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Abstract

Despite the recent development of numerous methods aiming to estimate individual-
level treatment effects based on observational data, assessing the validity of these esti-
mates remains challenging. It is often unclear whether the observational data meet the
assumptions imposed by a method. Additionally, there is often great flexibility in model
choice when implementing a given method. This article introduces the R package RC-
Trep, designed for easy assessment of the validity of estimates of the average treatment
effect obtained from observational data. This is achieved by a) making it easy to obtain
and visualize estimates derived using a large variety of methods, and b) ensuring that
these estimates are easily compared to a gold standard on population and subpopulation
levels. RCTrep outlines a four-step workflow, namely, set-selection, estimation, diagnosis,
and validation. The package provides a simple dashboard to review the obtained results.
This article serves as a user guide for researchers aiming to leverage the potential of ob-
servational data to inform personalized treatment.

Keywords: observational data, randomized controlled trial data, the average treatment effect,
validation.

1. Introduction

There is a growing interest in estimating the average treatment effect (ATE) using observa-
tional data (Bica et al. 2021; Colnet et al. 2020; Stuart 2010). Numerous methods have been
proposed, capitalizing on ideas such as the G-computation method (Hill 2011; Hitsch and
Misra 2018; Atan et al. 2018; Wager and Athey 2018), the propensity score-based method
(Xie et al. 2012; Rosenbaum and Rubin 1983; Austin 2011), the doubly robust method (Bang
and Robins 2005; Funk et al. 2011), and the representation learning method (Yao et al. 2018;
Johansson et al. 2020), etc.. For a more detailed overview of related literature, see the recent
survey by Jiang et al. (2021). Despite this large contemporary literature, there is no "single
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best" method that can consistently provide the most accurate estimates of the ATE on a
variety of observational datasets (Dorie et al. 2019). Hence, given an observational dataset
at hand, in the absence of a ground-truth, it is challenging to assess the validity and select
the most appropriate method.

In this paper, we present the RCTrep package, an R package designed to easily implement a
large number of methods for the ATE estimation using observational data. Next, we allow
for the assessment of the validity of these estimates by enabling easy comparison to unbiased
estimates obtained from randomized controlled trials (RCTs).

We formulate core elements of the approach taken in RCTrep as follows: Consider a target
population Py defined by a true data generation mechanism, from which two samples are
drawn: 8" (an RCT sample) and S°* (an observational sample). For the RCT sample, we
assume, without loss of generality, the simple random sampling and the randomized treatment
assignment. For the observational sample, we assume a known sampling mechanism and
an unknown treatment assignment mechanism. Let X = (Xi,..., X4) € R? denote a d—
dimensional vector of pre-treatment outcome predictors; let Xy € X denote a vector of
selection predictors of the observational sample; furthermore, let T= {70, 71, ..., Tn} denote a
set of estimators of the conditional average treatment effect (CATE). In this setting, first of
all, RCTrep makes it easy to compute 7(X). Next, RCTrep makes it easy to validate and
select the most appropriate estimates according to the following metric:

~Qret  , gobs AQrC ~ ~ ~ ~ ~ ~
I[‘(7—(39 t;TS ):L<7—6§ ta Z w(msi)T(mi)>a s.t. plas) = w(xs)q(xs), Z w(zsi) =1

ieSobs ieSobs
(1)

where 7, is an unbiased estimate of the ATE of the target population obtained from S"
using the estimator 7y (the difference in means of outcomes between groups), p(xs) and §(xs)
are the empirical densities of z, in 8™ and S° respectively, W (xs;) is a normalized weight
for i € S°°, and W is an estimator of the weight. Thus, the RCTrep package allows for
the comparison of estimates obtained from an observational dataset to those obtained from
an RCT dataset by adjusting for the treatment assignment mechanism and the sampling
mechanism of the observational dataset. RCTrep outlines a four-step workflow to implement
the validation:

Srct

e Step 1: Set-selection. Users select two sets of covariates X and X 4. These covariates
are used to model 7(X) and w(X ) respectively.

e Step 2: Estimation. Users specify two estimators, 7 and @, and initiate two objects
of the class TEstimator and SEstimator accordingly. By specification, users provide a
method for estimating the ATE of population and subpopulations stratified by X and
a method for estimating the weight for each individual.

e Step 3: Diagnosis. The RCTrep package provides a number of statistics to diag-
nose assumptions for these specified methods (i.e., for the choice of TEstimator and
SEstimator).

e Step 4: Validation. Finally, users initiate an object of the class Fusion. This object
integrates estimates of the ATE of population and subpopulations obtained from S™
and S°° and computes metrics L.



For more elaboration of these four steps, see section 5. To the best of our knowledge, RCTrep
is the only package that allows users to estimate the ATE using observational data and assess
the validity of these estimates using RCT data.

The remaining part of the paper proceeds as follows: after a brief review of the related litera-
ture and an illustrating example, section 2 formulates the problem setup for the validation of
estimates of the ATE. Next, section 3 details our approach. Section 4 provides an overview
of the R package RCTrep and introduces core classes and functions. Section 5 outlines a
four-step workflow of RCTrep package using an example. Section 6 demonstrates three addi-
tional examples, i.e., validation at scale, validation using aggregate data, and validation using
synthetic RCT data. Finally, we provide suggestions for future study in section 7.

1.1. Related work

Currently, although there are a number of software for the treatment effect estimation using
observational data, e.g., Python libraries CausalML (Zhao and Liu 2023), EconML (Research
2019), DoWhy (Sharma et al. 2019), and R package causaleffect (Tikka and Karvanen 2017),
software for assessing the validity of estimates of the ATE obtained from observational dataset
by comparison to RCT data are, to our best knowledge, non-existent (Mayer et al. 2022).
Earlier work by Wendling et al. (2018), Alaa and Van Der Schaar (2019), Schuler et al. (2017),
Powers et al. (2018), Franklin et al. (2014), and Cheng et al. (2022), and existing software
packages such as the R package MethodEvaluation (Schuemie et al. 2020), the Python package
Causality-Benchmark (Shimoni et al. 2018), and the Python package JustCause (Franz 2020),
do approximate a data generation mechanism for a given observational dataset, and use the
simulated truth of treatment effects for the validation. These methods implicitly assume no
unmeasured confounders. An overview of existing software for treatment effects validation
is provided in Table 1. The table shows that RCTrep is the only package using unbiased
estimates from an RCT as a surrogate of truth. In addition, RCTrep provides both the
regulatory agreement and the estimate agreement as evaluation metrics (Franklin et al. 2020).

On the other hand, there is a growing body of studies focusing on generalization or trans-
portation of estimates of the ATE of a population to another population (Dahabreh et al.
2020; Ackerman et al. 2021; Dong et al. 2020; Cinelli and Pearl 2021; Rudolph et al. 2018).
Approaches used in these studies are closely related to that of RCTrep, however, RCTrep is
different from them with respect to the motivation - validating estimates of the ATE obtained
from an observational dataset and selecting the most appropriate one accordingly. RCTrep
serves as a tool for people who want to leverage the potential of observational data to inform
personalized treatment.

1.2. Strengths and limitations of our work

RCTrep makes several contributions to the methodology and software design. First, unlike
existing studies and relevant packages which validate estimates of the ATE using simulated
data (Wendling et al. 2018; Alaa and Van Der Schaar 2019; Schuler et al. 2017; Franklin et al.
2014; Schuemie et al. 2020; Shimoni et al. 2018), RCTrep is the only package that compares
to unbiased estimates of the ATE obtained from a real dataset. Second, RCTrep validates
estimates on both population and subpopulation levels, providing a deeper understanding of
the error of a method. For instance, a high-bias method may have a relatively low bias at
a population level but may have a high bias at subpopulation levels. Third, RCTrep can
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Task Package
MethodEvaluation CausalityBenchmark JustCause RCTrep
v

Methods propensity score
G__computation
Doubly robust
Sample space population
subpopulation
Metrics (R)MSE
PEHE
Bias
confidence interval
coverage
AUC
mean precision
type 1 error
type 2 error
Regulatory agreement v
Estimate agreement v
Truth simulated value v v v
unbiased estimate v
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Table 1: Comparisons of packages for the validation of estimates of the ATE with a focus on
the provided options of methods, the sample space based on which estimates of the ATE are
to validate, evaluation metrics, and the truth.

validate estimates using aggregate data of subpopulations, which can generate the approxi-
mately same results as those using an individual-level dataset. RCTrep also provides functions
to generate synthetic RCT datasets based on available marginal distributions of covariates.
Fourth, RCTrep provides a structured way to implement the validation. For instance, in the
set-selection step, users can select different adjustment sets; in the estimation step, users can
select different methods and modeling techniques for the estimation of the ATE and weights.
Results from different settings can be easily assessed. Lastly, the design structure of RCTrep
has advantages over other packages and can be easily extended for other motivations. For
instance, RCTrep can be used to compare estimates of the ATE from multiple data sources
by aligning the four-step workflow with data partners.

1.3. Demonstration of usage

Codes below demonstrate how to implement the validation. The results are presented in
Figure 1.

R> library("RCTrep")

R> output <- RCTREP(TEstimator = "G_computation", SEstimator = "Exact",
outcome_method = "BART",

source.data = RCTrep::source.data,

target.data = RCTrep::target.data,

vars_name = list(outcome_predictors =

c("x1","x2","x3", "x4","x5","x6"),

treatment_name = c('z'),

outcome_name = c('y')),

+ + + + + + +



+ selection_predictors = c("x2","x6"),

+ stratification = c("x1","x3","x4","x5"),
+ stratification_joint = TRUE)

R> fusion <- Fusion$new(output$target.obj,

+ output$source.obj,

+ output$source.rep.obj)

R> fusion$plot()
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Figure 1: The validation of estimates of the ATE on population and subpopulation levels
using RCTrep.

Descriptions of the input arguments in the function RCTREP () are as follows:

o TEstimator specifies a method to adjust for the treatment assignment mechanism;

e SEstimator specifies a method to adjust for the sampling mechanism;

e outcome_method specifies a modeling approach for the method TEstimator;

e target.data and source.data specify an RCT dataset and an observational dataset;

e vars_name specifies covariate names of the treatment, the outcome, and pre-treatment
outcome predictors which are used to adjust for the treatment assignment mechanism;

e selection_predictors specifies covariate names of sample selection predictors of the
observational data, which are used to adjust for the sampling mechanism;

e stratification and stratification_joint specify the selection of subpopulations
based on levels of individual or joint covariates indicated in stratification.
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In the above example, we use G_computation method to adjust for the treatment assign-
ment mechanism and we use the Exact matching method to adjust for the sampling mecha-
nism. We use Bayesian additive regression trees (BART) to model the outcome indicated by
outcome_method = "BART". We specify outcome_predictors = c("x1","x2","x3","x4",
"x5","x6") and selection_predictors = c("x2","x6"). In this example, since x2,x6 are
the only set of selection predictors that can lead to a discrepancy of estimates of the ATE
between two datasets, they are the minimal set of selection_predictors for the estima-
tion of the weights. The results in Figure 1 show that estimates from the observational data
(indicated by G_computation/BART/Exact/2) are close to the unbiased estimates from the
RCT data (indicated by Crude), and hence these estimates from the observational data are
arguably valid. Without properly adjusting for the sampling mechanism, a large discrepancy
in estimates between an RCT dataset and an observational dataset can be observed, as shown
by the large discrepancy in estimates between Crude and G_computation/BART, which might
be wrongly attributed to unadjusted confounders in the observational dataset. See section 6
for more working examples.

2. Problem setup

In this section, we formulate the problem setup for validating estimates of the ATE. An
overview of the notation used throughout this paper is provided in Appendix A.

2.1. Estimators for the ATE

We consider potential outcomes framework for estimating the ATE (Imbens and Rubin 2015).
Let X denote a d-dimensional vector of all pre-treatment outcome predictors; T € {0,1}
denote a binary treatment indicator where 1 and 0 denote the treatment and the control,
respectively; Y denote outcomes of interest, Y (¢) denote the potential outcome had the indi-
vidual received T' = t. The observed outcome of individual ¢ under the received T; is denoted
as Y; = T;Yi(1) + (1 — 73)Yi(0). The individual-level treatment effect is defined as the simple
difference 7; = Y;(1) — Y;(0), the CATE is defined as 7(X) = E[Y(1) — Y(0) | X], and the
ATE is defined as 7 = E[7(X)], where (X,Y(1),Y(0)) ~ Py, and Py is a target population
with a data generation mechanism parameterized by 6. A simple random sample is drawn
from the target population. The treatment is assigned for each individual in the sample
and the corresponding outcome is observed. The sample with observed data is denoted as
S = {(X5, T, Yi)ii = 1,..,n)

2.2. Validation of estimates of the ATE

We now consider a set of candidate estimators of the CATE T = {fg, 71, ..., 7n}, where 7(X) :
X — R. These may include, for example, different methods (the G-computation method,
the inverse propensity-score weighting (IPW) method, the doubly robust (DR) method, the
difference in means) combined with different modeling choices (e.g., BART, gaussian process,
causal forest), and different hyper-parameter settings of one model, etc.. The accuracy of an
estimator 7 for the estimation of the ATE is characterized by a distance measure L as an



evaluation metric, and the most accurate estimate of the ATE is derived based on:

7* = argmin L (7,7) = argmin L <T, 2 ﬁ(m)%(m)) (2)

7€T 7€T 2eS

Since 7 is not observed, the metric in Equation 2 can not be measured, hindering the direct
validation of 7 using S. In the following section, we provide our validation approach.

3. Validating estimates using RCT data

In this section, we elaborate our approach to validating estimates of the ATE. In section 3.1,
we start by elaborating why an estimate of the ATE using an RCT dataset can be regarded
as an unbiased estimate of the ATE of a target population. Next, in section 3.2 we elaborate
how to use these estimates obtained from the RCT dataset to validate estimates obtained
from an observational dataset.

3.1. An RCT provides unbiased estimates of the ATE

By definition, the treatment effect for each individual is not observed and can only be esti-
mated. The following two assumptions allow for an unbiased estimate of the ATE:

Assumption 1 T-ignorability: Y (1),Y(0) 1L T'| X,
Assumption 2 T-overlap: 0 < P(T =1]| X;) <1

where X; € X is a set of confounders that isolate dependence between covariates and the
treatment. The assumption of T'—ignorability implies that conditional on X, the treatment
is independent of potential outcomes, hence the change in observed outcomes between treat-
ment and control groups is only attributed to the treatment. The assumption of T'—overlap
guarantees that there is a sufficient number of individuals with characteristics X; = ax; in both
groups. Given these two assumptions, the causal relationship between the treatment and the
outcome can be identified and an unbiased estimate can be derived. Three classes of methods
can be used to derive estimates of the ATE under these assumptions: the G-computation
method, the IPW method, and the DR method. Since the treatment is randomized in (sub-
)population of an RCT, these assumptions hold given an empty set in (sub-)population, and
the simple difference in means between groups in (sub-)population is an unbiased estimate of
the ATE of (sub-)population. See appendix C for more detailed descriptions. In practice, all
outcome predictors can be adjusted in these methods because X is a sufficient set of measured
confounders and may improve the precision of estimates (Chatton et al. 2020).

3.2. We can use estimates derived from the RCT to validate estimates from
an observational dataset

Once we have unbiased estimates of the ATE obtained from an RCT dataset, how to use
these estimates to validate estimates obtained from an observational dataset? In this section,
we introduce assumptions and methods that allow for the validation. We assume an RCT
dataset S™ and an observational dataset S°* are drawn from the same target population
Pp; S™ is a simple random sample from Py while S°° is drawn from Py via a sampling
mechanism. Let S € {0, 1} denote a binary selection indicator where 1 and 0 denote selection
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to 8™ and S°°. Analogous to assumptions and methods in section 3.1, we can use similar
assumptions of the sampling mechanism to allow for the comparison of estimates between
STt and S°:

Assumption 3 S-ignorability: Y (1),Y(0) 1L S | X,
Assumption 4 S-overlap: 0 < P(S=1| X;) <1

Assumption 3 demonstrates that conditioning on X, € X, potential outcomes are exchange-
able between samples. Assumption 4 guarantees that there is a sufficient number of individuals
with characteristics Xy = xs in both samples. Given these two assumptions, within a sub-
population X = x4, there is no unobserved covariate varying between samples, and hence
estimates of the ATE conditioning on X ; are comparable.

Given these two assumptions, we can use weighting methods to adjust for the sampling
mechanism of S°°. These methods aim to balance X, between samples. Three weighting
methods are provided: 1) inverse selection probability weighting (ISW); 2) exact matching; 3)
sub-classification based on strata of the selection probability of S™. In general, all weighting
methods require estimation of either a selection probability or density of X . See appendix
D for an elaboration of the weighting methods in RCTrep. In practice, only covariates that
are predictive of treatment effects and the sample selection can lead to the discrepancy of
treatment effects between samples while adjusting other covariates may inflate the variance
of weighted estimates (Egami and Hartman 2021; Dahabreh et al. 2020).

3.3. Putting all together

Given above four assumptions, we can replace p(x)7(x) in Equation 2 with @ (xs)7(x), and
replace 7 with ﬁfm, where 75" is an unbiased estimate of the ATE of Py obtained from
the estimator 7y, 7o is the simple difference in sample means of outcomes between groups,
and 7(z) is an estimate of the ATE of a subpopulation with X = 2 in S°*. The proposed
evaluation metric is as follows:

L <7A—(§Jsmtv Z w(msz)%(mz)> ; s.t. ﬁ(ms) = Cj(ws)w(ms)a Z UA)(’JCS@) =1 (3)
ieSobs ieSobs
where 1(xy;) is the weight for individual i € S, w(xs) = Y., =z, W(Tsi) is the weight
for a subpopulation with X, = x, in S°, x, in weighted S and 8" are approximately
equally distributed. A variety of distance measurements can be applied to .. We also validate
estimates on subsets of the target population to quantify the ability of 7(X) to capture the
variation in treatment effects across subpopulations. The validation on subpopulation levels
can help us evaluate the flexibility of 7(X). In the following, we will move from math to
code, we will first have an overview of the package RCTrep, and then demonstrate the usage

of RCTrep.

4. Overview of software

The current section introduces the RCTrep implementation and core classes. The section first
presents an overview of core classes that form the building blocks of RCTrep and offers an
overview of the implementation of RCTrep using these core classes. Then the section provides



a further introduction to these core classes and core functions. In the next section, we provide
the basic structure of RCTrep and relations between each class.
4.1. Implementation

An overview of the implementation of RCTrep is provided in Figure 2. The figure demon-
strates the role of three core classes in the implementation. The three classes are:

Observational = TEStimator TEstimator
data (source.obj) (target.obj) e -

SEstimator
source.obj.rep)

(

L v '

,L Fusion (fusion) ]

Figure 2: Diagram of RCTrep basic structure.

1. TEstimator: R6 class TEstimator is the parent class of all RCTrep TEstimator sub-
classes. It estimates the ATE of a population and subpopulations; it diagnoses the
T-overlap assumption, and diagnoses the T-ignorability assumption depending on an
instantiated class, e.g., it diagnoses model assumptions for the G_computation subclass
and diagnoses the distance of confounders between groups for the IPW subclass. RCTrep
provides TEstimator_wrapper () to generate an object of this class. See Table 2 for
more detailed descriptions of input arguments in this function.

2. SEstimator: R6 class SEstimator is the parent class of all RCTrep SEstimator sub-
classes. The class integrates data from source.obj and target.obj, and regards data
in target.obj as a simple random sample from a target population. It computes
weights for source.obj, so that the weighted covariates in source.obj and these co-
variates in target.obj are balanced. It diagnoses the S-overlap assumption and diag-
noses the S-ignorability assumption by measuring the distance of weighted covariates
in source.obj and target.obj. RCTrep provides SEstimator_wrapper () to generate
an object of this class. See Table 3 for more detailed descriptions of input arguments
in this function.

3. Fusion: R6 class Fusion integrates estimates from objects of the class TEstimator
and objects of the class SEstimator, computes evaluation metrics on population and
subpopulation levels, and ranks estimates accordingly. The number of objects of the
class TEstimator or SEstimator passed to its initialize function is not limited.

A main loop that relates one to one to the implementation is illustrated as follows:
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1. users call TEstimator_wrapper() to initialize a TEstimator subclass for an observa-
tional dataset as source.obj and to initialize a TEstimator subclass for an RCT dataset
as target.obj. These objects fit a model for the treatment or the outcome conditional
on specified covariates, and estimate the ATE of population and subpopulations. The
RCT data is regarded as a simple random sample from a target population;

2. users call SEstimator_wrapper () to initialize a SEstimator subclass as source.obj.rep
by assigning source.obj and target.obj to the function. source.obj.rep estimates
weights using specified covariates in source.obj and target.obj;

3. users call source.obj.rep$EstimateRep (), specifying two arguments stratification
and stratification_joint to the function. The function estimates the weighted ATE
of population and subpopulations stratified by levels of individual (stratification_joi
nt=FALSE) or joint (stratification_joint=TRUE) covariates specified in stratificati
on.

4. users initialize a Fusion class as fusion by assigning source.obj, target.obj, and
source.obj.rep to its initialize function. fusion aggregates, ranks, plots, and prints
estimates of the ATE of population and subpopulations. The object validates estimates
of the ATE of the target population and subpopulations by calling fusion$evaluate(),
prints evaluation metrics on population and subpopulation levels, and ranks these esti-
mates according to the pseudo mean squared error.

5. (Optional) Then repeat step 3) and step 4) to validate estimates on subsets of the target
population selected by different stratification and stratification_joint.

We provide an overview of the basic usage in section 5 where four main steps to validate
estimates of the ATE using RCTrep are summarized. For more implementation details and
infrastructure of design, see Appendix F.

4.2. Core classes

RCTrep provides two core classes, i.e., TEstimator and SEstimator, which are responsible
for adjusting for the treatment assignment mechanism and the sampling mechanism, re-
spectively. RCTrep offers four main subclasses of TEstimator and three main subclasses of
SEstimator. The four subclasses of TEstimator are Crude, G_computation, IPW, and DR.
The three subclasses of SEstimator are SEexact, SEisw, and SEsubclass. The description
of key public attributes and key public methods of TEstimator and SEstimator are provided
in Table 4. Note that input arguments of functions listed in Table 4 are stratification
and stratification_joint with default values private$outcome_predictors and TRUE,
respectively. By specifying these two arguments, these functions in Table 4 get outputs of
subpopulations stratified by levels of covariates in stratification. More elaboration of
these core classes is provided in Appendix B.

In case full data sets of target.obj and source.obj are not allowed to share to estimate
weights, RCTrep provides a subclass TEstimator_pp and a subclass SEstimator_pp. The
TEstimator_wrapper () returns an object of the class TEstimator_pp when the input ar-
gument data.public=FALSE is indicated. SEstimator_wrapper () returns an object of the
class SEstimator_pp when the classes of input arguments are TEstimator_pp. The public
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Arguments

Description

Default

Estimator

vars_name

data

name

outcome_method

treatment_method

two_models

outcome_formula

A character specifying a method for the ATE estimation.
Allowable options are "G_computation", "IPW", "DR".

A list with three named characters, ie.,
outcome_predictors, treatment_name, and outcome_name,
which specifies covariate names of outcome predictors, the
treatment, and the outcome.

A data.frame with n rows and p columns, each row contains
covariates in vars_name. RCTrep supports the binary treat-
ment and the binary/continuous outcome.

A character specifying a name of an returned object

A character specifying a method for modeling the outcome
when Estimator is set to "G_computation" or "DR". For
more available methods, see a model list of the function
train() in the R package caret

A character specifying a method for modeling the propensity
score when Estimator is set to "IPW" or "DR". For more
available methods, see a model list of the function train()
in the R package caret

Logical value indicating whether the outcome should be mod-
eled separately when Estimator is set to "DR"

A formula specifying an outcome regression model when
Estimator is set to "G_computation" or "DR"

treatment_formula A formula specifying a propensity score model when

data.public

is.Trial
strata_cut

Estimator is set to "IPW" or "DR"

Logical value indicating whether the full dataset data should
be a public attribute of a returned object. If FALSE, the
function returns an object of class TEstimator_pp

Logical value indicating whether data is an RCT dataset

A list each of a component is a named list with two named
vectors. The name of a list is a covariate name and the names
of two vectors are breaks and labels. strata_cut calls the
cut function to divide the range of the value of the covariate
into intervals based on break and code the value according
to label.

A number of additional arguments for fitting a model speci-
fied in outcome_method or treatment_method. See allowable
arguments in the function train() in the R package caret,
or pbart and wbart in the R package BART

NULL
llglmll

llglmll

FALSE

NULL

NULL

TRUE

FALSE
NULL

Table 2: Descriptions of the input argument of the function TEstimator_wrapper().
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Arguments Description Default
Estimator A character specifying a method for estimat- -
ing weights. Allowable options are "Exact",
"Subclass", and "ISW".

target.obj An object of the class TEstimator of which -
estimates are unbiased estimates

source.obj An object of the class TEstimator of which -
estimates are to validate

selection_predictors A vector of characters specifying covariate -
names for weighting

method A character specifying a method for estimating ’glm’

the selection probability. See a model list of the

function train() in the R package caret, and

options for distance argument of the function

matchit () in the R package Matchlt package.
sampling_formula A formula specifying a model of the selection NULL

probability

A number of additional arguments for fitting -

a model specified in method when Estimator

is set to "ISW". See allowable arguments of the

function train() in the R package caret

Table 3: Descriptions of the input arguments of the function SEstimator_wrapper ().

attributes data of objects of the class TEstimator_pp are the aggregate data of subpopula-
tions. An object of the class SEstimator_pp estimates weights based on the aggregate data
of objects of the class TEstimator_pp. See Example 2 in section 6 for the usage of aggregate
data for the validation.

RCTrep provides a subclass TEstimator_Synthetic of TEstimator. The subclass is to ini-
tialize an object using a synthetic dataset. GenerateSyntheticData() generates a synthetic
dataset given marginal distributions of covariates and pair-wise correlations between these
covariates. The function estimates the joint distribution of these covariates and generates a
full dataset accordingly. See Example 3 in section 6 for more details.

5. Basic usage

In the current section, we demonstrate a four-step workflow to validate estimates of the ATE
using RCTrep: set-selection, estimation, diagnosis, and validation. We demonstrate these
four steps using an example, and we integrate relevant results generated from these four steps
into a dashboard. In the following, we introduce the first step.

5.1. Step 1: Set-selection

In the set-selection step, we select two covariates sets: 1) X outcome_predictors, a set of co-
variates used to adjust for the treatment assignment mechanism; 2) X ¢ selection_predictors,
a set of covariates used to adjust for the sampling mechanism. By default, outcome_predictors
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Attributes/Methods Description

Class TEstimator

estimates A list containing two elements, i.e., a data frame named
ATE and a data frame named CATE

get_CATE() Print a data frame of estimates of the CATE

plot_CATEQ) Plot estimates of the CATE

diagnosis_t_ignorability() Plot diagnosis results of the T-ignorability assumption

diagnosis_t_overlap() Plot diagnosis results of the T-overlap assumption

diagnosis_y_overlap() Plot the count of binary outcomes in treatment and con-

trol groups; plot the distribution of continuous outcomes
in treatment and control groups

plot_y1_y0() Plot the predicted outcomes under the treatment and the
control

Class SEstimator

estimates A list containing two elements, i.e., a data frame named
ATE and a data frame named CATE

EstimateRep() Estimate the weighted ATE of the population and sub-

populations in source.obj and pass these results to the

public attributes estimates$ATE and estimates$CATE
diagnosis_s_ignorability() Plot diagnosis results of the S-ignorability assumption
diagnosis_s_overlap() Plot diagnosis results of the S-overlap assumption

Table 4: Descriptions of core public attributes and core public methods of the class
TEstimator and the class SEstimator.
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and selection_predictors are the same. To reduce the variance of estimates of the weighted
ATE, we assign a set of covariates that are predictive of treatment effects and the sample
selection to selection_predictors. Since we don’t know the true treatment assignment
mechanism, we assign all pre-treatment covariates to outcome_predictors.

R> library("RCTrep")

R> source.data <- RCTrep::source.data

R> target.data <- RCTrep::target.data

R> vars_name <- list(outcome_predictors =
+ c("x1","x2","x3", "x4","x5","x6"),

+ treatment_name = c("z"),
+ outcome_name = c("y")
+ )

R> selection_predictors <- c("x2","x6")

To demonstrate the set-selection, we present a causal structural diagram of the data generation
mechanism of the data used throughout the paper in Figure 9. The figure presents predictors
of the treatment, predictors of the outcome, and predictors of the selection. Although in
practice the true causal structural diagram of a dataset is unknown, a such diagram can help
us select outcome_predictors and selection_predictors easily. !

5.2. Step 2: Estimation

In the estimation step, two sub-steps are summarized, namely, the estimation of the ATE in
TEstimator, and the estimation of the weighted ATE in SEstimator. In the first sub-step, we
use one method to adjust for the treatment assignment mechanism, namely, G_computation
method, and one method to derive unbiased estimates of the ATE in an RCT dataset, namely,
Crude method. In the second sub-step, we use one method to adjust for the sampling mech-
anism, namely, Exact matching. We first estimate the ATE using an observational dataset.

Step 2.1: Estimation of the ATE

In this step, we estimate the ATE in TEstimator. We start out by instantiating objects
of the class TEstimator using an observational dataset and an RCT dataset. We call
TEstimator_wrapper () function to initialize objects source.obj and target.obj using these
two datasets respectively:

R> source.obj <- TEstimator_wrapper(

Estimator = "G_computation",

data source.data,

name = "RWD",

vars_name = vars_name,

outcome_method = "glm",

outcome_formula =y ~ x1 + x2 + x3 + z + z:x1 + z:x2 +z:x3+ z:x6,
data.public = TRUE

+ + + + + + +

'Note that users could use related causal discovery packages to select these two sets. The software include
but are not limited to, e.g., R packages dosearch (Tikka et al. 2021), causaleffect (Tikka and Karvanen 2017),
and a web-based software causalfusion (Bareinboim and Pearl 2016).
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R> target.obj <- TEstimator_wrapper (
Estimator = "Crude",

data = target.data,

name = "RCT",

vars_name = vars_name,
data.public = TRUE,

isTrial = TRUE

)

+ + + + + + +

We specify the following arguments to instantiate source.obj and target.obj:

1. Estimator: specifying a method for estimating the ATE. TEstimator_wrapper () will
initialize a TEstimator subclass according to the specified method. For instance, if
Estimator="G_computation", TEstimator_wrapper () initializes a subclass G_computa
tion and returns the initialized object;

2. data: a data.frame with n rows and p columns, each row contains covariates indicated
in vars_name;

3. name: a character indicating an object name;

4. vars_name: a list containing three vectors with the first vector outcome_predictors in-
dicating the covariate names of outcome predictors, the second vector treatment_name
indicating the covariate name of the treatment, and the third vector outcome_name
indicating the covariate name of the outcome.

Step 2.2: Estimation of the weighted ATE

In this step, we estimate the weighted ATE in SEstimator. We instantiate a SEstimator
subclass SEexact as source.obj.rep by calling the function SEstimator_wrapper ():

R> source.obj.rep <- SEstimator_wrapper (Estimator = "Exact",
+ target.obj = target.obj,

+ source.obj = source.obj,

+ selection_predictors =

+ selection_predictors)

R> source.obj.rep$EstimateRep(stratification = c("x1","x3","x5"),TRUE)
The arguments list for the function SEstimator_wrapper is:

1. Estimator: a character indicating a method for estimating weights. The wrapper
function initializes a SEstimator subclass accordingly;

2. target.obj and source.obj: target.obj indicates an object whose data is regarded
as a simple random sample of a target population and estimates of the ATE are regarded
as unbiased estimates of the truth; source.obj indicates an object whose estimates of
the ATE are to validate.
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3. selection_predictors: a character vector indicating covariate names of sample selec-
tion predictors of the observational dataset; the weighted joint distribution of these co-
variates in source.obj should be approximately equally distributed to that in target.ob

J-

Then we call EstimateRep() - a core function of the instantiated object source.obj.rep.
The function is to estimate the weighted ATE of the target population and subpopulations
using the observational dataset. The weighted distribution of selection_predictors in
source.obj and the distribution of selection_predictors in target.obj should be bal-
anced. Two optional arguments for the function EstimateRep() are specified:

1. stratification: a character vector indicating covariate names. EstimateRep() esti-
mates the weighted ATE of subpopulations. The subpopulations are selected accord-
ing to levels of covariates in stratification; the default value of stratification is
selection_predictors;

2. stratification_joint: a logical value, if TRUE, then subsets are selected by levels of
joint covariates in stratification; otherwise, subsets are selected by levels of individ-
ual covariates in stratification.

5.3. Step 3: Diagnosis

On completion of all class instantiations, we need to diagnose assumptions in the object
source.obj of the class TEstimator, and we need to diagnose assumptions in the object
source.obj.rep of the class SEstimator:

R> source.obj$diagnosis_t_overlap()

R> source.obj$diagnosis_t_ignorability()

R> source.obj.rep$diagnosis_s_overlap()

R> source.obj.rep$diagnosis_s_ignorability()

We call the above four lines to diagnose four assumptions, and the results show that:

1. Diagnosis of the T-overlap assumption: source.obj calls diagnosis_t_overlap(),
and the result is presented in Figure 3 (a). The figure presents the proportion and the
count of individuals receiving T = 1 and 7" = 0 within subpopulations stratified by
outcome_predictors. The results show that there are sufficient individuals receiving
the treatment and the control within the subpopulations.

2. Diagnosis of the T-ignorability assupmtion: source.obj calls diagnosis_t_ignorabili
ty (), and the results are presented in Figure 3 (b). Since the class of source.obj is
G_computation, the assumption of T-ignorability for the G-computation method indi-
cates the assumption of no omitted variable bias in a regression model. Thus RCTrep
diagnoses the T-ignorability assumption using the following three metrics:

(a) residual mean (+ 1.98 standard error) of subpopulations stratified by outcome_pred
ictors, which is presented in the left plot in Figure 3 (b). The result shows that
means of residuals of subpopulations are all very close to zero;



‘Treatment overlap within subpopulations.

study

I Rer
B mwo

group_name
group_name

X2=0,6=1+ X2=0,6=1+

X2=0,x6=0- X2=0,46=0-

0.0 025 050 075 1w 6 500 1000 1500 2000 0o ot 02
proportion count proportion

(c) s-overlap in source.obj.rep. (d) s-ignorability diagnosis in source.obj.rep.

Figure 3: Diagnosis of assumptions in two objects.

(b) distribution of overall residuals, which is presented in the middle plot in Figure 3
(b). The result shows that the residual follows a standard normal distribution;

(c) mean squared error (£ 1.98 standard error) of subpopulations stratified by outcome
_predictors, which is presented in the right plot in Figure 3 (b). The result shows
that the mean squared error of each subpopulation is close to 1.

Overall, since the error term of the true data generation mechanism of the data in the
example follows a standard normal distribution, the diagnosis results imply that the T-
ignorability assumption plausibly holds. Thus the estimate of the ATE in source.obj
is not biased. In addition, since the true variance of the error term is 1, the normal
distribution of the residual (the middle plot in Figure 3 (b)) and the seemingly constant
(i.e., 1) mean squared error over subpopulations (the right plot Figure 3 (b)) may
imply that no other covariate can explain the residual variation. Diagnosis of the T-
ignorability assumption depends on the class of source.obj. In case the class is IPW, an
instantiated object diagnoses the assumption by presenting the inverse propensity score
weighted distribution of outcome_predictors between treatment and control groups.

3. Diagnosis of the S-overlap assumption: source.obj.rep calls diagnosis_s_overlap(),
and the results are presented in Figure 3 (c¢). The figure presents the proportion and the
count of individuals in the observational dataset and the RCT dataset within combined
subpopulations stratified by selection_predictors and the results show that there
are sufficient individuals in the two samples.
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4. Diagnosis of the S-ignorability assumption: source.obj.rep calls diagnosis_s_ignora
bility (), and the result is presented in Figure 3 (d). The figure presents the weighted
distribution of selection_predictors in the observational dataset and the RCT dataset,
indicating that outcome_predictors are balanced between the two samples and hence
the sampling mechanism is properly adjusted.

In general, diagnosis of these four assumptions can help us understand the possible sources
that may lead to a discrepancy of estimates between source.obj.rep and target.obj. For
instance, near violation of the T-overlap assumption can lead to a high variance of estimates
in the class IPW or a high bias of estimates in the class G_computation, and near violation of
the S-overlap assumption can also lead to a high variance of weighted estimates in the class
SEstimator.

5.4. Step 4: Validation

Lastly, we compute the evaluation metric in Equation 3 on population and subpopulation lev-
els. We initialize a class Fusion as an object fusion and assign source.obj, target.obj, and
source.obj.rep to fusion. fusion combines estimates from these objects and validates esti-
mates of the ATE of the target population and subpopulations. Subsets are selected according
to stratification and stratification_joint specified in source.obj.rep$EstimateRep().
fusion validates estimates in source.obj and source.obj.rep using four metrics, i.e.,
pseudo mean squared error (mse), length of confidence interval (len_ci), estimate agreement
(agg.est), and regulatory agreement (agg.reg) (Franklin et al. 2020).

R> fusion <- Fusion$new(target.obj,
+ source.obj,

+ source.obj.rep)

R> fusion$evaluate()

# A tibble: 18 x 7
# Groups: group_name [9]
group_name estimator size mse len_ci agg.est agg.reg
<chr> <chr> <dbl>  <dbl> <dbl> <lgl> <lgl>
1 pop G_computation/glm/Exact/2 2622 0.038 0.92 TRUE TRUE
2 pop G_computation/glm 2622 666. 0.239 FALSE TRUE
3 x1=0,x3=0,x5=0 G_computation/glm/Exact/2 230 0.197 4.03 TRUE TRUE
4 x1=0,%3=0,x5=0 G_computation/glm 230 1412. 0.625 FALSE TRUE
5 x1=0,x3=0,x5=1 G_computation/glm/Exact/2 496 4.82 4.69 TRUE TRUE
6 x1=0,x3=0,x5=1 G_computation/glm 496 1090. 0.444 FALSE TRUE
7 x1=0,x3=1,x5=0 G_computation/glm/Exact/2 481 0.091 2.49 TRUE TRUE
8 x1=0,%x3=1,x5=0 G_computation/glm 481 642. 0.577 FALSE TRUE
9 x1=0,x3=1,x5=1 G_computation/glm 784  42.3 0.484 TRUE TRUE
10 x1=0,x3=1,x5=1 G_computation/glm/Exact/2 784 66.1 1.68 TRUE TRUE
11 x1=1,%3=0,x5=0 G_computation/glm/Exact/2 63 0.08 8.71 TRUE TRUE
12 x1=1,%x3=0,x5=0 G_computation/glm 63 1293. 1.30 FALSE TRUE
13 x1=1,%x3=0,x5=1 G_computation/glm/Exact/2 66 3.69 7.75 TRUE TRUE
14 x1=1,%x3=0,x5=1 G_computation/glm 66 226. 1.51 FALSE TRUE
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156 x1=1,%x3=1,x5=0 G_computation/glm/Exact/2 246 6.35 4.18 TRUE TRUE

16 x1=1,%x3=1,x5=0 G_computation/glm 246 1285. 0.636 FALSE TRUE
17 x1=1,x3=1,x5=1 G_computation/glm/Exact/2 256 6.04 5.34 TRUE TRUE
18 x1=1,%x3=1,x5=1 G_computation/glm 256 575. 0.788 FALSE TRUE

R> fusion$plot ()

!
'
x1=1,x3=1,x56=1 - !
!
'
!
' —a—
x1=1,x3=1,x5=0~ ! A
!
'
' i study
x1=1,x3=0,x5=1 - : — RCT
' —e~ RWD
' '
x1=1,x3=0,x5=0- ! =
g i size
!
I 1 —a— @ 1000
Ix1=0,x3=1,x6=1- ! v
=2 : @ 2000
g |
o 1 .
x1=0x3=1x5=0- ! 2 S estimator
: e Crude
! ' = | ’
X1=0x3=0x6=1- ! ¥ S| 4 G_computation/gim
\ = G_computation/glm/Exact/2
!
'
x1=0x3=0x5=0- ! A
)
!
' = B
pop- ! A
'
|

0.0 2’5 50 75 10.0 125
treatment effet of populations

Figure 4: Results for validation of multiple estimates.

The result is presented in Figure 4, where /2 indicates the number of covariates in selection_
predictors. The result shows that

1. After adjusting for the treatment assignment mechanism and the sampling mechanism,
point estimates obtained from the observational dataset (indicated by G_computation/g
1m/Exact/2) are very close to point estimates obtained from the RCT dataset (indicated
by Crude), on both the population and the subpopulation levels. The result implies that
the treatment assignment mechanism of the observational dataset is properly adjusted,
and hence these estimates obtained from the observational data are valid.

2. The point estimates indicated by G_computation considerably differ from those indi-
cated by Crude, implying that even though the treatment assignment mechanism of
the observational dataset can be properly adjusted, there is a large difference in esti-
mates of (sub-)populations between two datasets. Without considering the effect of the
sampling mechanism on the difference in estimates, people may easily attribute the spu-
rious difference to unmeasured confounders in the observational dataset, and question
the validity of estimates obtained from the observational dataset.

3. The interval estimates of the weighted ATE of G_computation/glm/Exact/2 (i.e.,
len_ci of pop = 0.92) is wider than those of G_computation/glm (len_ci of pop
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=0.239), implying that weighting inflates the variance of weighted estimates. This re-
sult might be explained by the extreme imbalance of the proportion of subpopulations in
the two datasets stratified by selection_predictors, as indicated in Figure 3 (c). The
imbalance can lead to extreme weights, and hence inflates the variance of the weighted
estimates.

4. The interval estimates of unweighted estimates as indicated by G_computation/glm vary
across subpopulations, and may be influenced by multiple facts: 1) the sample size of
subpopulations; 2) the imbalance of proportion of individuals in treatment and control
groups within subpopulations; 3) the variance of an outcome predictor, and wide interval
estimates of a subpopulation may indicate further stratification on the subpopulation
or additional covariate adjustment to reduce the observed variation. The variation of
covariates that are predictive of treatment effects amongst subpopulations can have
impacts on interval estimates as well (Tipton 2021).

5.5. Easy visualization of results

RCTrep provides a dashboard that allows users to present all necessary results generated
from these four steps and provides users with the flexibility to select subpopulation(s) for the
validation. The dashboard can be launched by calling the function:

R> call_dashboard(source.obj = source.obj,
+ target.obj = target.obj,
+ source.obj.rep = source.obj.rep)

Once an interface is launched, users need to select covariates in checkboxes and click the
"Go" buttons to generate related results. Figure 5 shows the dashboard and the generated
results. The dashboard contains four panels, i.e., set-selection, estimation, diagnosis, and
validation. Set-selection offers two sets of covariates used for adjusting for the treatment
assignment mechanism and the sampling mechanism, and one additional set of covariates for
selecting subpopulations; estimation provides point and interval estimates of the ATE of se-
lected subpopulations; diagnosis provides diagnosis results of treatment- and sampling-related
assumptions; validation presents and compares point and interval estimates of population and
selected subpopulations. In the following, we introduce the basic workflow of the dashboard
and the usage of each panel respectively:

1. The set-selection panel provides three boxes:

e QOutcome predictors: a set of outcome predictors used for adjusting the treatment
assignment mechanism; by default, the selected covariates are outcome_predictors
defined in source.obj; by clicking "Go" the boxes named T-overlap and T-ignorability
will present the diagnosis results of the T-overlap assumption and the T-ignorability
assumption, respectively;

e Selection predictors: a set of sample selection predictors used for adjusting the sam-
pling mechanism; by default, the selected covariates are selection_predictors
defined in source.obj.rep; by clicking "Go" the boxes named S-overlap and S-
ignorability will present diagnosis results of the S-overlap assumption and the S-
ignorability assumption, respectively;
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o Stratification: a set of all pre-treatment covariates. The box provides covariates to
select subpopulations; no default values are selected. By clicking "Go" the estima-
tion panel will present estimates of the ATE of the selected subpopulations, and the
validation panel will present the validation results of the selected subpopulations.
In Figure 5, we select x1,x3,x4 for simplicity.

2. The estimation panel plots estimates of the ATE and estimates of potential outcomes of
the selected subpopulations, and prints numeric values accordingly. Additional values
pt and py, denoting the proportion of the treatment and the proportion of the positive
outcome for binary outcomes (or mean of outcomes for continuous outcomes), are also
printed.

3. The diagnosis panel diagnoses the T-overlap and the T-ignorability assumptions; the
panel diagnoses S-overlap and S-ignorability assumptions.

4. The validation panel aggregates and plots estimates of the ATE of the target population
and the selected subpopulations in target.obj, source.obj and source.obj.rep, and
prints numeric results of the evaluation metrics.

6. Additional examples

In this section, we demonstrate three examples for validating estimates of the ATE using
RCTrep. The first example demonstrates the validation of estimates derived from different
settings. The second example demonstrates the validation in case only subpopulation-level
data are available. The third example demonstrates the validation using synthetic RCT data.
In the following, we first introduce using RCTrep to validate estimates from different settings.

6.1. Example 1: Validation at scale

In the following, we demonstrate how to validate estimates derived from different settings
using RCTrep. We instantiated multiple objects, and combined these objects in one object of
the class Fusion. Estimates of the ATE are compared to the unbiased estimates and results
are shown in Figure 6:

R> library("RCTrep")

R> set.seed(123)

R> source.data <- RCTrep::source.data

R> target.data <- RCTrep::target.data

R> vars_name <- list(outcome_predictors =
+ c("x1","x2", "x3", "x4", "x5","x6"),

+ treatment_name = c('z'),

+ outcome_name = c('y')

+ )

R> source.obj.gc <- TEstimator_wrapper (
+ Estimator = "G_computation",

+ data = source.data,

+ name = "RWD",
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Figure 5: RCTrep dashboard to interactively visualize all results generated from the set-
selection, estimation, diagnosis, and validation steps.
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R>

+ + + + + + +

R>

+ + + + + + + +

R>

vars_name = vars_name,
outcome_method = "psBART",
data.public = TRUE
)
source.obj.ipw <- TEstimator_wrapper (
Estimator = "IPW",
data source.data,
name "RWD",
vars_name = vars_name,
treatment_method = "BART",
data.public = TRUE
)
source.obj.dr <- TEstimator_wrapper (
Estimator = "DR",
data = source.data,
name = "RWD",
vars_name = vars_name,
outcome_method = "BART",
treatment_method = "BART",
data.public = TRUE
)
target.obj <- TEstimator_wrapper (
Estimator = "Crude",
data = target.data,
name = "RCT",
vars_name = vars_name,
data.public = TRUE,
isTrial = TRUE
)
strata <- c("x1","x4")
selection_predictors <- c("x2","x6")
source.gc.exact <- SEstimator_wrapper (Estimator = "Exact",
target.obj = target.obj,
source.obj = source.obj.gc,
selection_predictors =
selection_predictors)
source.gc.exact$EstimateRep (stratification = strata,
stratification_joint = TRUE)
source.gc.isw <- SEstimator_wrapper (Estimator = "ISW",
target.obj target.obj,
source.obj = source.obj.gc,
selection_predictors =
selection_predictors,
method = "glm")
source.gc.isw$EstimateRep(stratification = strata,
stratification_joint = TRUE)

source.gc.subclass <- SEstimator_wrapper (Estimator = "Subclass",

23
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R>

R>

RCTrep: An R Package for the Validation of Estimates of the Average Treatment Effect

target.obj = target.obj,
source.obj source.obj.gc,
selection_predictors =
selection_predictors)
source.gc.subclass$EstimateRep(stratification = strata,
stratification_joint = TRUE)
source.ipw.exact <- SEstimator_wrapper (Estimator = "Exact",
target.obj = target.obj,
source.obj = source.obj.ipw,
selection_predictors =
selection_predictors)
source.ipw.exact$EstimateRep (stratification = strata,
stratification_joint = TRUE)
source.ipw.isw <- SEstimator_wrapper (Estimator = "ISW",
target.obj = target.obj,
source.obj = source.obj.ipw,
selection_predictors =
selection_predictors,
method = "glm")
source.ipw.isw$EstimateRep (stratification = strata,
stratification_joint = TRUE)
source.ipw.subclass <- SEstimator_wrapper (Estimator = "Subclass",
target.obj = target.obj,
source.obj = source.obj.ipw,
selection_predictors =
selection_predictors)
source.ipw.subclass$EstimateRep(stratification = strata,
stratification_joint = TRUE)
source.dr.exact <- SEstimator_wrapper (Estimator = "Exact",
target.obj = target.obj,
source.obj = source.obj.dr,
selection_predictors =
selection_predictors)
source.dr.exact$EstimateRep (stratification = strata,
stratification_joint = TRUE)
source.dr.isw <- SEstimator_wrapper (Estimator = "ISW",
target.obj = target.obj,
source.obj = source.obj.dr,
selection_predictors =
selection_predictors,
method = "glm")
source.dr.isw$EstimateRep(stratification = strata,
stratification_joint = TRUE)
source.dr.subclass <- SEstimator_wrapper (Estimator = "Subclass",
target.obj = target.obj,
source.obj = source.obj.dr,
selection_predictors =
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+ selection_predictors)

R> source.dr.subclass$EstimateRep(stratification = strata,
+ stratification_joint = TRUE)
R> fusion <- Fusion$new(target.obj,
source.gc.exact,
source.gc.isw,
source.gc.subclass,
source.ipw.exact,
source.ipw.isw,
source.ipw.subclass,
source.dr.exact,
source.dr.isw,
source.dr.subclass)

R> fusion$plot ()

+ + + + + + + + +
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Figure 6: Comparisons of 9 estimates.
R> fusion$evaluate()
# A tibble: 45 x 7
# Groups: group_name [5]
group_name estimator size mse len_ci agg.est agg.reg
<chr> <chr> <dbl> <dbl> <dbl> <1lgl> <lgl>

1 pop G_computation/psBART/ISW/2 2622 0.021 0.95 TRUE TRUE
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2 pop G_computation/psBART/Exact/2 2622 0.053 0.91 TRUE  TRUE
3 pop DR/BART_BART/subclass/2 2622 0.066 0.324 TRUE TRUE
4 pop IPW/BART/subclass/2 2622 0.07 1.13 TRUE TRUE
5 pop IPW/BART/ISW/2 2622 0.16 1.18 TRUE TRUE
6 pop DR/BART_BART/ISW/2 2622 0.161 0.35 TRUE TRUE
7 pop G_computation/psBART/subclass/2 2622 0.212 0.906 TRUE TRUE
8 pop IPW/BART/Exact/2 2622 0.219 1.18 TRUE TRUE
9 pop DR/BART_BART/Exact/2 2622 0.22 0.35 TRUE TRUE
10 x1=0,%x4=0 G_computation/psBART/Exact/2 496 0.747 2.22 TRUE TRUE

# i 35 more rows
# i Use “print(n = ...)" to see more rows

In general, the results show that the propensity-score adjusted G_computation indicated by
G_computation/psBART/ is the most accurate in terms of pseudo mean squared error, which
is in line with results in existing literature (Chatton et al. 2020; Le Borgne et al. 2021; Loiseau
et al. 2022; Dorie et al. 2019; Wendling et al. 2018; Hahn et al. 2020); IPW has the widest
interval estimates, compared to DR and G_computation. More comparisons between model
choices and adjustment sets can be implemented.

6.2. Example 2: Validation using aggregate data

RCTrep offers a solution to validating estimates of the ATE using aggregate data. We start
out by instantiating an object source.obj using an observational dataset and an object
target.obj using an RCT dataset 2:

R> library("RCTrep")

R> source.data <- RCTrep::source.data

R> target.data <- RCTrep::target.data

R> vars_name <- list(outcome_predictors =
+ c("x1","x2","x3", "x4","x5","x6"),

+ treatment_name = c('z'),
+ outcome_name = c('y')
+ )

R> selection_predictors <- c("x2","x6")
R> source.obj <- TEstimator_wrapper (

+ Estimator = "G_computation",

+ data = source.data,

+ vars_name = vars_name,

+ outcome_method = "glm",

+ outcome_form=y ~ x1 + x2 + x3 + z + z:x1 + z:x2 +z:x3+ z:x6,
+ name = "RWD",

+ data.public = FALSE

+ )

R> target.obj <- TEstimator_wrapper (

+ Estimator = "Crude",

Znote that in Example 2, we have pre-processed data for instantiating two objects: the rows in source.data
and target.data that have no match on the specified column selection_predictors are removed.



data = target.data,
vars_name = vars_name,
name = "RCT",
data.public = FALSE,
isTrial = TRUE

)

+ + + + + +

We specify data.public=FALSE to indicate that the full dataset is not allowed to output.
TEstimator_wrapper () returns an object of the class TEstimator_pp of which the pub-
lic field data is aggregate data of subpopulations stratified by levels of joint covariates in

outcome_predictors:

R> print(head(source.obj$data), digits = 2)

xl x2 x3 x4 x5 x6 yl.hat yO.hat cate se size
1 0 0 0 0 0 O 2.0 0.049 2.0 4.4e-09 8 0
2 0 0 0 0 0 1 3.1 0.049 3.1 8.0e-16 31 0
3 00 0 0 1 O 2.0 0.049 2.0 1.9e-08 16 O
4 0 0 0 0 1 1 3.1 0.049 3.1 1.1e-16 68 0
5 0 0 01 0 O 2.0 0.049 2.0 8.2¢e-17 29 0
6 0 0 0 1 0 1 3.1 0.049 3.1 2.4e-16 122 0

pt

.25
.39
.50
.56
.21
.28

py id
0.51 1
1.13 2
0.75 3
1.68 4
0.75 5
0.88 6

Then we instantiate an object source.rep.obj of the class SEstimator_pp, and we specify
stratification = strata indicating subpopulations of which estimates of the ATE are to

validate:

R> strata <- c("x1","x4")

R> source.rep.obj <- SEstimator_wrapper (Estimator = "Exact",
+ target.obj = target.obj,

+ source.obj = source.obj,

+ selection_predictors =

+ selection_predictors)

R> source.rep.obj$EstimateRep(stratification =
+ stratification_joint = TRUE)

R> fusion <- Fusion$new(target.obj,

+ source.obj,

+ source.rep.obj)

R> fusion$plot ()

R> fusion$evaluate()

# A tibble: 10 x 7

# Groups: group_name [5]
group_name estimator size
<chr> <chr> <dbl>

1 pop G_computation/glm/Exact/2 2622

strata,

mse len_ci agg.est

<dbl>

<dbl> <1lgl>

0.038 0.92 TRUE

agg.reg
<lgl>
TRUE
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Figure 7: Validation results based on aggregate data of subpopulations in an observational
dataset and an RCT dataset.

2 pop G_computation/glm 2622 666. 0.239 FALSE TRUE
3 x1=0,x4=0 G_computation/glm/Exact/2 496 1.50 2.21 TRUE TRUE
4 x1=0,%x4=0 G_computation/glm 496 821. 0.519 FALSE TRUE
5 x1=0,x4=1 G_computation/glm/Exact/2 1495 1.73 1.09 TRUE TRUE
6 x1=0,x4=1 G_computation/glm 1495 598. 0.327 FALSE TRUE
7 x1=1,x4=0 G_computation/glm/Exact/2 193 0.428 4.15 TRUE TRUE
8 x1=1,x4=0 G_computation/glm 193 1098. 0.673 FALSE TRUE
9 x1=1,x4=1 G_computation/glm/Exact/2 438 0.076 3.99 TRUE TRUE
10 x1=1,x4=1 G_computation/glm 438 857. 0.581 FALSE TRUE

6.3. Example 3: Validation using synthetic RCT data

In Example 2 we demonstrate the validation approach using aggregate data from two datasets.
However, in practice, we rarely have access to such data. In most cases, we only have aggregate
data of each covariate and estimates of the ATE of subpopulations stratified by levels of
these covariates individually. In Example 3 we demonstrate how to generate synthetic RCT
data in this case using GenerateSyntheticData(). First, for a demonstrative purpose, we
instantiate an object of the class Crude using an RCT dataset. We derive the marginal
distributions of covariates x1,x2,x3,x4,x5,x6 of the RCT data, and derive estimates of the
ATE of subpopulations stratified by levels of these covariates individually:

R> library("dplyr")

R> library("gdata")

R> set.seed(123)

R> source.data <- RCTrep::source.data



R> target.data <- RCTrep::target.data
R> vars_name <- list(outcome_predictors =
+ C(”Xl n ”X2" ”X3” "X4” ”X5" ”X6”)

+ treatment_name = c('z'),
+ outcome_name = c('y')

+ )

R> target.obj <- TEstimator_wrapper (
+ Estimator = "Crude",

+ data = target.data,

+ vars_name = vars_name,

+ name = "RCT",

+ data.public = FALSE,

+ isTrial = TRUE

+ )

R> vars_rct <- c("x1","x2","x3","x4","x5","x6")

R> RCT.estimates <- 1list(ATE_mean = target.obj$estimates$ATE$est,
+ ATE_se = target.obj$estimates$ATESse,

+ CATE_mean_se = target.obj$get_CATE(vars_rct,FALSE))

Then we generate a synthetic RCT dataset synthetic.data by calling the RCTrep function
GenerateSyntheticData(). In the function, we specify a marginal distribution of each co-
variate and pairwise correlations between these covariates. The function generates a synthetic
dataset of the RCT accordingly:

R> emp.pl <- mean(target.data$x1)

R> emp.p2 <- mean(target.data$x2)

R> emp.p3 <- mean(target.data$x3)

R> emp.p4 <- mean(target.data$x4)

R> emp.p5 <- mean(target.data$x5)

R> emp.p6 <- mean(target.data$x6)

R> t.d <- target.datal,vars_rct]

R> n <- dim(source.data) [1]

R> pw.cor <- gdata::upperTriangle(cor(t.d), diag = FALSE, byrow = TRUE)
R> synthetic.data <- RCTrep::GenerateSyntheticData(
margin_dis="bernoulli",

N = n,

margin = list(emp.pl, emp.p2, emp.p3, emp.p4, emp.p5, emp.p6),
var_name = vars_rct,

pW.cor = pw.cor)

R> head(synthetic.data)

+ + + + +

x1 x2 x3 x4 x5 x6
1 0 1 1 0 0 1
2 1 0 0 0 1 1
3 1 1 0 1 0 0
4 1 1 0 0 0 O
5 0 01 0 0 1
6 1 1 1 1 0 1
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The rows in source.data and synthetic.data that have no match on the specified columns
in vars_rct are removed. Then we instantiate target.obj of class TEstimator_Synthetic
and source.obj of the class G_computation. For instantiation of an object target.obj, we
initialize the public field data using synthetic.data and initialize the public field estimates
using RCT.estimates. The weighted estimates of the ATE in source.obj.rep are compared
to the unbiased estimates in target.obj, and the validation results are presented in Figure 8:

R> synthetic.data <- semi_join(synthetic.data, source.data, by = vars_rct)
R> source.data <- semi_join(source.data, synthetic.data, by = vars_rct)
R> target.obj <- RCTrep:::TEstimator_Synthetic$new(data = synthetic.data,
+ estimates=RCT.estimates,

+ vars_name = vars_name,

+ name = "RCT",

+ isTrial = TRUE,

+ data.public = TRUE)

R> source.obj <- TEstimator_wrapper (

+ Estimator = "G_computation",

+ data = source.data,

+ vars_name = vars_name,

+ outcome_method = "glm",

+ outcome_form=y ~ x1 + x2 + x3 + z + z:x1 + z:x2 +z:x3+ z:x6,
+ name = "RWD",

+ data.public = TRUE

+ )

R> source.rep.obj <- SEstimator_wrapper (Estimator="Exact",
+ target.obj=target.obj,

+ source.obj=source.obj,

+ selection_predictors=

+ c("x2","x6"))

R> source.rep.obj$EstimateRep (stratification = vars_rct,
+ stratification_joint = FALSE)

R> fusion <- Fusion$new(target.obj,

+ source.obj,

+ source.rep.obj)

R> fusion$plot ()
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Figure 8: Validation results where the weights of source.obj are estimated based on the
synthetic RCT data.

R> fusion$evaluate()

# A tibble: 26 x 7
# Groups: group_name [13]

group_name estimator size mse len_ci agg.est agg.reg
<chr> <chr> <dbl> <dbl> <dbl> <lgl> <lgl>
1 pop G_computation/glm/Exact/2 2622 0.139 0.824 TRUE TRUE
2 pop G_computation/glm 2622 666. 0.239 FALSE TRUE
3 x1=0 G_computation/glm/Exact/2 1991 0.785 0.876 TRUE TRUE
4 x1=0 G_computation/glm 1991 596. 0.279 FALSE  TRUE
5 x1=1 G_computation/glm/Exact/2 631 0.307 2.15 TRUE TRUE
6 x1=1 G_computation/glm 631 885. 0.458 FALSE TRUE
7 x2=0 G_computation/glm/Exact/2 1628 0.112 0.084 TRUE TRUE
8 x2=0 G_computation/glm 1628 11.5 0.053 FALSE  TRUE
9 x2=1 G_computation/glm/Exact/2 994 1.70 0.538 FALSE TRUE
10 x2=1 G_computation/glm 994 13.5 0.052 FALSE TRUE
# 1 16 more rows
# i Use “print(n = ...)" to see more rows

Results in Figure 8 show that even though we don’t have individual-level RCT data, the
weighted estimates of the ATE (indicated by G_computation/glm/Exact/2) can be closer to
the unbiased estimates (indicated by Crude) compared to unweighted estimates (indicated by
G_computation/glm). Hence we can still validate estimates of the ATE to some extent and
obtain qualitative results, e.g., the direction of effects. Covariates that are predictive of the
ATE and the sample selection (i.e., x2,x6), which can lead to a large discrepancy in estimates
between samples, should be weighted.
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7. Discussion

The package RCTrep aims to help researchers to validate estimates of the ATE of (sub-
)populations obtained from an observational dataset in case individual-level or aggregate
randomized controlled trial data is accessible. RCTrep provides three classes of methods
for the estimation of the ATE and three classes of methods for the estimation of weights,
and provides a variety of modeling choices for the outcome, the treatment, and the sample
selection. RCTrep validates estimates on both population and subpopulation levels, providing
a deeper insight into the performance of methods.

RCTrep highlights the importance of making RCT data more accessible in order to allow
the validation of estimates of the ATE obtained from observational data. We recognize the
irreplaceable role of RCT data in fueling the power of observational data to drive more
personalized treatment. Further development can include 1) enrich methods for estimating
the ATE in the class TEstimator, for instance, balancing-based methods via optimization
(Chattopadhyay et al. 2020; Dong et al. 2020) and bayesian networks (Pearl 2009); 2) enrich
methods for estimating weights in the class SEstimator; 3) additional options for the uncer-
tainty quantification of the (weighted) ATE, for instance, the delta method (Oehlert 1992),
the bootstrap resampling (Efron and Tibshirani 1994), the double bootstrap (Ackerman et al.
2021), and the parametric simulation-based method (Chatton et al. 2020); 4) different esti-
mands of treatment effects and the corresponding weighted estimands can be provided, for
instance, relative risk, risk ratio, odds ratio, etc. (Colnet et al. 2023).
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A. Notation used throughout the paper

Notation Description

X random vector of length d of covariates, containing all pre-treatment outcome
predictors.

XX random vector of length ¢, indicating confounders.

X, X random vector of length p, indicating sample selection predictors of an observa-
tional dataset

T treatment indicator (7' = 1 for the treatment, T = 0 for the control)

Y outcomes of interest. RCTrep supports binary outcomes and continuous outcomes

S selection indicator (S = 1 indicates selection to a sample of an RCT, S = 0
indicates selection to a sample of an observational study)

Sret S = {(X;,Y;,T;); S; = 1}, an RCT sample

Sobs S = {(X;,Y;,T;); S; = 0}, an observational sample

Po a target population parameterized by @ that S™ represents for

() the propensity score of an individual with characteristics X = x being selected
to treatment 7' =1

s () the probability of an individual with the characteristics X = @ being selected to
an RCT S =1

T the ATE of the target population Py

7(x) the CATE, denoted as 7(x) = E[Y (1) =Y (0) | X = x]

o? o} the variance of potential outcomes Y (1), Y'(0)

o(x) the conditional variance of Y (¢), denoted as V(Y (¢) | x)

(X &)
WS(X;'S/)
(Xt B)
#(X)
61,00
P(X),4(X)
¢

57 (X)

the density of covariates X in 8™ and S

p(xs)

the density ratio of covariates xs defined as (@

~

B}

an estimator for the propensity score

an estimator for the selection probability

an estimator for the conditional mean of potential outcomes E[Y (¢) | ] param-
eterized by B using the G-computation method

an estimator for the CATE 7(X)

estimators for the variance of Y (1), Y (0)

estimators for the density of X in S and S°*

the residual of an estimator py (X, t;; ,C:l), defined as ¢; = Y; — p(X;, t;; B)

an estimator of the conditional variance of Y (t), denoted as V(Y (t) | X)

Table 5: List of notations.
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B. Core classes

The current section offers additional background information on RCTrep’s classes structures
- both on R6 class system (Chang 2019) and on each of the three previously introduced
core RCTrep classes. Together with the information in the next section, on TEstimator and
SEstimator implementation, this should be able to get users up and running with developing
users own custom TEstimator and SEstimator subclasses.

B.1. Choice for the R6 class system

Though widely used as a procedural language, R offers several Object Oriented (OO) systems,
which can significantly help in structuring the development of more complex packages. Out of
the OO systems available (S3, S4, R5, and R6), we settled on R6, as it offers several advantages
over other options. Firstly, it implements a mature object-oriented design compared to S3 and
S4, hence is easier for developers with a background in programming languages such as C++
and Java to maintain. Secondly, when compared to the older R5 reference class systems, R6
classes are much lighter-weight, as they do not use S4 classes, and do not require the methods
package.

B.2. Core classes: TEstimator, SEstimator, Fusion

In this section, we go over the three core classes on more detail - with an emphasis on the
TEstimator and SEstimator classes. We illustrate the structure of classes, and enumerate
core public functions of each class.

TFEstimator

The TEstimator class is responsible for fitting a model and estimating treatment effects.
The following skeleton code gives an overview of how the above is implemented in RCTrep’s
TEstimator class:

TEstimator <- R6::R6Class(
"TEstimator",
public = list(
id = NA,
name = character(),
statistics = list(n=numeric(),
density_confounders=data.frame()),

data = NULL,

estimates = list(ATE=data.frame(yl.hat=NA,
y0.hat=NA,
est=NA,
se=NA),

CATE = data.frame()),
model = 1ist(),
initialize = function(df, vars_name, name) {
self$name <- name
self$data <- df



39

self$data$id <- seq(dim(df)[1])
private$outcome_predictors <-
vars_name$outcome_predictors
private$treatment_name <- vars_name$treatment_name
private$outcome_name <- vars_name$outcome_name
self$statistics <- list(n=dim(df)[1],
density_confounders=
private$est_joint_denstiy())
+,
get_CATE = function(stratification, stratification_joint=TRUE) {},
plot_CATE = function(stratification = private$outcome_predictors,
stratification_joint = TRUE) {},
plot_yl_yO = function(stratification, stratification_joint = TRUE,
seperate = FALSE){},
diagnosis_t_overlap = function(stratification,
stratification_joint=TRUE){},
diagnosis_t_ignorability = function(){},
diagnosis_y_overlap = function(stratification,
stratification_joint=TRUE){}
),
private = list(
outcome_predictors = NA,
treatment_name = NA,
outcome_name = NA,
var_method = "sandwitch",
isTrial = FALSE,

set_ATE = function(){},

set_CATE = function(stratification, stratification_joint){},
est_joint_denstiy = function(){},

est_CATEestimation4JointStratification = function(stratification) {},
est_CATEestimation4SeperateStratification = function(stratification) {1},
fit = function(O{},

est_ATE_SE = function(){},

est_weighted_ATE_SE = function(){}

Subclasses of TEstimator have their unique implementation of diagnosis_t_ignorability (),
fit(), est_ATE_SE(), and est_weighted_ATE_SE(), and their unique private methods. The
main TEstimator functions are:

1. get_CATE(stratification, stratification_joint=TRUE)

(a) stratification: a character vector specifies covariates to select subpopulations.

(b) stratification_joint: logical to indicate if subpopulations are selected based on
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levels of individual covariate in stratification or levels of combined covariates
in stratification.

The function returns a data.frame containing treatment effects estimation of selected
subpopulations. If stratification=TRUE, then the function returns a data.frame
with column names c(stratification,"yl.hat","y0.hat","cate","se","size");
if strati fication_joint=FALSE, then the function returns a data.frame with column
names c("name", "value","yl.hat","yO.hat","cate","se","size").

2. diagnosis_t_overlap(stratification, stratification_joint): the function plots
the proportion and the count of individuals receiving the treatment and the control in
each subpopulation. Subpoulations are selected by stratification and stratificatio
n_joint.

3. diagnosis_t_ignorability(): the function diagnoses the T-ignorability assumption.
For the subclass G_computation, the function summarizes the model fit using the follow-
ing evaluation metrics, i.e., means of residuals of subpopulations, distribution of overall
residuals, mean squared errors of subpopulations for a continuous outcome, and mean
of deviance of subpopulations for a binary outcome. For the subclass IPW, the function
plots the weighted distribution of subpopulations in treatment and control groups. For
the subclass DR, the function summarizes both the model fit and weighted distribution
of subpoulations in treatment and control groups.

4. diagnosis_y_overlap(stratification, stratification_joint): the function plots
the count of each level of the outcome in treatment and control groups within each sub-
population selected by stratification and stratification_joint. For the binary
outcome, the function plots the count of the positive outcome and the negative outcome;
for continuous outcomes, the function plots the distribution of outcomes.

5. private method set_ATE(Q): the function implements the private method est_ATE_SE(id)
and gets the point estimate of the ATE, the standard error of the point estimate, mean
of estimates of the potential outcomes; the function assigns these estimates to the public
fields estimates$ATE$est, estimates$ATESse, estimates$ATESyl.hat,estimates$AT
E$y0.hat accordingly. The function is implemented in the initialize function of each
TEstimator subclass.

6. private method set_CATE(stratification, stratification_joint): the function
implements the public method get_CATE(stratification, stratification_joint)
which returns a data.frame (see below for details of the returned object from the func-
tion get_CATE()); then the function set_CATE() assigns the returned estimates from
get_CATE() to the public field estimates$CATE. The function is implemented in the ini-
tialize function of each subclass of TEstimator by calling private$set_CATE(private$o
utcome_predictors, TRUE).

7. private method est_CATEestimation4JointStratification(stratification): the
function selects subpopulations defined by levels of combined covariates specified in
stratification, gets the index of selected data, and estimates the ATE of each
subpopulation by calling the private method est_ATE_SE(index). The function re-
turns a data.frame with the column name c(stratification, "y1.hat", "y0.hat",
"cate", "se", "size").
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8. private method est_CATEestimation4SeperateStratification(stratification): the
function selects subpopulations defined by levels of individual covariate specified in
stratification, gets the index of selected data, and estimates the ATE of each sub-
population by calling the private method est_ATE_SE(index). The function returns a
data.frame with the column name c("name", "value", "yl.hat", "y0.hat", "cat
ell, "Se", "sizell)'

9. private method est_ATE_SE(index): the function estimates the ATE and its standard
error. index indicates the index of data. A different subclass has unique implementa-
tion of the point estimation. RCTrep implements the sandwich estimator to estimate
the standard error using R package geex (Saul and Hudgens 2020). RCTrep specifies
an estimation function estFUN, and passes the function to geex::m_estimate(data,
estFUN, ...). geex::m_estimate() provides a consistent estimator for the asymp-
totic variance of the estimate of the ATE. RCTrep does not take the uncertainty of the
estimation of parameters of models into account in order to speed up implementation,
however, users can customize estFUN so the function can take account of the uncertainty
of the estimation of parameters into the estimation of the variance of estimates of the
ATE. For more details, see simulation codes in Dahabreh et al. (2020) and tutorials by
Saul and Hudgens (2020). est_ATE_SE(index) function returns a list with named
elements y1.hat, yO.hat, est, and se. An overview of estimators of the variance of
estimates of the ATE is provided in Appendix C.

10. private method est_weighted_ATE_SE(index, weight): the function estimates the
weighted ATE and its standard error. The function selects estimates of potential out-
comes from self$datalindex,]$yl.hat and self$datalindex,]$y0.hat, and assigns
weights for the selected estimates. RCTrep implements the sandwich estimator using
R package geex to estimate the standard error of estimates of the weighted ATE. The
function returns a list with named elements y1.hat, y0.hat, est, and se.

11. private method est_CATEestimation4JointStratification(stratification): the
function estimates the ATE of subpopulations. The function selects a subpopulation
based on levels of combined covariates in stratification, gets id of the selected sub-
population, and computes the ATE of the subpopulation by calling private_ATE_SE(id).
Loop this procedure until all subpopulations have been selected. The function returns a
data.frame with column names c(stratification, "y1.hat", "yO0.hat", "cate",
"se", "size").

12. private method est_CATEestimation4SeperateStratification(stratification): the
function estimates the ATE of subpopulations. The function selects a subpopulation
based on levels of the individual covariate in stratification, gets id of the selected
subpopulation, and computes the ATE of the subpopulation by calling private$est_ATE
_SE( id). Loop this procedure until all subpopulations have been selected. The
function returns a data.frame with column names c("name", "value", "yl.hat",
"y0.hat", "cate", "se", "size").

SEstimator

The SEstimator class is responsible for balancing covariates in selection_predictors be-
tween two objects of the class TEstimator, and estimates the weighted ATE and the weighted
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CATE. The following skeleton code gives an overview of how the weighted estimation is im-
plemented in RCTrep’s SEstimator class:

SEstimator <- R6::R6Class(
"SEstimator",
public = list(

),

name = character(),

id = character(),

statistics = list(),

estimates = 1list (ATE = data.frame(yl.hat=NA,
y0.hat=NA,
est=NA,
se=NA),

CATE = data.frame()),

model = NA,

selection_predictors = NA,

weighting method = character(),

initialize = function(target.obj, source.obj, weighting method=NULL,
selection_predictors)d{
private$target.obj <- target.obj
private$source.obj <- source.obj
self$weighting method <- weighting method
self$selection_predictors <- selection_predictors
private$ispublic <- !c("TEstimator_pp") 7inj, class(source.obj)
self$name <- source.obj$name
self$statistics <- source.obj$statistics
self$id <- paste(private$source.obj$id,
self$weighting estimator,
length(self$selection_predictors),sep = '/')
private$isTrial <- source.obj$.__enclos_env__$private$isTrial
+,
EstimateRep = function(stratification=self$selection_predictors,
stratification_joint=TRUE) {},
diagnosis_s_overlap = function(stratification=NULL,
stratification_joint=TRUE){},
diagnosis_s_ignorability = function(stratification=NULL,
stratification_joint=TRUE){}

private = list(

source.obj = NA,
target.obj = NA,
ispublic = NA,
isTrial = NA,

get_weight = function(){source.data,target.data, vars_weighting},
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set_weighted_ATE_SE = function() {1},

set_weighted_CATE_SE = function(stratification, stratification_joint) {},
est_WeightedCATEestimationdJointStratification =
function(stratification) {},
est_WeightedCATEestimation4SeperateStratification =
function(stratification) {},

est_statistics = function(){}

The following are public and private functions in SEstimator:

1. public function EstimateRep(stratification, stratification_joint): the core func-
tion which estimates the weighted ATE and the weighted CATE; stratification and
stratification_joint specify a criteria to select subpopulations.

2. diagnosis_s_overlap(stratification=NULL, stratification_joint=TRUE) : the func-
tion selects subpopulations according to stratification, stratification_joint;
the function plots the proportion and the count of individuals in each subpopula-
tion from source.obj and target.obj. The default value of stratification is
selection_predictors.

3. diagnosis_s_ignorability(stratification=NULL, stratification_joint=TRUE):
the function diagnoses the assumption of S-ignorability. The function selects sub-
populations according to stratification, stratification_joint. It computes the
weighted distribution of the subpopulations in source.obj and the distribution of the
subpopulations in target.obj.

4. private method get_weight (source.data, target.data, vars_weighting): the func-
tion estimates weights for each individual in source.obj. The weights are computed
based on specified covariates vars_weighting. Each subclass of SEstimator has a
unique implementation of the function:

e SEexact: the class performs exact matching and computes the weight accordingly.
The implementation of the weight estimation depends on R package MatchIt (Ho
et al. 2011).

o SEisw: weighting based on the inverse selection probability. Methods for estimat-
ing the selection probability is specified in self$weighting method argument.
Allowable options of weighting_method are inherent from values of the argument
method in the function train() of R package caret (Kuhn and Max 2008).

e SEsubclass: weighting based on subclassification on the selection probability
of the data in source.obj. Methods for estimating the selection probability
are specified in self$weighting method. The default is glm for the selection
probability using the logistic regression which regresses the selection indicator on
selection_predictors. The main effects of covariates in selection_predictors
are specified in the function specification. The observational dataset in source.obj
and the RCT dataset in target.obj are placed into subclasses based on quantiles
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of the selection probability of the RCT datasets. Then weights for individuals
in the observational dataset are computed based on the proportion of individuals
from the RCT dataset in each subclass.

e SEstimator_pp: weighting for two objects of the class TEstimator_pp. Weight is

wl(xsi) / N\ ﬁ(il's)
iesobs w,(af'si) » W (wS'L) - lj(ws)

computed as w(xs;) = T

5. private method set_weighted_ATE_SE: the function estimates the weighted ATE of
source.obj. The function calls private$get_weight (source.data=private$source.
obj$data, target.data=private$target.obj$data, vars_weighting=self$select
ion_predictors) to compute weights, then calls the private method est_weighted_ATE
_SEQ) of source.obj to estimate the weighted ATE and gets the weighted estimates of
y1.hat, yO.hat, est, and se accordingly, then assigns the estimates to self$estimates$
ATE$y1.hat, self$estimates$A TE$yO0.hat, self$estimates$ATESest, self$estimat
es$ATESse.

6. private method set_weighted CATE_SE(stratification, stratification_joint):
the function estimates the weighted CATE; if stratification _joint=TRUE, then the
function calls private$est_WeightedCATEestimationd4JointStratification(strati
fication);if stratification_joint=FALSE, then the function calls private$est_Wei
ghtedCATEestimationdSeperateStratification(stratification). Stratificatio
n is a character vector that specifies covariates for the subpopulation selection.

7. private method est_WeightedCATEestimation4JointStratification(stratificati
on) : the function estimates the weighted CATE. The function selects subpopulations
from private$source.obj$data and private$target.obj$data, and calls private$ge
t_weight () to estimate weights of each individual in source.obj so that covariates in
self$selection_predictors are balanced between source.obj and target.obj. The
function returns a data.frame in the same form as that returned from the private
method est_CATEestimation4JointStratification(stratification) of the class
TEstimator.

8. private method est_WeightedCATEestimation4SeperateStratification(stratifica
tion): the same as the est_WeightedCATEestimation4JointStratification(strati
fication) except for the criteria to select subpopulations. The function returns a
data.frame in the same form as that returned from the private method est _CATEestimat
ion4SeperateStratification(stratification) of the class TEstimator.

Fusion

The Fusion class is responsible for aggregating estimates from objects of the classes TEstimator
and SEstimator, evaluating methods for the treatment effect estimation implemented in class
TEstimator, plotting and printing results. The following skeleton code gives an overview of
the class Fusion:

Fusion <- R6::R6Class(
"Fusion",
public = list(
objs.cate.data = data.frame(),
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objs.ate.data = data.frame(),
stratification = NA,
stratification_joint = NA,
RCT.study.name = NA,
RWD.study.name = NA,

initialize = function(...){},
plot = function(){},

print = function(O{},
evaluate = function(){}

),

private = list(
aggregate_cate_estimates = function(...){},
aggregate_ate_estimates = function(...){}

)

The following are public and private methods in Fusion:

1. constructor initialize(...) initializes an object of the class Fusion; passes objects
of the class TEstimator and SEstimator to the argument . ... The number of objects
passed to the function is not limited.

2. public function plot (), print() plots and prints estimates of the ATE of population
and subpopulations from passed objects.

3. public function evaluate(): the function computes validation results using the follow-
ing metrics:

e pseudo mse mse;
e length of the confidence interval length_ci;
o estimate agreement agg.est;

o and regulatory agreement agg.reg.

The regulatory agreement is defined as the consistency of the direction and the statis-
tical significance of estimates from two data sets, and the estimate agreement indicates
whether an estimate using observational data lies within the 95% confidence interval
of the estimate using RCT data (Franklin et al. 2020). The function computes these
evaluation metrics on population and subpopulation levels. Subpopulations are selected
according to self$stratification and self$stratification_joint, which are in-
herent from arguments passed to the function EstimateRep() of the object of the class
SEstimator.

4. private method aggregate_ate_estimates() and private method aggregate_cate_est
imates (): the functions aggregate estimates of the ATE and the CATE from all objects
passed to ... of initialize().
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B.3. Subclasses of TEstimator and SEstimator

Subclasses of TEstimator are mainly responsible for fitting models and estimating treatment
effects using their unique methods est_ATE_SE. Users can override est_ATE_SE for a new
subclass of TEstimator. Subclasses of SEstimator are responsible for estimating weights
using their unique methods get_weight. Users can override the function for a new subclass
of SEstimator.

Since the aim of combining data is to estimate weights, it is not necessary to have individual-
level data. For instance, each object needs to share 1) the density of X, 2) estimates 7(X)
and the standard error of 7(X), and 3) the sample size for each subpopulation stratified
by Xs. The weighted treatment effects can be derived accordingly. Hence, in case full
data is not allowed to share, RCTrep defines a subclass TEstimator_pp for TEstimator and
SEstimator_pp for SEstimator. In TEstimator_pp, instead of assigning individual-level data
to the public field data, the class assigns the density of covariates in outcome_predictors
and the estimates of the treatment effect of subpopulations stratified by levels of covariates
in outcome_predictors to the public field data of an object of the class TEstimator_pp.
Two objects of the class TEstimator_pp are passed to an object of the class SEstimator
that estimates weights w(X ) based on the public field data of these two assigned objects.
For different weighting approaches, users can share different aggregate data. For instance,
weighting using balancing-based methods requires p(B(xs)) (Chatton et al. 2020), where
B(xy) is the basis function of xg, e.g., interaction between two random variables. Hence, in
this case, the density of the basis function B(xs) is needed. To conclude, users can override
the public field data in a new class of TEstimator_pp and override get_weight () in a new
class of SEstimator_pp accordingly.

C. The variance of estimates of the ATE using three methods

RCTrep has three methods for estimating the ATE, namely, the G-computation, the IPW,
and the DR methods. The G-computation method is unbiased and consistent as long as a
model for the outcome is correctly specified. IPW is unbiased as long as a model for the
treatment, i.e., the propensity score, is correctly specified. The DR method is unbiased as
long as either a model for the outcome or a model for the treatment is correctly specified
and is more efficient than the IPW method. In this section we show the variance of three
methods for illustrative purposes; we demonstrate the effect of three factors on the variance
estimation, namely, weights, model assumptions, and sample size. In the following, we analyze
the variance of these estimators.

C.1. The variance of estimates of the ATE using the G-computation method

The assumption of T-ignorability implies that conditioning on confounders, the treatment
assignment can be assumed random and hence the treatment effect can be identified as a
simple difference in means between two groups within each subpopulation stratified by these
confounders. The estimate of the ATE using the G-computation method is defined as:

# = E[#(X)] = E[p(X, 1; B) - p(X,0; B)] ~ %Zp(wi, 1; B) — p(x;, 0; B) (4)
€S
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where X is a random vector of all pre-treatment outcome predictors containing all con-
founders, p(X,T; B) = E[Y | X,T]. We can use both parametric and non-parametric models
to estimate the conditional mean of potential outcomes given X, in other words, B c RE,
Here we use B to denote a set of parameters that describes the distribution of the conditional
mean of potential outcomes. We assume the conditional mean is expressed as an equation
linear in X and 7', and hence can be described by a fixed length of parameters 8. We can
also assume that the conditional mean is described by a flexible function parameterized by 8
of flexible length depending on a model constraint, regularization, and sample size. p(x, 1; ,3)
is the estimate of E[Y (1) | x] parameterized by B, B is estimated using a sample S. Then
the variance of the estimator 7(X) is derived as:

V(7(X)) =E[V(7(X) | X)] + V(E[7(X) | X]) law of total variance
E[v - p(X,0:8) | X) | +V (E[p(X,1:8) - p(X,0:3) | X])
~E [V (p(X,1:8) ) v (p(X,0:8) | X) | +V (p(X,1:8) — (X, 0:3))
- + V(p(i,0:8)) + V(p(X, 13 B) — p(X,0: )
(5)

Note in the third line, the first term is a function of X and the variance of 3 depending on
a sample, and hence the variance of this term depends on the sample. In logistic regression,
the variance of B is well-developed, and most of software can provide the estimate of the
variance of these parameters. In non-parametric methods, it is not trivial to write down the
closed form of the variance of parameters; alternative approaches to estimating V(p(x;, t;; B))
are the delta method, bootstrap, etc. We introduce approaches for estimating the variance
of p(x;, t;; B) in the next section. The second term in the third line is the variance between

groups V(7(X; B)), and only X is random, hence the variance of the second term can be
estimated using the sample variance of 7(X; B) where B = IE[B] We use an estimate of

B based on a sample as an estimate of ,73", and estimate the sample variance of plugged-in

#(X;B).

Methods for estimating the variance of estimates of the ATE using the G-computation
method

In this section, we illustrate five methods for estimating the variance of estimates of the ATE
using the G-computation method first, i.e., V(p(x,t¢; 8)). In the following, for demonstrative
purposes, we use logistic regression to estimate the conditional mean of potential outcomes.

p(x,t;B) = o(x,t; B) = m, where V(p(x,t; B)) can be estimated by the following

five methods:

1. The model-based method, where V(8) = I (B), I(8) is the observed information
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. o N1
matrix. V(8) can be estimated at 3, denoted as V() = (X’ VX) , where

p1 (1 —p1) 0 0
. 0 Po (1 —p2) - 0
V= ) ( ) . . )
: 0 .. :
0 0 ﬁn(l_ﬁn)

p; is the predicted observed outcome, then

V(p(xi, t; B)) = x,V(B)x; Z%V B;) +2Z 2 ziriCov(Bs, Be).  (6)

J=0k=j+1

where we regard T; = ¢ as an element in the vector x;, i.e., x; = (x;,t) V(BJ) is the
jth diagonal element of the matrix V(3), and C/O\V(Bj, B,.) is an off-diagonal element in

the matrix. Then we can estimate V(p(x, 1; 8)) and V(p(x,0; 8)) for each individual i.
We estimate the sample average of WA/(p(m, t; B)) as the estimate of expectation of the
variance within groups, i.e., the first term in the last line of the variance decomposition
in Equation 5. For the variance between groups, i.e., the second term in the equation,

we estimate the sample variance of 7(X; ﬁ) at B For more computation details, see
Chapter 2.5 in Hosmer Jr et al. (2013). Note that for a continuous outcome, a linear
regression assumes that the variance of the error term does not depend on the conditional
mean. We can use heteroskedasticity-consistent standard errors in case the assumption
does not hold. However, in logistic regression, we have binomial errors, and as a result,
the variance is a function of the conditional mean thereof is heterogeneous by nature
(Hosmer Jr et al. 2013).

2. The simulation approach (Chatton et al. 2020; Aalen et al. 1997), where B~ ./\/(B, V(B))
The method shows similar results to the bootstrap resampling but is much faster (Chat-
ton et al. 2020; Aalen et al. 1997). We can simulate a set of parametric models from the
distribution of B Then the sample variance of predicted potential outcomes for each
x; from a set of simulated models is the estimated variance for V(p(a;, t; 3)).

3. The Bayesian approach. We can use a Bayesian logistic regression to estimate the
conditional mean of potential outcomes. Via the Bayesian approach, each parameter
in a model is regarded as a random variable and follows a distribution. The pos-
terior distribution of model parameters is approximated using a sampling approach,
e.g., Markov chain monte carlo. The resulting predicted value of potential outcomes
for each individual follows a similar distribution and the variance of the distribution
can be estimated using the sample variance. In RCTrep, G_computation_BART and
G_computation_psBART use the Bayesian approach to estimating the variance of esti-
mates of the ATE.

4. Bootstrapping. Instead of resampling model parameters using the simulation approach,
we can bootstrap a sample from a dataset, estimate B based on the resampled data,
repeat resampling multiple times, and compute the sample variance of predicted poten-
tial outcomes for each individual derived from the sampling distribution. The sample
variance can be regarded as the estimation of the variance of p(x;, t; B) This method,
however, is of computational burden.
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5. The sandwich style method using R package geex. The standard error of estimates of
the ATE using the G-computation method can be computed directly by calling the func-
tion geex::m_estimate(data, estFUN, ...). See Saul and Hudgens (2020) for more
theoretical proof and implementation details. All TEstimator subclasses in RCTrep
use this method to compute the variance of the ATE of population and subpopulations
except for G_computation_BART and G_computation_psBART, and all TEstimator sub-
classes in RCTrep use this method to compute the variance of the weighted ATE of
population and subpopulations.

The variance of estimates of the ATE is composed of the variance within groups (the first
term in the third line of Equation 5) and the variance between groups (the second term in
the third line of Equation 5). Via simulation approach, bayesian approach, and bootstrap
approach, the variance of p(x, t; B) within a group X = & can be computed as follows:

D

Vot ;) = 5 ) (pleet: B~ plait:3)) @
d=1

where D is the number of draws from the distribution of S, Bd ~ ﬁ(ﬁ), (i, t; ,3) =

~d ~ ~
% Dgeq P(xi, t; B ), where p(3) is the approximated empirical sampling distribution of 8 using
the simulation approach, the Bayesian approach, and the bootstrapping approach. Then

B[V (G(X) | X1~ - 3 V(o 1 B) + T(p(as,0: ) Q

by assuming p(x, 1; B) is independent of p(z, 0; B) Then we estimate the sample average of
V(#(x;)) as the estimate of the expectation of the variance of estimates of the ATE within
groups. The variance of estimates of the ATE between groups (the second term in the last
line of Equation 5) can be estimated as follows:

V (E[#(X) | X]) ~ %2 (pl.1:B) — p(a:,0:3) — p(1: B) ~ 5(0: B))’ )

i=1

= ~d

where p(x;,t;8) = % D g1 P(xi, t; B) for the simulation approach, the Bayesian approach,
and the bootstrapping approach, and p(z;,t; B) = p(x;, t; B),z € S for the model-based
approach; ﬁ(t;B) = %Zi:l p(x;, t; B),z € S. Then the variance of estimates of the ATE
in Equation 5 for the G-computation is the sum of the estimated variance of estimates of
the ATE within groups in Equation 8 and the estimated variance of the estimate of the ATE
between groups in Equation 9. The standard error of estimates of the ATE (i.e., the mean
of 7(X) of a sample) is w accordingly. Note that using the sandwich style standard
error via geex can directly estimate the standard error of the estimate of the ATE without
manually computing Equation 8 and 9.

C.2. The variance of estimates of the ATE using the IPW method

The propensity-score based method for the ATE estimation has a methodological advantage
since it mimics a set-up of an RCT in which the treatment and control groups are balanced.
The propensity score is defined as:

m(X) = P(T = 1| X) (10)
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The IPW method weighs each individual by the inverse probability of receiving the observed
treatment. In an RCT, the propensity score is known; in an observational study, the propen-
sity score is unknown but can be estimated. The IPW method is defined as follows, where
we use the self-normalized IPW estimator since it has a smaller variance (Swaminathan and
Joachims 2015):

P Y (@)Y — Y ()Y (11)

wT;=1 o:1T;=0
where )
77%(%7&601 T, =1
(a;) = Zir;=1 @A)
I_Wt(zi?é‘l) T, = 0.

2Ty =0 Ty (275
The different modeling approaches can be used to model the propensity score, for instance,
logistic regression, random forest, etc. The IPW method is unbiased and consistent as long
as the propensity score model is correctly specified. The variance of the IPW method is
approximated as:

V) =V (e~ )

V<E m(mj - Y(l—j.“)A |XD (12)

where 0% (z) and o (z) is the conditional variance of Y'(1) and Y (0) given @, which is unknown

and estimable using the exact matching, and regression adjustment, etc., see Imbens and

Rubin (2015) Chapter 19 for details. 7(X ;&) ~ 7(X;;4) = ﬂt&?d) _ 11/17}(3(;(?-)@)’ V(#(X; &)

is the sample variance of 7(X; &).

The standard error of estimates of the ATE (i.e., the mean of 7(X) of a sample) is V(%iX))
accordingly. RCTrep uses the sandwich style standard error via geex to estimate the variance
of the estimate of the ATE using the IPW method. It is clear to see that the variance of
estimates of the ATE using the IPW method depends on the variance of estimated weights,
which can inflate the variance of the estimate of the ATE if there are extreme values of
weights. Hence, the IPW method can suffer from near violation of the T-overlap assumption.
To have a good estimation of the variance of the estimate of the ATE, we should try to keep
the dependence of w(x;) as mild as possible. On one hand, we can reduce the variability of
weights using related approaches (Dong et al. 2020; Chattopadhyay et al. 2020; Zeng et al.
2021) through optimizing an objective function, which aims to minimize the variability of all
weights while preserving balance in weighted covariates between groups; on the other hand,
we can exclude covariates which are merely associated with the treatment assignment in a
propensity score modeling, since balancing over these covariates will decrease the sample size
in each subgroup hence can inflate the estimation of the variance. Beyond confounders, other
covariates which are predictive of outcomes can be adjusted in propensity score models, which
may improve the precision of estimates of the ATE(Chatton et al. 2020).
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C.3. The variance of estimates of the ATE using the DR method

The DR method combines a propensity-score model and an outcome model such that the
method is unbiased and consistent if one of these two models is correctly specified, hence it
offers protection against missmodeling. The DR method gains in precision of the estimation
over the IPW method, however, may not be as precise as the G-computation method when the
outcome model is correctly specified (or has good approximation) (Lunceford and Davidian
2004). The study by Kang and Schafer (2007) indicates that when both models are incorrect
but neither is grossly misspecified, many DR methods perform better than the IPW methods,
however, none of the DR methods tried in the study outperformed an outcome regression
model. Although the study does not represent all scenarios of the data generation mechanism,
the study does demonstrate that, in at least some settings, two wrong models may not be
better than one. The DR method for the ATE estimation is demonstrated as follows:
ey ] PO o =T

E[T(X)] - nZZ: (p(w“ 1"8) + 7'['75(1131,@)62) - Ezlz <p(m170716) + MMGZ) (13)
where €} = Y; —p(x;, 1; ,3) and €) = Y; —p(z;, 0; B) The variance of the DR method is derived
as follows:

V) =B |V (b6 1B + 2 el —p(X08) - s s 1 X) |+

A =T
€ —p(XaU;ﬂ)—l_lﬁt(X)ﬁ? | X])

(14)

Similar to the variance of the IPW method and the variance of the G-computation method,
V(p(x,t; B)), can be estimated using the model-based, the simulation-based, the Bayesian, or
the bootstrapping method, and 67 (x;) and 62(x;) can be estimated using the exact matching,

regression adjustment approaches, etc.. The standard error of estimates of the ATE is w.
In RCTrep, we use the sandwich style method in geex to estimate the standard error of

estimates of the ATE using the DR method.

C.4. The variance of estimates of the ATE using the difference in means of
outcomes between groups

In this section, we demonstrate the variance of estimates of the ATE using the crude estimator,
i.e., the difference in means of outcomes between treatment and control groups. The variance
is as follows:

V<%<X>>=V<7j DRIIEFSSS n<o>)

L= :T; =0
1 2 1 2
== D d@)+— > o) (15)
1T —1 "0 411
6t o8

2



52 RCTrep: An R Package for the Validation of Estimates of the Average Treatment Effect

Under simplifying the assumption of homoscedasticity, i.e., o3(x) = o3 and of(x) = of

are constants across individuals, o? and o2 can be estimated by the sample variance of
Y (1) in the treatment group and the sample variance of Y (0) in the control group. We
also assume observed outcomes Y; are mutually independent, namely, the observed outcome
of each individual does not depend on the observed outcome of another individual. Since
V(Y | X) = V(Y)(1—p) where p is the correlation between Y and X, the estimated variance
of estimates of the ATE in Equation 15 is conservative, and can gain efficiency if the variance
of potential outcomes for each individual is estimated conditioning on covariates X that are

predictive of outcomes. The standard error of estimates of the ATE is w.

D. Methods for adjusting the sampling mechanism

In this section, we elaborate three methods used in RCTrep to adjust for the sampling mech-
anism, 1) exact matching; 2) inverse sampling score weighting; 3) subclassification.

D.1. Exact matching

In this section, we introduce weighting based on X g where weights are estimated using the
exact matching. This weighting approach is similar to importance sampling/transfer learn-
ing/domain adaption/covariate shift, which balances the distribution of Xy between two
samples (see Stuart 2010, for more details). Given assumptions on the sampling mechanism,
S and 8™ can be regarded as two random samples from a target population Pg. Then
weights are defined as:

C ) wl(@g) = L' (zg) = b(@) (16)

e q(zs)

o) = w' ()
w(xs;) s

ieSobs w/(mSi)

where p(z,) and §(zs) are empirical densities of X in 8™ and S, respectively.

D.2. The inverse selection probability weighting

The selection probability is the conditional probability of being selected to an RCT data given
covariates X, which is defined as follows:

ms(X;) = P(S = 1] X ) (17)

where S = {0,1}, 1 indicates selection to S™ and 0 indicates selection to S°**. In most of
cases, the selection probability is unknown but could be estimated from a combined dataset.
In RCTrep, we consider an RCT dataset as a simple random sample from a target population
Py and we regard an observational dataset as a sample drawn from the target population via
a selection probability. We weight individuals in S°* according to the odds of their selection
probabilities. The resulting weighted dataset of S resembles a simple random sample from
the Py. Hence the weight for each individual are:

s (Zs4) A
wi — 1—7TS(:BSZ') SZ - 0
1 S; =1

According to Rosenbaum and Rubin (1983), the ignorability assumption holds conditioning
on a balance score. The selection probability is the "coarsest" balancing score, X is the



"finest" balancing score. Any balancing score finer than the selection probability can allow
the ignorability assumption holds. A selection probability is a propensity score when we
adjust for ”confounding” due to an unknown sampling mechanism.

D.3. Subclassification

Individuals are assigned to a class according to a distance measure, for instance, the selection
probability p(S = 1| X,). In RCTrep, S and S™ data are assigned into classes based on
quantiles of the selection probability of S"*. Weights are computed based on the proportion
of individuals in S™ in each class. For more details, see the function matchit() in the R
package Matchlt. Many modeling approaches are provided in RCTrep for estimating the
selection probability, for instance, glm, gbm, lasso.

D.4. Variance of the weighted ATE

We can treat w(xs;) as a fixed value for each individual, and use a standard sandwich style
variance estimator via R packages geex or survey. However, it is important to consider that
these weights are estimated and are unknown. Buchanan et al. (2018) derived a variance esti-
mator that accounts for the variance of weights when these weights are unknown; Ackerman
et al. (2021) used a double bootstrap method to estimate the variance of weighted estimates,
where both RCT data and observational data are resampled with a replacement prior. This
approach, however, is computationally intensive, and results are very similar to the sandwich
style variance estimator.

53
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E. A structual causal diagram of data used throughout the paper

Figure 9: A structural causal diagram representing the treatment 7', the outcome Y, the
selection S and other predictors of the outcome. The diagram visualizes the data generation
mechanism of the data used in the paper. The figure is generated using the software causal-
fusion (Bareinboim and Pearl 2016). The diagram shows that x3,x4,x5 are not predictive
of the outcome; and x2 and x6 are predictive of treatment effects based on the data genera-
tion mechanism. According to the back-door criteria, the minimal outcome_predictors and
selection_predictors that allow the assumption of T-ignorability and the assumption of
S-ignorability hold are x1,x2,x6 and x2,x6. Adjusting x3,x4,x5 can inflate the variance of
estimates of the ATE and adjusting x1,x3,x4,x5 can inflate the variance of weights.
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Figure 10: The set up of the approach to the assessment of the validity of estimates of the
ATE, in which unbiased estimates of the ATE of population and subpopulations are obtained
from an RCT dataset.
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G. Descriptions of the function for generating synthetic RCT data

Arguments Description

margin_dis A character specifying the distribution of each covariate, allow-
able options are "bernoulli_categorical" and "bernoulli".
"bernoulli_categorical" indicates covariates with more than
two categories; "bernoulli" indicates covariates with two cate-

gories.
N A numeric value indicating the sample size for returned data.
margin A list containing p named elements. The names of these elements

are covariate names. If margin_dis="bernoulli_categorical",
each element is a vector with a character indicating a covariate
name, the number of levels of the covariate, the value of each level,
and the proportion of each level; if margin_dis="bernoulli",
each element is the proportion of the positive value of each co-

variate.

var_name A character vector indicating names of covariates. These names
should be in line with names of elements in margin.

pw.cor=0 A vector containing the pairwise correlations of specified covari-

ates in var_name. When margin_dis="bernoulli", pw.cor must
be specified. The default value is 0.

Table 6: Descriptions of the input arguments of the function GenerateSyntheticData().
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