts

Mantle melting under anhydrous conditions begins at temperatures above the melting point of monosulfide solid solution sulfides (MSS at 2.5 GPa, 1200 – 1230°C (44)), which are the main host of sulfur within the upper mantle. Despite MSS being molten at the onset of mantle melting, sulfides remain immobile until they can dissolve into surrounding silicate melts up to the sulfur concentration at sulfide saturation threshold (SCSS), which is ~1200ppm in basaltic melts at 1.5 GPa (11). Basaltic melts represent less than 15% partial melting of their mantle source (45), and typically do not exhaust the mantle of MSS, restricting the concentration of metals (Cu ~60ppm (46), Ni ~300ppm (47)) that can be liberated from the mantle to well below that required to generate economically viable Cu-Ni-(PGE)-S ore deposits (48, 49).

However, the mantle is not anhydrous and volatile components from the surface including H\textsubscript{2}O and CO\textsubscript{2} have been effectively recycled back into the mantle throughout the geological evolution of our planet (50) and are known to significantly depress the solidus at low concentrations (950°C at 2.5 GPa (20)) in localized domains of the mantle. This depressed solidus may be close to, or below, the stability limit for solid MSS, with recent work placing the MSS melting point at 975 – 1000°C at 2.5 GPa (51). The experiments presented here were run at conditions close to this reported solidus of MSS (51): therefore, molten sulfide may have been present at the onset of melting. Whether the sulfides were molten or solid at the conditions at which carbonate melts were generated in our experiments is not important, as the ubiquitous presence of sulfate along grain boundaries and in pooled carbonate melts demonstrates that sulfur can not only be dissolved into carbonate melts but transported away from the residual silicate mantle in moderate concentrations.

Our experiments demonstrate that under sufficiently oxidized conditions sulfur preferentially dissolves as sulfate in the carbonate melts. The oxidation of sulfide to sulfate is balanced by a sequence of redox reactions beginning with reduction of CO\textsubscript{2} from the melts to graphite (Fig. 3d) by counter oxidation of Fe, which increases the ferric iron content of the system allowing for an increased oxidizing potential to above the sulfide-sulfate transition (49). The migrating carbonate melts are mobile due to their low viscosities and become enriched in S, PGEs and chalcophile elements (Fig. 6), transporting them rapidly away from the residual mantle source, and potentially concentrating them in localized domains of the overlying continental crust.

Carbonate melts can only exist under oxidized conditions in the Earth's mantle, where carbonate redox melting may occur at DFMQ 3 + 1 at depths of 3 GPa (~90 km) (26) at the solidus for CO\textsubscript{2}- and H\textsubscript{2}O-bearing peridotite (20). At more reduced conditions than DFMQ + 1 and/or depths greater than 7 GPa, carbonate-rich melts do not exist because carbon is stable as graphite or diamond and remains stable until these reduced forms of carbon are oxidized to carbonates (26). The prerequisite of oxidized conditions to generate carbonate melts ensures there is sufficient CO\textsubscript{2} to counterbalance the production
of ferric iron, which promotes S oxidation to sulfate. During melting, sulfate anions become enriched in carbonate melts as demonstrated here (Figures 7 - 8).

Previous experimental work on the partitioning of chalcophile elements (but not PGEs) between sulfate and silicate melts had demonstrated that chalcophile metals prefer sulfate liquids (52). This partitioning behavior may also be responsible for the uptake of PGEs and other chalcophile elements into the carbonate melts along with sulfate. Carbonate and silicate melts have differing melt structures, which may lead to differences in the partitioning of PGEs and other chalcophile elements. Silicate melts are anionic liquids with Si-(Al)-O tetrahedra, typically requiring cations to charge compensate the system. This crystallographic structure limits the abundance of X^{2+} cations that can be incorporated into the silicate liquid structure, whereas X^{3+} cations are preferentially partitioned into silicate melts (53). Conversely, carbonates are ionic liquids consisting of carbonate CO_3^{2-} molecules, and – unlike silicate melts – they are considered to be structureless (54). This lack of structure results in the inability of carbonates to polymerize, allowing Cu, Fe, Co and Ni metals to bond with the abundant carbonate ions by donating outer electrons (54). This translates into increased solubility of chalcophile elements into carbonate- compared to silicate melts. However, the behavior of sulfates in carbonates warrants further detailed investigations.

Carbonate melt metasomatism and ore genesis

The carbonate melts generated within our experiments represent low degree, low volume melts, which are unlikely to reach the surface of the planet. However, they exist in the mantle over an enormous pressure-temperature range (19-21, 55). Due to their low viscosities, carbonate and carbonate silicate melts are efficient metasomatizing agents (56, 57), which are able to rapidly redistribute and locally concentrate elements such as S, PGEs and other chalcophile elements (Fig. 6). In view of these unique physicochemical properties and due to the persistence of carbonate melts to low temperatures, we propose a new mechanism by which sulfur, PGEs and base metals can be 1) mobilized in the mantle through the generation of carbonate melts (58), and 2) concentrated into metasomatized regions of the mantle, creating fertile domains that may play a first order control on the genesis of mineralized regions 59.

These processes are summarized in Figure 9: in the deep mantle at depths of <200 km (6.5 GPa), small volumes of carbonate melt are generated when the solidus of carbon- and water-bearing peridotite and pyroxenite is exceeded (~1100°C at 6.5 GPa). These low volume oxidized carbonate melts are extremely mobile (19, 20, 22, 36), and assist in the oxidation of ferrous Fe to ferric Fe and subsequently mantle sulfides to sulfates, which readily dissolve in the carbonate melts along with PGEs and other chalcophile elements. As the melts migrate to shallower depths the oxidation processes continue and further S, PGEs and chalcophile elements are transported from the adjacent wall-rocks, until either the sulfur concentration at anhydrite saturation (SCAS) is reached within the carbonate melts – this concentration is currently unconstrained – or the percolating carbonate melts freeze or are exhausted by reacting with overlying mantle or crustal rocks, resulting in the formation of metasomatized domains.
Since the migrating melts also contain H$_2$O, the metasomatized products are commonly enriched in hydrous phases, which facilitate subsequent re-melting and remobilization owing to the low melting temperatures of hydrous assemblages (21). Evidence for this is seen in mantle xenoliths, where sulfides commonly occur together with hydrous and Ti-oxide minerals (56, 60), and regions where the lithospheric mantle outcrops (61). These metasomatized domains can be thought of as primed regions within the mantle with higher concentrations of S, PGEs and chalcophile elements relative to surrounding mantle lithologies, which require only a small heat anomaly or lithospheric thinning to remelt before interacting with the crust (62). This final reheating and melting event can potentially lead to supersaturation of S in the resultant alkaline ultramafic melts.

This type of re-enrichment process telescopes metals from an extensive depth range into a more restricted depth window at shallower depths of the mantle. It has been used extensively to argue for the generation of volatile-rich melts such as kimberlites, ultramafic lamprophyres, and lamproites (63, 64). Furthermore, new working hypotheses associated with similar multi-stage processes of metal mobilization and extraction from metasomatized domains of the mantle have been recently put forward to explain the genesis of Ni-Cu-PGE mineralization hosted in alkaline ultramafic melts emplaced in the lower continental crust (28, 61, 65, 66), and orogenic Au in close proximity to ultramafic lamprophyres in continental settings (67). Their spatial and temporal co-occurrence is consistent with a complex two-stage melting of an oxidized mantle lithology where incipient melts pre-fertilize discrete domains of the source with elevated PGEs and chalcophile elements, which can be subsequently entrained by larger volumes of melts that can accumulate metal-rich sulfides at various crustal levels (28). A scenario to illustrate this process may have also generated mineralization associated with Siberian picrites (68), which have elevated PGE and Au contents, and higher concentrations of sulfur than would be expected if these metals were only present in sulfide in these melts. Mungall et al. (2016) interpreted the Siberian picrites as having attained their elevated PGE contents by low degrees of partial melting (2.6%) from a mantle source, albeit peridotite, at oxidized conditions (FMQ +2).

This mechanism of sulfur removal from the mantle may operate only locally within previously metasomatized regions of the mantle. However, continued episodic fluxing of low volume carbonate melts, which are probably more widespread in the mantle than previously thought, would remove the requirement for large degrees of partial melting to exhaust mantle sulfides and generate metal-rich primitive melts. A corollary of this hypothesis is that metallogenically fertile regions of the mantle may be identified in areas that were previously deemed to be non-prospective.

Materials and Methods

Two natural mantle xenoliths were chosen as end members for peridotite and pyroxenite starting lithologies. A fresh spinel lherzolite from Lake Nyos was chosen as the representative end member for a peridotite and the pyroxenite is a mica pyroxenite from Lake Katwe, Uganda. Compositions for both starting materials are provided in Supplementary Table 1. Both compositions were doped with small amounts of volatiles, S (0.8 wt.% pyroxenite and 0.5 wt.% peridotite) and PGEs (800 ppm pyroxenite and
500 ppm peridotite); CO$_2$ (3 wt.% pyroxenite and 2.5 wt.% peridotite) was added as carbonates of siderite (FeCO$_3$) and magnesite (MgCO$_3$) to maintain the Mg:Fe ratios present within the natural rocks; H$_2$O as brucite (Mg(OH)$_2$); S as pyrite (FeS$_2$) and PGEs as nitric acid solutions. PGEs were added in concentrations of 500 – 800 ppm to enable detection at the end of high-pressure experiments.

Typical PGE concentrations within unmelted mantle assemblages are pbb-ppm, which are analytically challenging to detect using established techniques such as LA-ICP-MS. To circumvent this problem, the starting materials were doped to concentrations that could easily be detected and that the relative mobility of PGEs could be traced if they entered the carbonated melts. The concentrations reported at the end of experiments are not used to represent concentrations that would be expected in natural incipient carbonate melts. The rock powders were initially dried at 250°C to liberate adsorbed water before PGEs in solution were added further dried overnight at 750°C to liberate the nitric acid before finally adding the volatile components and sulfide.

All experiments were conducted in the high-pressure laboratory at Macquarie University using a rapid quenching end-loaded piston cylinder apparatus with a ½” talc-Pyrex and natural CaF$_2$ assemblies (34). The powdered starting materials were loaded into dual chambered graphite capsules (3mm length), and single wrapped in 25mm thick platinum foil and placed within MgO sleeves. Temperature was monitored with Type B Pt$_{30}$Rh$_{70}$-Pt$_6$Rh$_{94}$ thermocouples and pressure calibrations were conducted using the quartz-coesite transition (69) and the albite = jadeite + quartz reaction (70). Thermal gradients present within identical CaF$_2$ assemblies have been tested elsewhere (71, 72) and are equal to or less than 20°C across the length of the capsule and therefore no corrections were applied for temperature to those measured by the thermocouple. All experimental charges were brought to the desired pressure first, then heated to the target temperature in 20 minutes. Experiments were kept at high pressure and high temperature for 24 hours to ensure equilibrium had been reached, which can be demonstrated by the similar composition of carbonate melts generated here as described elsewhere (19, 73). Subsequently, power was cut to the furnace and the experiments quenched to room temperature in under 10 seconds. Experimental run conditions and results are detailed in Supplementary Table 2.

Upon recovery of the experimental charges, the capsules were embedded directly into epoxy resin before polishing with baby oil or ethanol in a water-free environment to minimize loss of carbonates or quenched melts. Experimental charges were polished to a ¼ micrometre finish using diamond and silicate carbide laps.

Analytical details

All samples were initially imaged at Macquarie University using an FEI-Field Emission Scanning Electron Microscope (FE-SEM) operating at 15 kV and a working distance of 10 mm. Following imaging, chemical compositions for the quenched melts and minerals recovered from experiments were determined using quantitative energy dispersive spectroscopy (EDS) on a Zeiss EVO SEM fitted with an Oxford Instruments large area Quant-EDS detector operating at 20 kV, calibrated to a beam current of 10mA, and a working
distance of 12 mm. To ensure accurate compositions, electron microprobe standards were analysed before each SEM session to ensure EDS measurements were within 2% of reported compositions. The compositions of melts and minerals recovered from high-pressure experiments in presented in Supplementary Figure 1, Tables 3 and 4. The quenched products of carbonate melts are extremely heterogeneous and quench into multiple micron-size crystals large areas of melt were analyzed via quantitative-EDS mapping and compositions were determined from these large, homogenized areas. Multiple maps were averaged to reproduce the homogenized compositions reported here.

Trace-element and platinum group element compositions of clinohumite, olivine and carbonates were determined using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) at Macquarie GeoAnalytical (MQGA) housed at Macquarie University. Trace element analyses were performed using a Teledyne Photon-Machine Excite Excimer (193 nm) Analyte laser ablation system equipped with a HelEx II active 2-Volume cell, coupled to an Agilent 8900 ICP-MS system. The ICP-MS was optimised for sensitivity whilst ablating NIST SRM 610 in line scan mode. Ablation spot sizes were 50 microns, ablating at 5 Hz with a laser energy of 7 J cm$^{-2}$. Detection limits were improved by mixing 5 mL min$^{-1}$ of molecular hydrogen gas into the laser carrier gas. Data were acquired by taking a background measurement for 120 s, signal for 60 s, and finishing with a 20 s washout time between each analysis. The NIST SRM 610 reference material was used as the primary reference material (Georem preferred values 2022) and USGS BHVO-2G– was also included as a secondary standard. Unknowns were measured in blocks of 6 and were bracketed by analyses of standards. An average of two analysis points were collected for each phase per experiment. Data were processed using GLITTER data reduction software (75). SiO$_2$ and CaO values determined by Quant-EDS were used as internal standard values for silicate mineral and carbonate melt analyses, respectively. Concentrations of platinum group elements within carbonate melts are presented in Supplementary Table 5.

Carbonate melts exploit grain boundaries to travel rapidly within a solid silicate rock network infiltrating by a dissolution-precipitation mechanism, which allows for effective and efficient exchange of trace and incompatible elements between the mantle reservoir and percolating melt (38). The infiltration of carbonates through the silicate rock and their relationship to chalcophile and siderophile elements was further investigated here on a single high-pressure experiment (M21-107) at a nano- and micro-scale using transmission electron microscopy (TEM), synchrotron sulfur x-ray absorption near edge spectroscopy (S-XANES) and Photo-induced Force Microscopy (PiFM).

Sulfur speciation of the carbonate melts in experiment M21-107 was determined using synchrotron sulfur x-ray absorption near edge spectroscopy (S-XANES) at the Advanced Photon Source (APS) on beamline 13-IDE. S-XANES measurements were collected in fluorescence mode using a Si [1 1 1] monochromator crystal. The sample was placed into a He atmosphere to reduce interaction of the photon beam with the surrounding atmosphere. Peak positions were calibrated by measuring gypsum which provided a S$^{6+}$ peak position at 2481.82 eV. Multiple measurements were collected using a 2 x 2 mm beam diameter and a beam intensity of 2.4 x 1010 photons/s. Sulfur K-edge spectra were collected by scanning between the
2447 – 2533 eV energy range, spectra were collected at 1.5 eV steps between 2447 - 2460, 0.1 eV between 2460 – 2486 eV and 1.5 eV steps between 2486 – 2533 eV. A dwell time of 2 seconds per step was used and 3 analyses per sample were obtained.

Synchrotron S-XANES causes photo-reduction of S^{6+} to S^{4+}, as has been demonstrated elsewhere (42). The growth of sulfite was observed in some of the analyses collected as part of this analysis cycle, but the sulfite contribution was small and corrected back to S^{6+} using the correction method outlined in Lerner et al. (2021).

All of the S-XANES spectra were normalized and fitted using XAS viewer within the Larch software package (76). The protocol for fitting normalized spectra was based on the approach outlined in Lerner et al., (2021), 6 Gaussian peaks and an error step function for background were simultaneously fitted to the entire energy range measured (2447 – 2533 eV), with bounds for peak width, amplitude and centre guided by the determination of Lener et al. (2021). Fitted spectra are presented in Supplementary Figures 2-3.

Two electron-transparent foils were prepared by focussed ion beam (FIB – Fig. 1-2) milling using a FEI Helios Nanolab G3 CX DualBeam FIB/SEM for transmission electron microscopy (TEM) at the Centre for Microscopy, Characterisation and Analysis at the University of Western Australia.

TEM foils were prepared first by protecting the sample surface with the deposition of amorphous carbon strips which were 12 mm long, 2 mm wide and 1.5 mm thick. The locations of TEM foils were chosen along grain boundaries where small sulfide blebs could be seen along a melt-pathway in back-scattered electron mode. One foil was cut from the peridotite composition and the second from the pyroxenite.

Following the deposition of the protective carbon strip, material on either side was removed by a gallium ion beam operating at 30 kV and a beam current of 21 nA. This resulted in troughs either side of the strip which were 30 mm deep trenches, the sample was cleaned and thinned with lower ion beam currents (9.3 nA). An in situ micromanipulator was attached to the sample using a Pt weld whilst the remaining edges of the sample were milled away to create a U-shape cut to liberate the sample. The micromanipulator was used to lift-out the sample and transfer it to a copper TEM sample holder, and two additional platinum welds were used to secure the thinned sample to the copper grid. The micromanipulator was freed from the sample and the sample thinned to ~100 nm at beam currents varying from 2.5 nA to 0.43 nA, a final cleaning of the surface was conducted at 5 kV and 15 pA.

Bright field TEM imaging, High Angle Annular Dark Field Scanning Transmission Electron Microscopy (HAADF-STEM) imaging, and element mapping were carried out using a FEI Titan G2 80-200 TEM/STEM with ChemiSTEM Technology operating at 200 kV. In a bright field image, heavy element features are dark. In the equivalent HAADF-STEM image, heavy element features appear bright. The element maps were obtained by energy dispersive X-ray spectroscopy (EDS) using the Super-X detector on the Titan with a probe size ~1 nm and a probe current of ~0.3 nA. The EDS spectra and elemental maps were processed
using the ESPRIT 2 (Bruker Corporation) software. Spectral maps, and quantitative EDS spectra of sulfides in the TEM foils is presented in Supplementary Tables 6 and 7.

Photo-induced Force Microscopy (PiFM) was conducted at the Research School of Earth Sciences at the Australian National University, Canberra to investigate the distribution of sulfate within sample M21-107. PiFM is a phase analytical technique that combines the simultaneous acquisition of AFM and characteristic molecular compound information with a spatial resolution of ~5 nm, i.e., an infrared spectrometer on the nanoscale (77). The acquisition of the absorption features utilises IR lasers that are both tuneable with respect to wavenumber and pulse repetition rates that illuminate the sample just below the metal-coated AFM tip. The sample's molecules absorb different wavelengths of the laser according to their composition, which is recorded by the sharp cantilever tip as it is being pulled towards the sample by the induced attractive forces. For sample M21-107 the surface was excited by using a mid-IR-range ‘quantum cascade laser’ module (QCL, Block Engineering LLC) consisting of four serially connected gap-free QCLs to sweep across the 800 to 1800 cm\(^{-1}\) range. Absorption features have been identified at 940 cm\(^{-1}\), 1000 cm\(^{-1}\), 1100 cm\(^{-1}\), and 1400 cm\(^{-1}\), which correspond to those found in olivine, (phlogopite)-mica, sulfate, and carbonate, respectively (John Wiley & Sons, Inc. SpectraBase).

References

Supplementary Material only references

83. Chen et al., Sulfide-rich continental roots at cratonic margins formed by migration of carbonated melts. *Nature*, (Submitted).

Declarations

Acknowledgments

We thank Sean Murray for assistance with high-resolution SEM images at Macquarie University, Eva Sirantoine for cutting both FIB lamellae and preparing the TEM samples. We also thank Matthew Newville and Antonio Lanzirotti for support and assistance during beamtime operations at GSECARS 13-IDE. Synchrotron XRF mapping and S-XANES data were collected during beam time awarded to I.S.E. Portions
of this work were performed at GeoSoilEnviroCARS (The University of Chicago, Sector 13-IDE), Advanced Photon Source (APS), Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation – Earth Sciences (EAR-1634415).

Funding: This work was funded by the ARC Laureate Fellowship FL180100134 awarded to S.F.F.

This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOR Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

We acknowledge the facilities, and the scientific and technical assistance of Microscopy Australia and the Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, a facility funded by the University, State and Commonwealth Governments of Australia.

Author contributions:

- Conceptualization: ISE, SFF
- Methodology: ISE, SSS, MS, LRG, MWF
- Investigation: ISE, SFF, MLF
- Visualization: ISE, SFF, MLF
- Supervision: SFF
- Writing—original draft: ISE, SFF, MLF, LRG, MS, MWF
- Writing—review & editing: ISE, SFF, MLF, LRG, SSS, MWF

Competing interests: All authors declare that they have no competing interests.

Data and materials availability: All data are available in the main text or the supplementary materials.

Figures
Figure 1

Back-scattered electron micrographs of experimental sample M21-107 (2.5GPa, 1050°C – peridotite), at different magnifications. (a) Overview of experimental charge. The carbonate melt is pooled at the top right and displays typical quench structure with sub-micron scale quench crystals in a fine-grained network. A clinohumite rim (dark grey) surrounds the residual peridotite highlighting the widespread activity of the melt throughout the experiment. (b) Magnified view of the yellow box in (a): tiny droplets of sulfide are visible along grain boundaries, along which melt has migrated. Clinohumite is interpreted to have formed due to a reaction between olivine (Olv) grains and the percolating melt. (c) Shows the location of the FIB-lamella, which was extracted for TEM-analysis. This location is also highlighted by the white box in (a).
Figure 2

Electron-backscattered micrographs of M21-107 (2.5GPa, 1050°C – pyroxenite), at different magnifications. (a) Low-magnification overview: carbonate melts occur along the edges of the experimental charge and are rimmed by olivine (Olv), which has grown as an incongruent melting product as phlogopite began to melt. Clinopyroxene (Cpx), ilmenite (Ilm) and phlogopite (Phl) are present throughout the charge. The yellow box highlights the position of the FIB-lamella used for TEM analysis. (b) Magnified view of the carbonate melt quench structure encroaching into the olivine grains. The quenched phases consist of fluorite, brucite and calcite (identified using TEM-EDS).

Figure 3

Transmission electron micrograph of M21-107, peridotite (a) and Scanning transmission electron micrograph of M21-107, pyroxenite (c). Compositional maps (b) and (d) were determined using TEM-
energy dispersive spectroscopy. (a) TEM image of the peridotite lamella (see Figure 1a and c for location) showing sulfides in cross sectional view. The TEM image highlights high-density inclusions within both sulfide blebs. These sulfides occur along an olivine-clinohumite grain boundary and dislocations induced by the growth of the sulfide blebs during quenching are highlighted by the white arrows. A low-density rim surrounds both sulfides and was identified as carbonate melt by TEM-EDS (b). (b) TEM-EDS of the same sulfide blebs: a thin veneer of carbonate melt (green) surrounds both sulfides. (c) High-angle annular dark field scanning transmission electron micrograph of the pyroxenite lamella (see Figure 2a). The STEM image shows two sulfide blebs with inner high-density inclusions surrounded by quenched carbonate melt. Graphite is also present in this quenched melt-sulfide complex (dark red in (d)). (d) TEM-EDS of the pyroxenite lamella in (c) using the same colors as in (b). The pyroxenite lamella recovered a larger volume of melt surrounding the sulfide blebs: brucite, graphite and fluorite were identified in addition to calcite as quenched products of carbonate melt.
TEM micrograph of M21-107 - peridotite and TEM-EDS maps (b-f) highlighting PGE association with sulfide blebs. (a) High-angle annular dark field image of the left sulfide bleb from Figure 3a. The PGE-rich high-density inclusion is visible as the bright white area contained within the sulfide. (b)-(f) EDS maps of the sulfide bleb showing the distribution of sulfur (b), platinum (c), iridium (d), iron (e) and nickel (f). There is no detectable sulfur within the PGE-inclusion (cf. Supp. Table 7).

Figure 5

TEM-EDS maps of the sulfide blebs within the pyroxenite lamella (Figure 3c). Two distinct Fe-PGE rich inclusions are contained within the sulfide. Compositions of the PGE inclusion on the left are provided in Supp. Table 7.

Figure 6

Chalcophile element compositions determined by LA-ICP-MS of olivine and neighboring clinohumite either side of the TEM-lamella (Figure 1c). Carbonate melts make their way through silicate rocks by a dissolution and precipitation mechanism, evidenced by the transport of Ni, Cu, Co and Fe from the silicate...
minerals to the melt. Typically, carbonate melts do not preferentially include chalcophile elements. However, their strong depletions in clinohumite suggest that sulfate-rich carbonate melts are responsible for this preferential partitioning. The depletion of Fe within the clinohumite is balanced by increased Mg concentrations (a), testifying to the exchange of elements with a percolating melt. The black arrows in a-c highlight the effect of passing melt on the olivine-clinohumite pairs.

Figure 7

Synchrotron micro-XRF map of M21-107 peridotite and accompanying Sulfur-XANES spectrum. (a) The synchrotron micro-XRF map highlights compositional variations across the sample. Sulfur (red) is concentrated along grain boundaries and within the carbonate melt pool. The clinohumite rim also shows strong depletions in iron. (b) Sulfur-XANES spectrum of the carbonate melt, taken from the white square in (a). Most of the sulfur within the carbonate melt is present as oxidized sulfate (S^{6+}).
Figure 8

Photo-induced Force Microscope (PiFM) map of M21-107-pyroxenite at different magnifications. (a) PiFM map acquired at the sulfate peak (1100 cm\(^{-1}\) wavenumber): the bright gold regions correspond to sulfate, which is predominately found along grain boundaries between silicate minerals. (b) PiFM map of the red box in (a) combining spectra for olivine (green), mica (blue - phlogopite) and sulfate (red). (c) A high-magnification PiFM map of the red box in (b): here, interstitial carbonate melt (black) is identified in addition to olivine, mica and sulfate. The sulfate peaks correspond to aqueous sulfate anions dissolved in the carbonate melt.
Figure 9

Schematic diagram of melting processes in the lithospheric mantle. (a) Incipient melts are likely widespread throughout the lithospheric mantle where small amounts of CO$_2$ and H$_2$O significantly depress the solidus of peridotite and pyroxenite to temperatures of \sim950°C at 2.5 GPa. The first formed melts are carbonatitic in composition, provided oxidized conditions persist. The lithospheric mantle is oxidized enough at depths less than 200 km and carbon occurs as carbonates in preference to its reduced form of diamond or graphite. (b) The oxidized carbonate melt can interconnect at tiny volumes and, as documented here, transport sulfur as sulfate. This effectively mobilizes sulfur from its mantle reservoir to shallower depths within the Earth. The addition of sulfate anions to the melt likely causes a chemical potential gradient and chalcophile elements (Cu, Fe, Ni and Co) partition strongly from olivine into the sulfate-carbonate melt, along with PGEs. These highly mobile low-degree melts quickly leave their mantle sources and rise towards the crust, where they will react and metasomatize the deep lower crust, enriching it with precious elements that are essential for ore genesis.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- [suppmaterials.docx](#)