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Abstract

Atypical dengue prevalence was observed in 2020 in many dengue-endemic countries,
including Brazil. Evidence suggests that the pandemic disrupted not only dengue dynamics
due to changes in mobility patterns, but also several aspects of dengue surveillance, such as
care seeking behavior, care availability, and monitoring systems. However, we lack a clear
understanding of the overall impact on dengue in different parts of the country as well as
the role of individual causal drivers. In this study, we estimated the gap between expected
and observed dengue cases in 2020 using an interrupted time series design with forecasts
from a neural network and a structural Bayesian time series model. We also decomposed the
gap into the impacts of climate conditions, pandemic-induced changes in reporting, human
susceptibility, and human mobility. We find that there is considerable variation across the
country in both overall pandemic impact on dengue and the relative importance of individual
drivers. Increased understanding of the causal mechanisms driving the 2020 dengue season
helps mitigate some of the data gaps caused by the COVID-19 pandemic and is critical to
developing effective public health interventions to control dengue in the future.
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1. Introduction

Measures to curb the spread of SARS-CoV-2 and shifts in resource allocation during the COVID-
19 pandemic have impacted the dynamics and surveillance of dengue, causing data gaps on the
true disease burden, especially in 2020. Given the geographic diversity of dengue seasonality,
timing, and intensity, we expect that different countries and regions will have experienced dis-
tinct impacts due to the initial non-pharmaceutical interventions conceived to curb the effects of
the COVID-19 pandemic in 2020.

In most dengue-endemic countries in Asia and Latin America, the COVID-19 pandemic re-
duced the observed dengue activity in 2020 by an estimated 0.72 million cases [13], resulting
in a reduced pooled relative risk of infection of 0.55 when compared to pre-pandemic historical
trends[50]. Brazil overall deviates from this trend, because it experienced more dengue cases than
expected [13], leading to a local relative risk ratio of 13.25 in 2020 compared to a pre-pandemic
period from 2014 to 2019 [50]. With temporal and geographical exceptions, such as those docu-
mented by Conceição et al. [15], who found that risk of dengue infection in the Brazilian state
of São Paulo decreased by 9 percent twenty days after the start of social isolation.

Brazil is a very large country with diverse environmental and climatic conditions, resulting
in varying levels of dengue incidence and endemicity. To better understand the impacts of the
COVID-19 pandemic on dengue activity in Brazil, it is therefore important to study this at
sub-national geographic scales. Existing work analyzing the impact of the COVID-19 pandemic
on observed dengue in Brazil has attributed changes in observed dengue activity to changes in
human mobility and NPIs alone [13, 15, 50], without quantitatively assessing the contribution
of the other known causal drivers of dengue dynamics, including the altered dengue surveillance
capabilities during the pandemic.

Previous research in Brazil has characterized the wave-like pattern of dengue spread across
the country moving from western to eastern regions, which may be explained by distinct climate
seasons, specifically rainfall patterns, and to a lesser extent by human movement [14]. Castro
et al (2021) documented geographic differences in the intensity and seasonality of outbreaks, as
well as the pairwise associations between outbreak timing and disease trends across locations.
These geographic differences in annual dengue behavior may help better characterize the mech-
anisms behind the impacts of the COVID-19 pandemic on dengue activity, since they allow us
to analyze different relative timings of the onset of COVID-19 activity in relation to the local
dengue seasonality across the country [11].

Role of Surveillance Systems. Observed dengue cases are a consequence of not only
disease dynamics but also depend on the ascertainment capacity of the associated surveillance
systems. Ascertainment of a dengue infection relies on the (i) care-seeking behavior of the patient
–which may depend on the trust of people on the health care system–, (ii) availability of care, and
(iii) subsequent reporting upon diagnosis. All three of these factors may have been dramatically
affected by the pandemic. In fact, research shows that patients were less likely to seek care at
the start of the pandemic [46, 16, 2], and overburdened healthcare systems had a lower capacity
to treat other conditions, and complete the sometimes time-consuming reporting procedures [27].

The Brazilian National System for Surveillance and Control of Diseases (SNVS) is integrated
in a universal healthcare system and supported by an open data initiative. The strength of
infectious disease surveillance is demonstrated by the successful control of vaccine-preventable
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diseases such as tetanus and pertussis [5]. The significant reduction of the vector-borne Chagas
disease also exemplifies Brazil’s strong history of effective vector control programs [39, 5]. Yet,
the pandemic challenged surveillance systems of various diseases in many countries [16, 2, 35],
including Brazil [46, 6], likely leading to a lower case ascertainment rate in 2020.

Even before the pandemic, under-reporting of dengue was a known challenge. An estimated
84 percent of dengue infections are asymptomatic [45]. In a serological study in a healthcare fa-
cility in the city of Salvador, Brazil, Silva and colleagues (2016) found that the reporting system
captured only 5 percent of patients with dengue who sought care. [43]. A complete notification
of a suspected dengue case involves filling 71 items in a digital or paper form, which can become
an obstacle to reporting dengue cases due to the time-consuming nature of the process –even
in the absence of the increased burden on healthcare systems during the COVID-19 pandemic [3].

Not only excess under-reporting may have affected dengue surveillance, but a competing fac-
tor may have led to over-reporting of dengue cases in the presence of other infections, including a
misdiagnosed COVID-19 infection. Even before the COVID-19 pandemic, the false positive rate
of reported cases was 31 percent in high-transmission periods and 62 percent in low-transmission
periods [43]. Since dengue is a nationally notifiable disease, healthcare providers are required to
report suspected cases for patients showing fever and at least two of the following symptoms:
headache, retro-orbital pain, myalgia, arthralgia, exanthema, bleeding or hemorrhage, nausea or
vomiting, petechiae or positive tourniquet test (rash), or leukopenia (low white blood cell count)
[33, 43] in an area of dengue transmission or Aedes aegypti infestation presents. These symptoms
overlap with common symptoms of COVID-19. Additionally, cross-reactivity of laboratory tests
for COVID-19 and dengue has been reported [38, 32, 29].

After accounting for changes in ascertainment and reporting, several variables remain as can-
didates to explain any atypical dengue case counts (see also the causal graphical model described
in Supplemental Section 5), including human mobility, climate conditions, and human suscepti-
bility, described in more detail below.

Role of human mobility. Given the short travel radius of Aedes mosquitos of 100-400
meters [49, 34, 31], human mobility contributes to the introduction and spread of dengue at
multiple geospatial scales. For example, transport networks explain some of the variability in
dengue cases in the city of Bangkok, Thailand [28]. Mobile phone data improves predictions in
Thai provinces [26] and across Pakistan [47]. In Brazil, human connectivity helps explain the
correlation of dengue outbreak timing and trend between different mesoregions [11]. Churakov
et al. (2019) find rainfall to be more predictive of dengue seasonality than mobility (as approx-
imated by a gravity model) across mesoregions and finer geospatial scales, though the gravity
model was informative at higher aggregations [14].

The mechanisms through which mobility impacts dengue dynamics are increasingly under-
stood and allow for the possibility of both positive and negative effects on dengue prevalence
during the pandemic. Human mobility can be the driving force of both the outbreak size and
the speed of spread across neighborhoods [4]. Specifically, the variability of mobility supports
dengue spread, while the time spent in a given place has little impact [1]. Yet other factors, such
as mosquito density and biting suitability of infected individuals are also strong determinants of
whether mobility reductions (in response to symptomatic infection) lead to increases or decreases
in dengue transmission [41]. This suggests that mobility changes due to the pandemic may have
also impacted dengue dynamics in significant, though possibly geographically diverse ways.
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Role of mosquito prevalence and climate variables. Dengue transmission in humans
is mediated by Aedes aegypti and Aedes albopictus mosquitoes, whose population size is affected
by environmental (e.g. presence of larval breeding sites) and climate conditions (e.g. temper-
ature, humidity, and precipitation). These variables define the limits of vector survival, within
which we distinguish between viable and optimal conditions. Campbell and colleagues (2013),
for example, find that 80 percent of dengue cases in Thailand occurred when mean humidity
was above 75 percent and mean temperature was within 27–29.5°C [10]. This is because the
extrinsic incubation period decreases at warmer temperatures, thus reducing the time it takes
for a mosquito to transmit the virus to humans [12]. Similarly, rainfall and flooding can provide
additional breeding habitats for Aedes mosquitoes, for example after extreme weather events
[18, 17]. Dengue is observed in all states in Brazil, though climate zones span tropical and sub-
tropical regions, thus varying the timing and duration of viable conditions.

Upon contact with an infectious mosquito, the probability of human infection is determined
by a person’s immune status. Previous infection with a dengue serotype conveys lifelong immu-
nity against that serotype and temporary, partial immunity against other serotypes [49]. Human
susceptibility to dengue may thus be reduced after large outbreaks, as was the case after the
Zika epidemic in 2016 [8].

Dengue dynamics are therefore driven by a complex interaction of biological, ecological, and
social factors of the vector, host, and pathogen, making it difficult to separate the effect of the
pandemic from other dengue drivers. We currently lack complete knowledge of the causal drivers
of dengue dynamics generally, and specifically of the active drivers during the COVID-19 pan-
demic as well as their relative importance in different parts of the country.

Our contribution. In this study, we aim to understand how shifts in human behaviour and
other likely causal drivers, such as climate variables, impacted dengue activity in Brazil during
the early stages of the COVID-19 pandemic. We allow for variability of pandemic effects across
states and analyze the role of each causal driver in a hierarchical approach. First, we estimate
the impact of the pandemic as a whole on dengue in Brazil at different geographical aggregations
using an interrupted time series causal inference design. Next, we investigate in turn whether
the gap between expected and observed dengue can be attributed to pandemic-related factors
or other known covariates of dengue activity, specifically climate conditions, human mobility,
human susceptibility, and adjustments for pandemic-related changes in surveillance.

These estimates of the overall impact of the COVID-19 pandemic on dengue in different parts
of Brazil may help mitigate some of the data gaps from 2020 and support forecasts of dengue in
the post-pandemic period. Our work may also contribute to an increased understanding of the
causal drivers of dengue dynamics more generally, which is critical to developing effective public
health interventions.

2. Materials and Methods

2.1. Data

We use weekly observed dengue case counts from the Brazilian Notifiable Diseases Informa-
tion System (Sistema de Informação de Agravos de Notificação - SINAN) from 2014-2020 [21].
Climate data are extracted from the Brazilian National Institute of Meteorology (Instituto Na-
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Figure 1: Study area

cional de Meteorologia - INMET) over the same time period and include variables on rainfall,
humidity, temperature (max, min, median) and wind speed [20]. Changes in human mobility are
assessed using Google Regional Mobility Reports, which capture relative changes in time spent
in residential areas, transit stations, and other points of interest in cities across Brazil during
the pandemic relative to a pre-pandemic baseline. We supplement this empirical mobility data
with information on non-pharmaceutical interventions implemented in different states from the
Oxford Coronavirus Government Response Tracer database [23]. To approximate changes in
care-seeking behavior and care availability, we collect data on treatments for conditions related
to an HIV infection (ICD-10 codes B20-24 and Z21) and elective hospital internations from the
Brazilian Ministry of Health (DATASUS) [40]. SARS-CoV-2 infections across municipalities are
reported by the states’ Secretariat of Health and consolidated at Brasil.io [25].

For all datasets, we consider several levels of geospatial detail, including the five regions of
Brazil, 27 Federative Units (which include all states and the capital city, Distrito Federal), 136
mesoregions, and 5570 municipalities (Figure 1).

2.2. Outbreak characteristics

In addition to case counts, we also consider the shape of annual dengue time series. Leveraging
methods previously described in [11], we compute measures for the intensity and seasonality of
the dengue season. The intensity measures how concentrated dengue cases are in specific weeks
of the year. The seasonality measures how regular outbreaks occur in 52-week intervals.

5



2.3. Outlier Analysis

We consider deviations from typical behavior along several dimensions: the dengue case count,
the shape of the dengue outbreak (intensity, seasonality, peak, and onset), and climate variables.
To compute outliers, we first transform the data to near-Gaussian distributions using a Box-Cox
or Yeo-Johnson transforms, depending on fit. We then compute z-scores for all observations
based on distributions for each epidemiological week in each state over the pre-pandemic period
(2014-19). All observations in 2020 with z-scores greater than 2.58 (corresponding to p < 0.01
in a two-sided t-test) are considered outliers. In a sensitivity analysis, we also compute outliers
according to the thresholds p < 0.05 and p < 0.1. For the weekly variables, we analyze the
share of all week-city combinations that are outliers. The intensity and seasonality are annual
measures, therefore they are compared only across cities, not weeks.

2.4. Interrupted Time Series Analysis

Interrupted time series analysis (ITSA) leverages sudden disruptions to data generation mech-
anisms to estimate causal impacts of interventions from time series data [42, 30]. A predictive
model is fit to training data up to the implementation time of the intervention. Inputs may
consist only of the outcome variable or also include relevant covariates that help model the trend
or seasonality of the time series. The observed outcome is then compared to predictions of
post-intervention observations to understand how the level and trend of the time series changed
in response to the intervention. Interventions may be implemented as part of an experiment
designed by a researcher to estimate a specific causal effect or they may be the result of a natural
experiment, which occurs without interference by the researcher [42], as is the case in this study.

ITSA is commonly implemented with models of the autoregressive integrated moving aver-
age (ARIMA) family and recently with the more general set of Bayesian structural time series
(BSTS) models. The advantage of these models is their ability to explicitly handle different time
series components, such as the trend and seasonality. Green and colleagues (2021), for exam-
ple, implemented an interrupted time series design with ARIMA, BSTS, and negative binomial
regression models to estimate the impact of the COVID-19 lockdown announcement in the UK
on misinformation shared on Twitter [22]. BSTS-based ITSA has also been applied to study
the impact of reforms in drug monitoring policies on mortality rates [19]. The use of machine
learning models for quasi-experimental causal inference designs in general, and ITSA specifically
is comparatively underexplored [7].

In this study, we implement an ensemble consisting of a feed-forward neural network (NN) and
a BSTS model in an interrupted time series design. The BSTS model is defined as described in [9]
with a Gamma prior distribution. After hyperparameter selection, the NN model is constructed
with two hidden layers of 128 units each, rectified linear unit activation, Adam optimization,
and a learning rate of 0.001. We apply this ITSA approach in two ways. First, we compare
the expected dengue cases (the output of our ITSA approach) with those that were observed to
understand where the 2020 dengue season was atypical. In this analysis, we consider different
interruption times to assess the two main interventions of interest, mobility reductions and
surveillance disruptions. The first time point was selected to be March 7th 2020, the point
in time when the largest changes of human mobility were observedon empirical mobility. To
quantify disruptions to dengue surveillance due to COVID-19, we selected January 13th, 2020,
the point in time when the first case of COVID-19 was reported outside of Wuhan, [48], and
consider all other dates up to March 14th as part of a sensitivity analysis. These dates allow
us to test different hypotheses, based on the assumption that the data collection mechanism
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was unaffected until the interruption point, and that any changes in the dengue time series were
caused by pandemic interventions on those dates. Two states, Amapá and Roraima, are excluded
from the ITSA analysis, because of missing climate observations during part of 2020.

2.5. Reporting adjustment

The second implementation of ITSA is applied to estimate the pandemic-induced excess under-
reporting. We compare expected and observed quantities of HIV-related treatments and elective
hospitalizations, to approximate reductions of care-seeking bahaviors and health care availability,
respectively. The percentage change in these two proxy time series are then used to compute
adjusted dengue cases, which may be interpreted as the dengue cases that would have been
observed in the absence of changes in care seeking and care availability, respectively. Specifically,
we compute reporting-adjusted dengue cases d∗, as d∗

t
= dt(1− ut), with the percentage change

in reporting u determined by u = at−ât

at

, where dt are observed dengue cases at time t, at is
the observed quantity of the reporting approximation, and ât is the expected quantity of the
reporting approximation predicted by ITSA.

3. Results
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Figure 2: Dengue time series by epidemiological week in 2020 and in the pre-pandemic period
2014-19, by region

Green lines and shaded regions represent the mean and 95% confidence interval of dengue cases in
regions computed for each epidemiological week over the years 2014 to 2019. Orange lines represent the
2020 dengue case count each week. Gray dotted lines indicate the start of the COVID-19 pandemic in

2020.

3.1. Is the 2020 observed dengue season unusual?

North. The North of Brazil has the earliest start of the annual dengue season and maintains
low levels of active infections throughout the year due to its tropical climate [14] (Figures 2 and
11). The pandemic is expected to have less of a cumulative impact on dengue in this region, since
mobility reductions and surveillance changes occurred toward the end of the dengue season in
these states. At the regional level, ITSA suggests that observed cases closely follow the expected
trajectory, though forecasts at the state-level are more volatile (Figures 3 and 13). The states
Acre, Amazonas, and Rondônia experience some dengue anomalies at the city-level (6), though
these tend to occur before and at the end of the first pandemic wave, in early January and in
June.

Northeast. According to the ITSA results, states in the Northeast generally experienced
slightly fewer cases then expected, with an especially pronounced temporary dip in cases in the
two weeks following March 14th.
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Ceará, for example, begins the season with higher-than-expected cases, followed by a dip in
reported cases in mid-March.

Bahia deviates from the other states in the Northeast. Its outbreak is larger than expected,
regardless of the time series interruption point, though it is not unprecedented: case counts are
almost as large as in the 2016 outbreak and the outbreak timing is comparable to the 2019
season.

Southeast. The Southeast region also observed fewer dengue infections than expected. In
Minas Gerais and Rio de Janeiro, cases are below the ITSA predicted values for all interruption
times. In São Paulo, the season starts with higher-than-usual incidence, but cases begin to
decline at the end of February. The government of Espírito Santo stopped using the online disease
notification system in 2020 [21], leading to clearly evidenced and sudden-onset underreporting of
dengue cases (Figures 2 and 11), which helps us validate the ITSA results. Both the individual
and ensemble ITSA forecasts recognize this break in the data generation mechanism and identify
the influence of under-reporting, by predicting higher cases than reported (see Supplement).

South and Center-West. In states in the South and Center-West, ITSA results are similar.
In most states, cases are higher than expected for early interruption times. If we assume that
the observed cases reflect the true disease dynamics, ITSA results shift to lower than expected
case counts for later interruption times. In other words, the pandemic impacts either dampened
an outbreak that would have been even larger or there were changes in early disease drivers that
led to increased cases. There are two exceptions in these regions. In Santa Catrina (South),
dengue is greater than expected for all interruption times. In Goiás (Center-West), the dengue
time series is as expected for all interruption points, except for a dip in reporting around March
7th. This dip is also observed in the other states in the region.

3.2. Role of excess under-reporting

Dengue surveillance is influenced by people’s care-seeking behavior, health care availability, and
reporting capacity. Using the approximations for changes in the former two of these factors, we
explore whether and to what extent lower-than-usual dengue cases could be explained by changes
in surveillance systems, specifically by excess under-reporting during the pandemic. We assume
that under-reporting of dengue cases, while common, was somewhat consistent in time before
the COVID-19 pandemic and then that it may have increased during the pandemic. Using a
separate ITSA on the proxy datasets (as described in section 2) We compute "adjusted dengue
cases", which approximate the level of observed dengue cases we would have expected without
excess under-reporting in the period from March to June of 2020. This measure is different from
the expected dengue cases that was computed in the previous section, since it accounts only for
excess under-reporting, not the other pandemic or non-pandemic drivers of dengue dynamics.
The adjusted time series therefore represents the observed cases that would have been expected
under pre-pandemic under-reporting conditions.

Of the 25 states in the ITSA analysis, 22 reported fewer dengue cases than expected for the
March 1st interruption time point (Figure 4). In 15 of these states, the gap is partially explained
by at least one of the two adjustments. In 11 states, adjustment over-corrects for the gap between
observed and expected cases for at least one of the two approximations, so that adjusted cases
are higher than expected cases. The remaining 3 of 25 states report more dengue cases than
predicted and adjustment (according to both approximations) further widens the gap between
observed and expected cases.

North. In the North, the adjustment results in a mix of partial compensation and over-
correction (Figure 4).

Northeast. In most of the Northeastern states, adjustment for excess under-reporting par-
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Figure 3: Observed and expected dengue case counts in five sample states, at interruption time
29 February 2020

Observed dengue cases (black) are compared to 15-week ahead forecasts of the feed forward neural
network (NN), the bayesian structural time series model (BSTS), and a simple average as well as a

weighted average ensemble of the two individual forecasts.

tially explains the gap between expected and observed cases. In Ceará and Pernambuco, the
adjustment over-corrects for the gap. Bahia is an outlier in the region, since it observed more
cases than expected and adjustment further increases the gap (Figure 4).

Southeast. In all four states in the Southeast, adjustment reduces the gap between observed
and expected cases for at least one of the two proxies (Figure 4). In São Paulo, for example, we
note that the adjustment using elective surgeries as a proxy for reduced care availability, very
closely follows the expected dengue cases (Figure 5). Thus, reduced case ascertainment due to
overwhelmed hospital systems may explain the low case count observed in São Paulo during the
pandemic.

South. As shown in the ITSA, cases in the southern region were atypically high in 2020. We
also observe evidence for lower case ascertainment due to lower care-seeking behavior and care
availability, as measured by the two proxy time series. Adjusting for this excess under-reporting
further widens the gap between expected and observed cases (Figures 4 and 5). In the absence
of other influences, such as over-reporting or mobility, the outbreak in this region may have been
even larger than what was observed.

Center-West. While the outbreak in many states in the Center-West were larger than
expected, the ITSA for later interruption points (assuming no structural changes before March
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2020) showed observed cases to be slightly above expected levels. Therefore, adjusting observed
cases upwards further increases the gap in Mato Grosso, Goiás, and Distríto Federal (Figure 4).
This could indicate that the above-average dengue outbreak would have continued in the absence
of the COVID-19 pandemic, and fewer cases were ascertained at the end of the dengue season.
In Mato Grosso do Sul, adjusted dengue cases (using the elective surgery proxy) are comparable
to expected cases, which are greater than observed cases for the March 1st interruption point
(Figure 5).

3.3. Role of climate conditions

We compute the outliers (p < 0.01) of the climate variables for the first half of 2020. We find that
6 percent of week-city combinations are outliers on the distribution of rainfall and 4.5 percent
on the distribution of humidity. The other climate variables had lower outlier rates.

North. The two most northern states, Roraima and Amapá, experienced lower humidity
in the first quarter. The two most southern states in the Northern region, Acre and Rondônia,
had elevated minimum temperatures, meaning warmer nights. The state of Amazonas had a
lower daily temperature range, with higher median temperatures and lower maximum tempera-
tures. Pará’s humidity outliers occured late into the year after the dengue season and pandemic
interventions. Tocantins experienced slightly elevated precipitation in the first quarter.

Northeast and Southeast. Bahia experienced weeks with strong rains, which could be a
contributing factor for the unusally high dengue case counts. Increased rainfall is linked with
greater dengue incidence, as it helps create larval breeding sites for mosquitoes, though too
much rain may wash away existing breeding sites, which may explain why Minas Gerais did not
experience increased dengue incidence as a result of the similarly strong rains.

In the remaining states in the Northeast and Southeast, climate conditions were closer to
typical years, but with some outliers in rainfall and minimum temperatures in the first quarter
of 2020. For example, Slightly increased rainfall in São Paulo in January and February may have
contributed to the higher-than-usual prevalence at the start of the dengue season. Rio de Janeiro
also observed higher rainfall and humidity in early 2020 but at the same time had atypically low
maximum temperatures, which may have been less conducive to mosquito population growth. In
the Northeast, all states experienced some rainfall outliers. In a cluster of states in the extreme
Northeast (Rio Grande do Norte, Paraíba, Pernambuco, Alagoas, and Sergipe), these rainfall
outliers occurred from March to May. In the remaining states of the Northeast increased rainfall
occurred in January and February, accompanied by slightly reduced maximum temperatures,
especially in Piauí and Maranhão.

South. The southern states experienced unusually dry weather (epidemiological weeks 10-
25, March-May) and some colder than usual nights (minimum temperature outliers) (Figure 6).
Given that dengue vectors favor humid and warm climates [10], atypical climate conditions alone
do not explain the large dengue outbreak in these states.

Center-West. The Center-West federative units, especially Distrito Federal and Goiás,
experienced more rainfall than usual in the first quarter of 2020. This may have contributed to
the larger-than-expected outbreak size in Distrito Federal.

3.4. Role of human susceptibility

Infection with a given dengue serotype confers full immunity against that serotype and temporary
protection against other serotypes. Periods of low incidence following large outbreaks have been
observed in Brazil and elsewhere, though the periodicity of dengue outbreaks is not yet fully
understood [8].
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Figure 5: Dengue cases adjusted for excess under-reporting during the pandemic, compared with
expected and observed dengue cases in five sample states

After two years of low dengue prevalence in 2017 and 2018, many regions of Brazil experienced
large outbreaks in 2019. This points toward a considerable level of immunity at the start of the
COVID-19 pandemic [8].

To approximate population-wide immunity, we compute the sum of dengue infections in
the past three years. The year-on-year difference in this measure is negatively correlated with
observed dengue cases, suggesting that as immunity declines, observed cases increase. The
correlation coefficients are -0.68, -0.51, and -0.15 in 2018, 2019, and 2020, respectively. The
relatively weaker relationship in 2020 may suggest the presence of other forces, but more research
on longer time series and with other susceptibility measures is needed to verify this interpretation.

Figure 7 shows the change in 3-year cumulative per-capita case counts from 2019 to 2020.
Positive values in states such as São Paulo, Mato Grosso do Sul, Espírito Santo, and Acre suggest
greater immunity, and therefore lower susceptibility. The largest decreases in approximated
immunity occur in the Northeastern states Rio Grande do Norte, Paraíba, and Ceará.
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The Northeast observed fewer dengue infections than expected, which is not explained by
climate factors, but which may be partially due to the decreased immunity in the population.
In Paraíba and Rio Grande do Norte, for example, this reduction in susceptibility could help
explain some of the remaining gap between expected and observed cases after accounting for
excess under-reporting (Figure 4).

3.5. Remaining effects: human mobility and over-reporting

The remaining unexplained deviations between observed and expected cases may be in part
driven by the two remaining consequences of the COVID-19 pandemic, human mobility and
over-reporting. However, these two factors are difficult to assess empirically, due to both data
limitations and bidirectional effects. This section considers the available evidence for each of
these factors.
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3.5.1. Evidence for human mobility impacts

In spite of some variability in the timing of non-pharmaceutical interventions, such as school
closures, the empirical data from Google users shows that mobility reductions occurred simulta-
neously across all of Brazil, starting around epidemiological week 11 (March 8-14) and reaching
the lowest point in week 13 (March 22-28). Mobility slowly returned to near-pre-pandemic levels
over the course of the year (Figure 8). Given the extrinsic incubation period, we expect impacts
on dengue to manifest themselves one to three weeks after the start of mobility reductions and
stay in place while mobility remains low.
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across cities in each region. Orange vertical dotted lines highlight epidemiological weeks 11-13.
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3.5.2. Evidence for over-reporting

The literature suggests the possibility of over-reporting of dengue cases during the COVID-19
pandemic, due to similarity of symptoms and cross-reactivity of laboratory tests for DENV and
SARS-CoV-2 [38, 32, 29]. The historically low dengue case-fatality rate of only 4% in 2020
suggests that over-reporting may have also been a reality in Brazil [37, 36]. However, this effect
is difficult to quantify rigorously at the sub-national level with existing data sources.

Figure 9 shows reported dengue and COVID-19 cases across Brazil’s regions. The relatively
late increase in observed COVID-19 cases in the South and Center-West could signal either
delayed spread of the disease to these regions or delayed identification of SARS-CoV-2 infections,
which would help explain the unusually large dengue case counts observed in these regions.

Figure 9: Prevalence of COVID-19 (red) and dengue (2014-19: blue, 2020: orange), by region

4. Discussion

We analyzed epidemiological, meteorological, and human mobility data to assess the impact of
the COVID-19 pandemic on dengue in Brazil. We employed causal inference using an interrupted
time series design together with statistical analyses to estimate the respective roles of climate
conditions and human susceptibility, as well as changes in dengue surveillance and human mobil-
ity during the COVID-19 pandemic. Overall, most states experienced fewer dengue cases than
expected and all states had evidence of excess under-reporting. However, there was considerable
geographic variation in the pandemic’s overall impact and the role of individual drivers.

States in the North had the lowest discrepancy between observed and expected cases. This
finding reflects the fact that the first COVID-19 wave occurred late in the dengue season in the
North. Given that disease control interventions are most effective early in a dengue outbreak
[10], we would therefore expect this region to experience the least impact of the pandemic. Most
states in the Northeast and Southeast registered fewer dengue infections than usual, which is
consistent with the evidence on excess under-reporting in these regions. In the Northeast, we
observe an especially pronounced dip in case counts in the first two weeks of March. Southern
states experienced unusually large dengue outbreaks, which may be explained by a combination
of increased human susceptibility and over-reporting, since climate conditions do not warrant the
large outbreak size and since the timing of outbreak onset is not consistent with increased dengue
spread due to mobility reductions. Similar to the South, states in the Center-West observe large
dengue outbreaks early in the season, partially explained by increased rainfall and susceptibility
in some states.

However, complex mechanisms guide the impact of the COVID-19 pandemic on dengue in
Brazil, and more research and data are needed to gain greater certainty on the exact effect sizes
of both pandemic and non-pandemic factors. For example, mechanistic models may help identify
the most likely mobility scenarios. Serological studies of neonatal blood spot or blood donor
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data can provide a groundtruth estimate of true dengue incidence in 2020. Finally, a large-scale
genomic analysis could help assess which dengue strains were circulating during the pandemic,
estimate the corresponding level of immunity against those strains within the local population,
and identify whether there were fewer pathogen introductions when mobility was reduced.

This study has several limitations. Firstly, our causal estimates rely on the quality of our
predictive models. Forecasting is an inherently difficult task, especially over long prediction
horizons, and further complicated by the threat of time-varying confounders. To mitigate some
of the risks, we utilize two distinct model types for the interrupted time series analysis and also
perform a separate outlier analysis. Results are qualitatively similar for all models in our study.

Secondly, guaranteeing the fulfilment of the three conditons of causal inference, ignorability,
positivity, and consistency, is challenging in non-experimental settings [24]. The pandemic, as it
relates to dengue, is a composite intervention, which may violate the consistency assumption of
causal inference. We aim to mitigate this limitation by separately considering different aspects
of the pandemic.

In addition to model bias, we expect results to be affected by data limitations, since we rely
on approximations for the many of the variables of interest. While human susceptibility, for
example, is known to affect dengue dynamics, we lack data on population-wide immunity, such
as large-scale serological surveys at the start of the pandemic. We consider the year-on-year
change in the sum of infections of the three previous years as an approximation of variation in
immunity across locations. To limit some of these data biases, we used multiple data sources for
the approximations, where feasible. For example, we consider several climate variables and two
proxies for excess under-reporting. Further research may consider other methods to estimate
dengue covariates and will be an important avenue of investigation to compensate the data gaps
created by the COVID-19 pandemic more broadly.

Assessing the 2020 dengue landscape mirrors surveillance challenges in other areas of public
health. The SARS-CoV-2 pandemic not only created data gaps, but also altered underlying data
generation mechanisms, such as transport patterns, social networks, or trust in public health
policies. This is a serious obstacle to monitoring health outcomes and implementing evidence-
based policy. This study has contributed to reducing some of these data gaps and increasing our
understanding of the causal drivers of dengue spread in Brazil, which is an important precursor
to developing effective public health interventions for dengue control in the future.
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Supplemental Text: Causal model

Observed dengue cases are a consequence of two processes: the disease dynamics underlying the
observed and unobserved dengue infections and the associated surveillance systems. Both of
these processes may have been impacted by the COVID-19 pandemic, specifically by changes in
human mobility and disease reporting as a consequence of altered care-seeking behavior and care
availability. Underlying our analysis is the causal model of dengue transmission shown in Fig.
10. The following text describes each of the nodes in the causal model (highlighted in bold face
in the text).

reported dengue
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Figure 10: Graphical causal model

5.1. Causes of disease dynamics

Dengue dynamics are driven by a complex interaction of biological, ecological, and social factors
of the vector, host, and pathogen. Dengue transmission in humans is mediated by Aedes aegypti
and Aedes albopictus mosquitoes. The mosquito population size is affected by environmental
(e.g. presence of larval breeding sites) and climate conditions (e.g. temperature, humidity),
which define the limits of vector survival. Within these limits, we distinguish between viable and
optimal conditions. Campbell and colleagues (2013), for example, find that 80 percent of dengue
cases in Thailand occurred when mean humidity was above 75 percent and mean temperature
was within 27–29.5°C [10]. This is because the extrinsic incubation period decreases at warmer
temperatures (30°C instead of 25°C), thus reducing the time it takes for a mosquito to transmit
the virus between humans [12]. Similarly, rainfall and flooding can provide additional breeding
habitats for Aedes mosquitoes, for example after extreme weather events such as hurricane Mitch
in Central America in 1998 [18, 17]. Dengue is observed in all states in Brazil, though climate
zones span tropical and sub-tropical regions and thus differ in the length and strength of viability
conditions.

In addition to the mosquito population size, the rate of human-mosquito contact is influ-
enced by factors such as the location and type of human dwellings, including the availability of
breeding sites near the home, the use of air-conditioning or -filtration, and population density.
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Public health interventions and personal protective measures may affect both the mosquito
population size and human-mosquito interactions. For example, campaigns urging residents
to cover water containers during droughts can help remove mosquito breeding habitats near
homes. Redirection of resources and attention to SARS-CoV-2 may have impacted public health
interventions.

Upon contact with an infectious mosquito, the probability of infection is determined by a
person’s immune status. Previous infection with a dengue serotype conveys lifelong immunity
against that serotype and temporary, partial immunity against other serotypes. Human sus-

ceptibility to dengue may thus be reduced after large outbreaks.
Finally, disease spread relies on the presence of the pathogen, which may be affected by

human mobility, one of the key factors affected by the COVID-19 pandemic. Given the short
travel radius of Aedes mosquitos of 100-400 meters [49, 34, 31], spread of dengue, especially in
non-endemic regions, relies on (re-)introduction of the pathogen by infected humans, who travel
across neighborhoods, cities, and countries [28, 44, 26, 47]. Whether increased mobility leads to
increased dengue cases is not completely understood, but may vary by geography and may be
affected by the variability of mobility [1], or the mosquito density and the biting suitability of
humans [41].

5.2. Disease reporting

The observed case count is also impacted by the share of infections that is ascertained. Dengue
reporting involves three steps: (i) care-seeking of the patient, (ii) availability of care, and (iii)
subsequent reporting upon diagnosis. The pandemic may have affected reporting through all
three of these channels. Care-seeking behavior may be affected by physical and financial access
to healthcare and willingness to engage with the healthcare system, which may have been altered
by fear of COVID-19 infection, transport availability, and economic impacts of the pandemic.
Capacity to treat conditions other than COVID-19 were also reduced during the pandemic.
Finally, overburdened healthcare systems and repurposing of resources to combat COVID-19
may have reduced the level of disease monitoring [16, 2, 35, 46, 6].

Dengue is a nationally notifiable disease and healthcare providers are required to report sus-
pected cases if a patient in an area of dengue transmission or Aedes aegypti infestation presents
with fever and at least two of the following symptoms: headache, retro-orbital pain, myalgia,
arthralgia, exanthema, bleeding or hemorrhage, nausea or vomiting, petechiae orpositive tourni-
quet test, or leukopenia [33, 43]. Given the overlap with common symptoms of COVID-19,
including fever, headache, nausea or vomiting, and myalgia, symptom-based misreporting of the
two diseases in the early pandemic period is plausible. This hypothesis is strengthened by the fact
that cross-reactivity of lab tests for both DENV and SARS-CoV-2 infections has been reported
[38, 32, 29].
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Figure 11: Dengue time series by epidemiological week in 2020 and in the pre-pandemic period
2014-19 (mean and 95% confidence interval), by state and region
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Figure 12: Interrupted time series analysis forecasts for Espírito Santo using different predictive
models at different interruption times
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Figure 13: Predicted and observed dengue cases in all states for interruption point Feb 29th

25



0

1000

2000

3000

ca
se

s

Amazonas

0

5000

10000

15000

ca
se

s

Maranhão
observed dengue
ITSA-NN
ITSA-BSTS
ensemble average
El. Hosp. adjusted dengue
HIV-adjusted dengue

0

2000

4000

ca
se

s

Pará

0

2500

5000

7500

10000

12500

ca
se

s

Ceará

0

2500

5000

7500

10000

12500

ca
se

s

Acre

0

1000

2000

3000

ca
se

s

Piauí

0

2000

4000

6000

8000

ca
se

s

Rondônia

0

2000

4000

6000

8000

10000

ca
se

s

Rio Grande do Norte

0

2000

4000

6000

8000

ca
se

s

Tocantins

0

2000

4000

6000

ca
se

s
Paraíba

0

2500

5000

7500

10000

ca
se

s

Mato Grosso

2000

4000

6000

8000

10000

ca
se

s

Pernambuco

0

10000

20000

30000

ca
se

s

Goiás

0

2000

4000

6000

ca
se

s

Alagoas

0

5000

10000

15000

20000

ca
se

s

Distrito Federal

0

1000

2000

3000

4000

5000

ca
se

s

Sergipe

0

5000

10000

15000

20000

25000

ca
se

s

Mato Grosso do Sul

0

20000

40000

60000

ca
se

s

Bahia

0

50000

100000

150000

ca
se

s

Minas Gerais

0

20000

40000

60000

80000

100000

ca
se

s

Paraná

0

5000

10000

15000

ca
se

s

Espírito Santo

0

2500

5000

7500

10000

ca
se

s

Santa Catarina

0

2000

4000

6000

8000

ca
se

s

Rio de Janeiro

0

500

1000

1500

2000

2500

ca
se

s

Rio Grande do Sul

2019-01 2019-03 2019-05 2019-07 2019-09 2019-11 2020-01 2020-03 2020-05 2020-07
date

0

25000

50000

75000

100000

ca
se

s

São Paulo

Figure 14: Comparing monthly reporting-adjusted dengue cases with observed and expected
dengue cases for all states at interruption time March 1st
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