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Abstract 

Thailand was the first country reporting the first Coronavirus disease 2019 (COVID-19) 

infected individual outside mainland China. Here we delineated the course of the COVID-19 

outbreak together with the timeline of the control measures and public health policies employed 

by the Thai government during the first wave of the COVID-19 outbreak in Thailand. Based on 

the comprehensive epidemiological data, we reconstructed the dynamics of COVID-19 

transmission in Thailand using a stochastic modelling approach. Our stochastic model 

incorporated effects of individual heterogeneity in infectiousness on the disease transmission, 

which allows us to capture relevant features of superspreading events. We found that our model 

could accurately capture the transmission dynamics of the first COVID-19 epidemic wave in 

Thailand. The model predicted that at the end of the first wave, the number of cumulative 

confirmed cases was 3,091 ( 95% CI: 2,782 -  3,400) . We also estimated the time-varying 

reproduction number (Rt) during the first epidemic wave. We found that after implementing the 

nationwide interventions, the Rt in Thailand decreased from the peak value of 5.67 to a value below 

one in less than one month, indicating that the control measures employed by the Thai government 

during the first COVID-19 epidemic wave were effective. Finally, effects of transmission 

heterogeneity and control measures on the likelihood of outbreak extinction were also investigated. 

 

 

 

 

 

 

 

 

 

 



Introduction 

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2), was first identified in Wuhan, China, in late December 20191. The 

disease then spread rapidly across multiple countries in early 2020. Most of the early imported 

cases in these countries reported having a history of travel to Wuhan2.  The severity of the outbreak 

in these countries varied significantly, depending on the timeliness and effectiveness of state 

control measures3.  

Thailand was the first country which reported the first COVID-19 infected individual 

outside of mainland China4.  The infected patient was reported on 15 January 2020, and the local 

transmission in Thailand subsequently emerged at the end of January 20204.  The number of 

COVID-19 confirmed cases in Thailand rose rapidly after two large outbreaks at Lumphini Boxing 

Stadium and at Thong Lo entertainment venue in early March 20205,6. The Thai government then 

enforced several control measures to prevent and mitigate outbreaks6-8. Consequently, the number 

of locally transmitted COVID-19 cases in Thailand had declined and reached zero on 13 May 2020 

and had since remained zero for at least 220 consecutive days7,9,10.  

In this study, we described the course of the COVID-19 outbreak together with the timeline 

of the control measures and public health policies employed by the Thai Government during the 

first wave of the COVID-19 outbreak in Thailand. We also investigated the impact of non-

pharmaceutical intervention strategies on the epidemiology of the first wave of COVID-19 in 

Thailand. Based on the comprehensive epidemiological data, we delineated the full dynamics of 

the first wave of COVID-19 in Thailand using a stochastic epidemic model and a time-varying 

reproduction number. In addition, as pointed out by several studies 11-18, our stochastic model also 

incorporates individual heterogeneity in infectiousness on SAR-CoV-2 transmission. This allows 

us to accurately captures the relevant features of superspreading events (SSEs), i.e., a transmission 

characteristic in which only a few infectious individuals transmit the disease to large numbers of 

individuals, while most infected individuals infect a few or none1 9 ,2 0 . Finally, effects of 

transmission heterogeneity and control measures on the likelihood of outbreak extinction were also 

investigated.  

 



Results 

The first wave of COVID-19 in Thailand 

On 15 January 2020, Thailand reported the first confirmed case of COVID- 19 outside 

China21. The first detected case was a traveler from Wuhan, China, who had symptom onset on 3 

January 2020.  Not long after that, the first locally transmitted COVID- 19 case in Thailand was 

reported on 22 January 2020.  The Thai government then enforced several control measures to 

prevent and mitigate outbreaks6-8. Figure 1 shows the numbers of daily and cumulative confirmed 

locally transmitted COVID- 19 cases along with some key events in Thailand during the first 

epidemic wave. At the end of the first epidemic wave (13 May 2020), 3,017 cumulative cases and 

56 deaths (1.9%) had been recorded. Among 3,017 infected individuals, 2,492 (82.6%) are adults 

(aged 20-59 years), and 332 (11.0%) are elderly (aged over 60 years old)6,22. 

In Thailand, the COVID-19 transmission during the first epidemic wave was mostly related 

to large cluster outbreaks in crowded areas6,8.  As shown in Figure 1, the number of daily new 

cases increased rapidly after two large cluster outbreaks at the Lumphini boxing stadium (6 March 

2020) and at a nightclub in Thong Lo (9 March 2020)5,23.  The Thai government then employed 

several control measures to mitigate the spread of COVID-19. Physical distancing and work-from-

home measures were implemented. Nightclubs, restaurants, stores, and schools were ordered to 

close across the country.  Also, the Songkran Festival, i. e. , the Thai New Year festival, was 

canceled to avoid mass gatherings24,25.  In addition, the government implemented a nationwide 

curfew (between 10 p.m. to 4 a.m) on 2 April 2020, and all international flights to Thailand were 

banned starting from 6 April 20206.  The daily confirmed cases were subsequently decreased, 

leading to the lockdown easing on 1 May 20207.  The number of locally transmitted COVID-19 

cases during the first epidemic wave in Thailand had reached zero for the first time on 13 May 

2020 and had since remained zero for at least 200 consecutive days7,9,10. 



 

Figure 1.  The first wave of COVID- 19 outbreak in Thailand.  The blue line illustrates the 

number of daily new locally transmitted cases during the first epidemic wave (from 22 January to 

13 May 2020). The green bar shows the corresponding number of cumulative cases on a log scale. 

The black arrows indicate the time points at which control measures were implemented, while the 

time points of the large cluster outbreaks are shown using the red arrows. 

 

To evaluate the effectiveness of the implemented control measures, we then estimated the 

time- varying reproduction number, 𝑅!,  which represents the average number of secondary cases 

caused by a primary infected individual.  A value of 𝑅!  greater than the threshold value of 1 

indicates that the epidemic size is growing at time t, whereas 𝑅! < 1 indicates that the epidemic 

size is shrinking at time t.  The goal of the control measures is, therefore, to reduce 𝑅! < 1.  As 

shown in Figure 2, the 𝑅! in the early phase of transmission was around 2.72 (95% CI 1.56-4.35).  

However, after the large outbreaks at the Lumphini boxing stadium and the nightclub in Thong 

Lo, the 𝑅! increased rapidly and peaked at 5.67 (95% CI 4.62-6.87) on 18 March 2020, which was 

just before nightclubs, restaurants, and stores were ordered to close.  After Thailand had 

implemented several control measures, the 𝑅! decreased to a value < 1 for the first time on 6 April 

2020 and then had since remained below one until the end of the first epidemic wave. 



 

Figure 2. The time-varying reproduction numbers during the first epidemic wave. The solid 

green line shows the median of 𝑅! and the green shaded area indicates the 95% credible interval 

( CI) .  The horizontal dashed black line indicates the 𝑅!	threshold value of 1.  The solid blue line 

indicates the number of daily new COVID-19 cases. 

 

Reconstruction of the first COVID-19 epidemic wave in Thailand 

To reconstruct the transmission dynamics of COVID-19 in Thailand, we used the estimated 

𝑅! to calculate the time-dependent transmission rate of SAR-CoV-2 in Thailand (see Material and 

Methods). The comparison between the modeling results and the reported data is shown in Figure 

3. We found that the trends of both daily new cases and cumulative cases generated from the model 

agree well with the corresponding observed data (R-square = 0.9996). The time delay from onset 

of infectious to isolation, representing the effective infectious period of isolated individuals, was 

estimated at 2. 26 days.  The model predicted that at the end of the first wave, the number of 

cumulative confirmed cases was 3,091 (95%CI 2,782- 3,400) , which is close to the number of 

reported cases. 

 

 



 

Figure 3.  Reconstruction of the first COVID-19 epidemic wave in Thailand.  (A)  The black 

dots represent the reported daily new cases, while the blue line indicates the average number of 

daily new cases generated from the model.  (B)  The black dash line represents the number of 

cumulative cases and the solid line shows the number of cumulative cases obtained from the model 

simulations. For both (A) and (B), the shaded areas indicate the 95% CIs. The dispersion parameter 

𝑘 was fixed at 0.14, 𝑞" = 0.6 and 𝑞# = 0.6.  

 



Characterizing the SAR-CoV-2 transmission dynamics 

To characterize the SAR- CoV- 2 transmission dynamics, we employed the constructed 

model to simulate the SAR- CoV- 2 transmission and estimated the probability of outbreak 

extinction after the introduction of a single infected individual. We found that 64.1% of the model 

simulations exhibit stochastic extinction (defined as a realization that has no latently infected, 

asymptomatic, and symptomatic infectious individuals in 30 days after the introduction) , with an 

average time to extinction of 9. 6 days.  Moreover, of 77.84% of the extinct outbreaks, the index 

case did not generate any secondary infection. In this work, following Lloyd-Smith et al.26, a 

superspreading event (SSE) is defined as any outbreak event that involves infected individuals 

who, on average, infect others more than the 99th percentile of the Poisson(R0) distribution. Based 

on this criterion, we found that 11.1% of the model realizations involve SSEs. Also, as can be seen 

in Figure 4, an outbreak that involves SSEs usually spreads faster than the others. 

 

 

Figure 4. Characteristic of SAR-CoV-2 transmission. The blue and red lines show the average 

numbers of cumulative cases of non-SSE- and SSE-related simulations, respectively. Shaded areas 

indicate the corresponding standard error of the mean (SEM).  The inset illustrates the individual 

trajectories of non-SSE- (blue) and SSE- (red) related SAR-CoV-2 transmission. 

 



Evaluating the impact of interventions and heterogeneity in infectiousness on 

SARS-CoV-2 transmission dynamics 

Next, we employed the model to evaluate the impact of interventions and individual 

variation in infectiousness on the SARS- CoV- 2 transmission dynamics and outbreak 

extinction. Specifically, we explored the intervention scenarios where the time delay from 

infectious to isolation (𝑇$) is 0.5, 1.0, and 2.0 days together with the symptomatic case isolation 

(𝑞") ranging from 10% to 100%. Our modeling results indicated that the outbreak would be more 

likely to become extinct if more symptomatic cases are isolated or case isolation is performed 

sooner (Figure 5(A)). For example, more than 80% of the outbreaks will become extinct if all 

symptomatic cases are isolated within the first day of their infectiousness. Moreover, the isolation 

of symptomatic cases can also affect the likelihood of SSEs. Fast and efficient case isolation can 

almost eliminate the likelihood of SSEs (Figure 5(B)). 

Figure 6( A)  depicts the role of individual variation in infectiousness on the outbreak 

extinction.  Here, the dispersion parameter 𝑘 represents the individual heterogeneity on disease 

transmission.  A very high value of k indicates that each primary case generates roundly the same 

number of secondary cases.  In contrast, a low value of k indicates that only a small fraction of 

infected individuals disproportionately infects a large number of individuals26.  We found that 

individual variation on disease transmission favors the outbreak extinction, which is consistent 

with the previous studies19,26-28. Moreover, R0 can also affect the likelihood of outbreak extinction 

(Figure 6(B)) .  An outbreak with a lower value of R0 is more likely to become extinct. However, 

lowering R0 could also reduce the impact of individual heterogeneity on SARS-CoV-2 

transmission. Finally, to investigate the impact of transmission heterogeneity on the speed of 

disease transmission, we calculated the first date at which the cumulative number of infected 

individuals exceeds 100 (T100)  (Figure 6(C) ) .  We found that an outbreak with a higher level of 

transmission heterogeneity spreads slightly faster. Specifically, T100 decreases from about 28 days 

for the homogeneous transmission (𝑘 → ∞) to approximately 26 days for the transmission with a 

very high degree of individual heterogeneity (k = 0.01). Also, we found no SSE-related outbreak 

when 𝑘 ≥ 10 . In addition, for non-SSE outbreaks with 𝑘 ≤ 0.05 , the cumulative number of 

infected individuals could not reach 100 within the simulation time of 30 days. 



 

Figure 5. Impact of interventions. (A) The impact of symptomatic case isolation on the outbreak 

extinction (A) and the likelihood of SSEs (B) . Error bars show the standard error of the mean 

(SEM).  

 



 



Figure 6. Impact of individual heterogeneity in infectiousness. The extinction probability of an 

outbreak with a different value of dispersion parameter 𝑘 (A)  and basic reproduction number 𝑅% 

(B). The first date at which the cumulative number of infected individuals exceeds 100 (T100) (C). 

The results are obtained from 100,000 simulations for each parameter set.  Error bars show the 

standard error of the mean (SEM).  

 

 

Discussion 

In this work, we investigated the first wave of the COVID-19 outbreak in Thailand together 

with the timeline of the control measures employed by the Thai government. We also estimated 

the time-varying reproduction number during the first epidemic wave and used stochastic 

simulations to reconstruct the full transmission dynamics of COVID-19 in Thailand. Recent 

studies have revealed important transmission features of COVID-19, including the infectiousness 

of asymptomatic29,30, individual heterogeneity in infectiousness, and SSEs13,15,18,31. To accurately 

capture the COVID-19 transmission dynamics in Thailand, these features were therefore 

incorporated in our stochastic model. Specifically, our model assumes that both symptomatic and 

asymptomatic infectious individuals can transmit the disease but with different degrees of 

infectiousness. In addition, the expected number of secondary cases (𝜈)  caused by a primary 

infectious individual is assumed to follow a gamma distribution with a mean reproduction number 

R and a dispersion parameter k26. 

After declaring the state of emergency and implementing the nationwide interventions, the 

significant decline in both the number of confirmed cases and the positive detection rate in 

Thailand was observed32,33. To evaluate the effectiveness of the control measures implemented by 

the Thai government during the first epidemic wave, the time- varying reproduction number, 𝑅!, 

was estimated (Figure 2). We found that after implementing the nationwide interventions, the Rt 

in Thailand was decreased from the peak value of 5.67 to a value below one in less than one month. 

This indicated that the control measures employed by the Thai government during the first 

COVID-19 epidemic wave were effective. 



In general, mathematical modelling and computer simulation can be used either as 

predictive tools or as a means of understanding infectious transmission dynamics34. Here, the 

model was employed to understand the COVID-19 transmission dynamics of the first epidemic 

wave in Thailand. To this end, we incorporated the effects of the implemented interventions during 

the first COVID-19 epidemic wave by using the estimated 𝑅! to estimate the time- varying 

individual reproduction number (𝜈!)  in our model26. We found that our model could accurately 

capture the transmission dynamics of the first COVID-19 epidemic wave in Thailand (Figure 3). 

The model predicted that at the end of the first wave, the number of cumulative confirmed cases 

was 3,091 (95%CI 2,782-3,400), which is consistent with the reported data. 

In fact, several modeling studies have been conducted to predict the incidence of COVID-

19 and evaluate the effectiveness of control measures24,33,35-37. However, most previous models 

usually assumed a Poisson distribution of the number of secondary infections per infected 

individual, which could not capture the relevant features of superspreading events (SSEs)26,38. An 

SSE is usually defined as an event in which an infected individual transmits the disease to a large 

number of secondary individuals, while most infected individuals infect a few or none19,20. Recent 

studies have pointed out that only a small fraction of SAR-CoV-2 infected individuals 

disproportionately infect a large group of people while most infected individuals infect a few or 

none1 9 ,2 0 . It was estimated that only 10%  - 20% of the COVID- 19 infected individuals were 

responsible for about 80% of transmission15,26,39,11,40,41. To accurately reconstruct the full dynamics 

of COVID-19 transmission, these features of disease transmission heterogeneity were therefore 

incorporated in our model. Specially, we assumed that the expected number of secondary cases 

caused by an infectious individual varies from person to person26. 

We found that the dynamics of COVID- 19 transmission depends on the degree of the 

individual heterogeneity in disease transmission, represented by the dispersion parameter k. Our 

modeling results indicated that individual variation on disease transmission favors the outbreak 

extinction, which is in line with previous studies19,26-28 (Figure 6). This is because when individual 

heterogeneity in disease transmission is high, only a few infected individuals generate a large 

number of secondary infections, while most infected individuals give rise to a few or none 

secondary infections, leading to the higher likelihood of the outbreak extinction. However, 

although individual variation on disease transmission could increase the chance of outbreak 



extinction, it could also accelerate the transmission dynamics of the non-extinct outbreaks, which 

is in agreement with other studies15,26,38. 

Our study, as with all modeling studies, has several limitations. The estimation of Rt was 

based on the reported number of confirmed cases. Although there might be potential biases due to 

delays in case reporting, if the delay from infection to confirmation does not change over time, 

this will not affect the conclusion of this study. In our study, we also assumed that the testing and 

reporting efforts are constant over time. However, if the testing effort increases and decreases 

during a particular time interval, this will increase and decrease the estimated values of Rt, 

respectively3. In addition, although recent studies revealed that age-specific contact patterns also 

play a role in the COVID-19 transmission17,42,43, we did not incorporate them into our model; such 

data for Thailand is not yet available. Finally, our model did not consider migrant movements and 

human mobility; incorporating these data into the epidemic model might improve the modelling 

accuracy44,45. 

 

 

Materials and methods 

Data sources 

The number of laboratory-confirmed COVID-19 cases in Thailand was retrieved from the 

Department of Disease Control, Ministry of Public Health, Thailand22. The information of 

implemented control measures and large outbreak events was collected from the Centre for 

COVID-19 Situation Administration (CCSA) of Thailand 7. 

 

Duration of the first epidemic wave 

The first wave of COVID- 19 outbreak in Thailand was assumed to start from 22 January 

2020, when the first locally transmitted COVID-19 case was reported, to 13 May 2020, which was 

the first date at which Thailand had no reported on COVID-19 local transmission for at least 200 

consecutive days7,10. 



 

Estimation of the effective reproduction number 

 The effective reproduction number, 𝑅! , is defined as the average number of secondary 

cases produced by an infected individual at time 𝑡 3. A value of 𝑅! greater than the critical value 

of 1 indicates that the epidemic size is growing and the infection could be able to spread in the 

population at time 𝑡, whereas a value of 𝑅! less than 1 indicates that the epidemic size is shrinking 

at time t 3. In this study, we employed a statistical method developed by Cori et al. to estimate 𝑅! 

during the first epidemic wave in Thailand 46. This 𝑅! estimation method only requires the number 

of daily new cases and the distribution of the corresponding serial interval, which here was 

assumed to be a discretized Gamma distribution with a mean and the standard deviation of 6. 5 

days and 4.2 days, respectively 3,47,48. Details of the Rt estimation are presented in ref 3.  

 

Model structure 

A stochastic event- based modeling approach was employed in this study.  The schematic 

of the model specification is shown in Figure 7.  The model divides the population into six 

separated compartments; namely, susceptible (S) , latently infected (L) , symptomatic infectious 

( IS) , asymptomatic infectious ( IA) , quarantined ( Q) , and recovered ( R)  compartments.  A 

susceptible individual can get an infection from either a symptomatic or an asymptomatic 

infectious individual at rates 𝛽"  and 𝛽# , respectively.  After being infected, the susceptible 

individual progresses to the latently infected class. Individuals in this class have already acquired 

the SAR- CoV- 2 infection but are not yet infectious and cannot transmit the disease to other 

susceptible individuals. Latently infected individuals become infectious at a rate that is inversely 

proportional to the mean latent period ( TL) .  A proportion 𝑟" of the infected individuals becomes 

symptomatic infectious individuals, while the remaining 1 − 𝑟" becomes asymptomatic infectious 

individuals. In addition, a proportion qS of symptomatic infectious individuals and a proportion qA 

of asymptomatic infectious individuals is isolated and quarantined at a rate that is inversely 

propositional to the time delay from infectious to isolation (TQ)  while the remaining is recovered 

at a rate that is inversely proportional the mean infectious period (TI). We assumed that all isolated 

individuals could not make a further transmission. 



 

 

Figure 7.  Schematic of the COVID- 19 transmission model.  The model comprises six 

epidemiological compartments: susceptible (S), latently infected (L), symptomatic infectious (IS), 

asymptomatic infectious (IA), quarantined (Q), and recovered (R). 

  

We incorporated the disease transmission heterogeneity into the model by assuming that 

the expected number of secondary cases caused by an infectious individual varies from person to 

person2 6 .  The expected individual reproduction number (𝜈)  of each infectious individual was 

drawn from a gamma distribution with mean 𝑅% and dispersion parameter 𝑘, 𝜈~gamma(𝑅%, 𝑘), 

where 𝑅%  is the basic reproduction number11,26.  The transmission rates due to symptomatic 

infectious individuals (𝛽") and asymptomatic infectious individuals (𝛽#) are given by  

 𝛽" = 𝑞"	𝛾"	𝜈$ + (1 − 𝑞"	)𝛾"	𝜈,  

 𝛽# = 𝑞#𝛾#𝜈$ + (1 − 𝑞#)𝛾#𝜈,  



where 𝜈$ =	 (𝑇$/𝑇&)𝜈  is the expected number of secondary cases generated by a quarantined 

individual before isolation. Here we assumed that 𝜈$ is linearly proportional to the time delay from 

infectious to isolation (TQ). 

The number of secondary cases caused by the j infectious individual (𝑁') during the time 

interval 𝑑𝑡 is given by 

 𝑁'~ Poisson	@𝛽',)𝑆𝑑𝑡/𝑁B,  

where 𝛽',)  is the transmission rate of the j infectious individual, and 𝑖	 = 	𝑆	or 𝐴 representing 

symptomatic or asymptomatic infectious individual, respectively.  The total number of infections 

that occurred during the time interval dt is, therefore, 

 𝑁*+!,-(𝑡) = ∑ 𝑁'
.!
'/0 ,  

where 𝑛& is the total number of infectious individuals at time 𝑡. 

The model simulations begin with a single infectious individual at time t = 0. For each set 

of parameters, we simulated 10 batches of 1,000 model realizations.  Following Lloyd-Smith et 

al. 26, a model realization that involves infected individuals who, on average, infect others more 

than the 99th percentile of the Poisson( R0)  distribution is classified as an SSE-related outbreak. 

The model simulations were implemented in MATLAB R2019b. The parameters and their default 

values used in the model are summarized in Table 1.  

 

Reconstruction of the COVID-19 transmission dynamics in Thailand 

To reconstruct the transmission dynamics of COVID-19 in Thailand, we used the estimated 

𝑅! during the first epidemic wave in Thailand to estimate the time-varying individual reproduction 

number (𝜈!). Specifically, 𝜈! was drawn from the gamma distribution with mean 𝑅! and dispersion 

parameter 𝑘, 𝜈!~gamma(𝑅! , 𝑘).  The model structure employed in this section is the same as the 

one described in the Model structure section, except that the individual reproduction number here 

is time- dependent.  In addition, based on the surveillance information, the initial number of 

symptomatic infectious individuals was set at five, while the initial numbers of latently infected, 

quarantined, recovered, and asymptomatic infectious individuals were set at zero. 



 

Table 1. Descriptions and values of all parameters used in the model. 

Parameter Definition Value Reference(s) 

𝜎 Latent period 4.0 days 29,47,49 

𝑟" Proportion of infected individuals who are 

eventually symptomatic 

0.6 47,48,50 

TI Symptomatic and asymptomatic infectious 

period 

5.0 days 29,47 

𝑞" Proportion of symptomatic infectious 

individuals who are isolated and quarantined 

Varied  

𝑞# Proportion of asymptomatic infectious 

individuals who are isolated and quarantined 

0.6 51 

𝑘 Dispersion parameter Varied  

𝑅0 Basic reproduction number 2.2 52 

𝑁 Thailand population size 6.943	 ×	101  

 

 

Data Availability  

The authors declare that the data supporting the findings of this study are available within 

the paper. 
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