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ABSTRACT9

Estimating fish body measurements like length, width, and mass has received considerable research due to its potential in
boosting productivity in marine and aquaculture applications. Some methods are based on manual collection of these mea-
surements using tools like a ruler which is time consuming and labour intensive. Others rely on fully-supervised segmentation
models to automatically acquire these measurements but require collecting per-pixel labels which are also time consuming. It
can take up to 2 minutes per fish to acquire accurate segmentation labels. To address this problem, we propose a segmentation
model that can efficiently train on images labeled with point-level supervision, where each fish is annotated with a single click.
This labeling scheme takes an average of only 1 second per fish. Our model uses a fully convolutional neural network with one
branch that outputs per-pixel scores and another that outputs an affinity matrix. These two outputs are aggregated using a
random walk to get the final, refined per-pixel output. The whole model is trained end-to-end using the LCFCN loss and thus
we call our method Affinity-LCFCN (A-LCFCN). We conduct experiments on the DeepFish dataset, which contains several fish
habitats from north-eastern Australia. The results show that A-LCFCN outperforms a fully-supervised segmentation model
when the annotation budget is fixed. They also show that A-LCFCN achieves better segmentation results than LCFCN and a
standard baseline.
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1 Introduction11

Fish habitat monitoring is an important step for sustainable fisheries, as we acquire important fish measurements such as size,12

shape and weight. These measurements can be used to judge the growth of the fish and act as reference for feeding, fishing and13

conservation58. Thus, it helps us identify which areas require preservation in order to maintain healthy fish stocks.14

Full Supervision
(Conventional)

Point-level Supervision
(Ours)

Figure 1. Labeling Scheme. Point-level supervision places a single point on each fish body, whereas full supervision
provides the full masks.

The UN Food and Agriculture Organization found that 33 percent of commercially important marine fish stocks worldwide15

are over-fished14. This finding is attributed to the fact that fishing equipments often catch unwanted fish that are not of the right16

size47. Catching unwanted fish can lead to more time needed to sort them. It can also lead to more fuel consumption as these17

fish are extra weight on the boat, and cause long-term negative impact on the fisheries18. Thus, acquiring fish size information18

has many important applications.19

Many methods for measuring fish size are based on manual labor. Some experienced fishers are able to estimate length by20

eye. Other fishers use a ruler to measure the length54. More recently, fishermen use echosounders to get the fish size but these21

tools are still on trail6,44. Unfortunately these methods are time consuming, labour intensive and can cause significant stress to22
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the fish5,7.23

Therefore, image segmentation systems for fish analysis19,21,59 have gained lots of traction within the research community24

due to their potential efficiency. They can be used to segment fishes in an image in order to acquire morphological measurements25

such as size and shape. These systems can be installed in a trawl or underwater to cluster fish based on their sizes18. Promising26

methods for image segmentation are based on deep learning, such as fully Convolutional Neural Networks (CNN) which now27

dominate many computer vision related fields. FCN841 and ResNet38D57 have shown to achieve promising performance28

in several segmentation tasks. In this work, we use a segmentation network based on FCN8 with an ImageNet48 pretrained29

VGG1651 backbone.30

Most segmentation algorithms are fully supervised11,25,41, as they require per-pixel annotations in order to train. These31

annotations are prohibitively expensive to gather due to the requirement of field expert annotators, a specialized tool, and32

intensive labor. In order to reduce these annotation costs, weakly supervised methods were proposed to leverage annotations33

that are cheaper to acquire. The most common labeling scheme is image-level annotation3,8, which only requires a global label34

per image. Other forms of weak supervision are scribbles55 and bounding boxes23 which were shown to improve the ratio of35

labeling effort to segmentation performance. In this work, we use point-level annotations since they require a similar acquisition36

time as image-level annotations, while significantly boosting the segmentation performance4. Unfortunately, methods that37

use point-level supervision either need training a proposal network33 or tend to output large blobs that do not conform to the38

segmentation boundaries4. Thus, these methods are not well suited to images with objects of specific boundaries like fish. A39

promising weakly supervised method is LCFCN32, which is better at localizing multiple objects but does not segment the40

objects correctly. In this work we build on LCFCN to improve its segmentation capabilities.41

Ahn and Kwak 2 showed that it is possible to train a segmentation network with image-level annotations by learning to42

predict a pixel-wise affinity matrix. This matrix is a weighted graph where each edge represents the similarity between each43

pair of pixels37,50. However, in Ahn and Kwak 1 the process to obtain this affinity matrix is costly and depends heavily on44

proxy methods such as Class Activation Map (CAM)1 to approximate it. Given the advantages of affinity networks for image45

segmentation, we propose a novel affinity module that automatically infers affinity weights. This module can be integrated on46

any standard segmentation network and it eliminates the need for explicit supervision such as acquiring pairs between pixels of47

CRF-refined CAMs1.48

Therefore, we extend LCFCN with an affinity-based module in order to improve the output segmentation of the fish49

boundaries. Our model follows three main steps. First, features are extracted using a pre-trained backbone like ResNet38.50

Then, an activation branch uses these features to produce pixel-wise class scores. From the same backbone features, the affinity51

branch infers pairwise affinity scores between the pixels. Finally, the affinity matrix is combined with the pixel-wise class52

scores using random walk42 to produce a segmentation mask. The random walk encourages neighboring pixels to have similar53

probabilities based on their semantic similarities. As a result, the predicted segmentations are encouraged to take the shape54

of the fish. During training, these segmentations are compared against the point-level annotations using the LCFCN loss32.55

This loss ensures that only one blob is output per object which is important when there are multiple fish in an image. Unlike56

AffinityNet2 which requires expensive pre-processing and stage-wise learning, the whole model can be trained end-to-end57

efficiently. Finally, the segmentation output by our model can be used to generate pseudo ground-truth labels for the training58

images. Thus, we can train a fully supervised network on these pseudo ground-truth masks achieving better results. The reason59

behind the improvement can be attributed to the fact that these networks can be robust against noisy labels34.60

We benchmark A-LCFCN on the segmentation subset of the DeepFish49 dataset. This dataset contains images from several61

habitats from north-eastern Australia (see Figure 2 for examples). These habitats represent nearly the entire range of coastal62

and nearshore benthic habitats frequently accessible to fish species in that area. Each image in the dataset has a corresponding63

segmentation label, where pixels are labelled to differentiate between fish pixels and background pixels (see Figure 4). Our64

method achieved an mIoU of 0.879 on DeepFish49, which is significantly higher than standard point-level supervision methods,65

and fully-supervised methods when the annotation budget is fixed.66

Figure 2. DeepFish Dataset. Images from different habitats with point annotations on the fish (shown as red dots).

For our contributions, (1) we propose a framework that can leverage point-level annotations and perform accurate segmenta-67

tion of fish present in the wild. (2) We propose an affinity module that can be easily added to any segmentation method to make68
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the predictions more aware of the segmentation boundaries. (3) We present results that demonstrate that our methods achieve69

significant improvement in segmentation over baselines and fully supervised methods when the annotation budget is fixed.70

2 Related Work71

In this section, we first review methods applied to general semantic segmentation, followed by semantic segmentation for fish72

analysis. Then we discuss affinity methods that use pair-wise relationships between the pixels for improved segmentation.73

Finally, we discuss weakly supervised methods for segmentation and object localization.74

Semantic Segmentation is an important computer vision task that can be applied to many real-life applications11,25,41. This75

task consists of classifying every object pixel into corresponding categories. Most methods are based on fully convolutional76

networks which can take an image of arbitrary size and produce a segmentation map of the same size. Methods based on77

Deeplab11 consistently achieve state-of-the-art results as they take advantage of dilated convolutions, skip connections, and78

Atrous Spatial Pyramid Pooling (ASPP) for capturing objects and image context at multiple scales. However, these methods79

require per-pixel labels in order to train, which can result in expensive human annotation cost when acquiring a training set for80

a semantic segmentation task.81

Semantic Segmentation Methods for Fish Analysis have been used for efficient, automatic extraction of fish body measure-82

ments16, and prediction of their body weight16,27,28 and shape for the purposes of preserving marine life. Garcia et al. 18 used83

fully-supervised segmentation methods and the Mask R-CNN22 architecture to localize and segment each individual fish in84

underwater images to obtain an estimate of the boundary of every fish in the image for estimating fish sizes to prevent catches85

of undersized fish. French et al. 17 presented a fully-supervised computer vision system for segmenting the scenes and counting86

the fish from CCTV videos installed on fishing trawlers to monitor abandoned fish catch. While we also address the task of87

segmentation for fish analysis, to the best of our knowledge, we are the first to consider the problem setup of using point-level88

supervision, which can considerably lower the annotation cost.89

Affinity-based Methods for Semantic Segmentation have been proposed to leverage the inherent structure of images to90

improve segmentation outputs9,29,40. They consider the relationship between pixels which naturally have strong correlations.91

Many segmentation methods use conditional random fields (CRF)10,29 to post-process the final output results. The idea is to92

encourage pixels that have strong spatial and feature relationships to have the same label. CRF were also incorporated to a93

neural network as a differentiable module to train jointly with the segmentation task40. Others leverage image cues based on94

grouping affinity and contour to model the image structure39,43. Most related to our work is Ahn and Kwak 2 which proposes95

an affinity network that learns from pairwise samples of pixels labeled with a segmentation network and a CRF. The network96

is then used to output an affinity matrix which is used to refine the final segmentation output. Unfortunately, these methods97

require expensive iterative inference procedures, and require to learn the segmentation task in stages. In our work, we use98

part of the affinity network as a module that can be incorporated to any segmentation network, adding minimal computational99

overhead while increasing the model’s sensitivity to object boundaries and segmentation accuracy.100

Weakly Supervised Semantic Segmentation methods have risen in popularity due to their potential in decreasing the human101

cost in acquiring a training set. Bearman et al. 4 is one of the first methods that use point-supervision to perform semantic102

segmentation. They showed that manually collecting image-level and point-level labels for the PASCAL VOC dataset15
103

takes only 20.0 and 22.1 seconds per image, respectively. This scheme is an order of magnitude faster than acquiring full104

segmentation labels, which is 239.0 seconds. The most common weak supervision setup is using image-level labels to perform105

segmentation3,8. They use a wide range of techniques that include affinity learning, self-supervision, and co-segmentation.106

However, these methods were applied to the PASCAL VOC15 dataset that often has large objects. In our work we consider107

underwater fish segmentation with point-level supervision which has its own unique challenges.108

Weakly Supervised Object Localization methods can be an important step for segmentation as they allow us to identify109

the locations of the objects before grouping the pixels for segmentation. Redmon and Farhadi 45 , Ren et al. 46 are current110

state-of-the-art methods for object localization, but they require bounding boxes. However, several methods exist that use weaker111

supervision to identify object locations30,31,34–36,38,52,53. Close to our work is LCFCN32 which uses point-level annotations in112

order to obtain the locations and counts of the objects of interest. While this method produces accurate counts and identifies113

a partial mask for each instance, it does not produce accurate segmentation of the instances. Thus, we extend this method114

by using an affinity-based module that takes pairwise pixel relationships into context in order to output blobs that are more115

sensitive to the object boundaries.116
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Figure 3. Affinity-based architecture. The first component is the ResNet-38 backbone which is used to extract features
from the input image. The second component is the activation branch outputs per-pixel scores. The third component is the
affinity branch outputs an affinity matrix. These two outputs are aggregated using a random walk to get the final, refined
per-pixel output.

3 Methodology117

We propose A-LCFCN, which extends a fully convolutional neural network with an affinity-based module that is trained118

using the LCFCN loss. We consider the following problem setup. We are given X as a set of n training images with their119

corresponding set of ground-truth labels Y . Yi is a binary matrix of the same height H and width W as X with non-zero entries120

that indicate the locations of the object instances. As shown in Figure 1, there is a single non-zero entry per fish which is121

represented as a dot on top of the fish.122

Shown in Figure 3, our model consists of a backbone Fbb
θ
(), an activation branch Fact

θ
() and an affinity branch Fa f f

θ
().123

The backbone is a fully-convolutional neural network that takes as input an image of size W ×H and extracts a downsampled124

feature map f for the image. The activation branch takes the feature map as input and applies a set of convolutional and125

upsampling layers to obtain a per-pixel output f act as a heatmap that represents the spatial likelihood of the objects of interest.126

The affinity branch takes the same feature map as input and outputs a class-agnostic affinity matrix f a f f that represents the127

pairwise relationships between the pixels. The affinity map and the activation map are then combined using random walk to128

refine the per-pixel output f re f . This refinement adapts the output to be aware of the semantic boundaries of the objects, leading129

to better segmentation. These components are trained collectively, end-to-end, using the LCFCN loss LL, which encourages130

each object to have a single blob. To further improve the performance, the trained model is used to output pseudo ground truth131

masks for the training images. These masks are then used as ground truth for training a fully-supervised network that is then132

validated on the test set. The details of this pipeline are laid out below.133

3.1 Obtaining the Activation Map134

The activation branch Fact
θ

transforms the features f obtained from the backbone to per-pixel class scores, and upsamples them135

to the size of the input image.136

3.2 Obtaining the Affinity Matrix137

The affinity branch is based on the AffinityNet structure described in Ahn and Kwak 2 , and the goal is to predict class-agnostic138

semantic affinity between adjacent coordinate pairs on a given image. These affinities are used to propagate the per-pixel scores139

from the activation branch to nearby areas of the same semantic object to improve the segmentation quality.140

The affinity branch outputs a convolutional feature map f a f f where the semantic affinity between a pair of feature vectors
is defined in terms of their L1 distance as follows,

Wi j = exp{−|| f aff(xi,yi)− f aff(x j,y j)||1}, (1)

where (xi,yi) indicates the coordinate of the ith feature on feature map f a f f .141

In contrast to AffinityNet2, we do not require affinity labels for feature pairs to train our affinity layers. These layers are142

directly trained using the LCFCN loss on the point-level annotations as described in Section 3.4.143

3.3 Refining the Activation Map with Affinity144

The affinity matrix is used to refine the activation map to diffuse the per-pixel scores within the object boundaries. As explained145

in Ahn and Kwak 2 , the affinity matrix is first converted to a transition probability matrix by first applying the Hadamard power146
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on W with value β to get W β and normalizing it with row-wise sum on W β . This operation results in the following transition147

matrix:148

T = D−1W β , where Dii = ∑
j

W β

i j . (2)

higher β makes the affinity propagation more conservative as it becomes more robust against small changes in the pairwise149

distances in the feature space.150

Using the random walk described in Ahn and Kwak 2 we perform matrix multiplication of T on the activation map f act for151

t iterations to get the refined activations f re f .152

3.4 Training the Weakly Supervised Model153

The goal of our training strategy is to learn to output a single blob per fish in the image using point-level annotations (Figure 1).
Thus we use the LCFCN loss described in Laradji et al. 32 as it only requires point-level supervision. While this was originally
designed for counting, it is able to locate objects and segment them. On the refined activation output f re f , we obtain per-pixel
probabilities by applying the softmax operation to get S which contains the likelihood that a pixel either belongs to the
background or fish. The LCFCN loss LL is then defined as follows:

LL = LI(S,Y )︸ ︷︷ ︸
Image-level loss

+ LP(S,Y )︸ ︷︷ ︸
Point-level loss

+ LS(S,Y )︸ ︷︷ ︸
Split-level loss

+ LF(S,Y )︸ ︷︷ ︸
False positive loss

,
(3)

where T represents the point annotation ground-truth. It consists of an image-level loss (LI) that trains the model to predict154

whether there is an object in the image; a point-level loss (LP) that encourages the model to predict a pixel for each object155

instance; a split-level (LS) and a false-positive (LF ) loss that enforce the model to predict a single blob per instance (see32 for156

details for each of the loss components).157

Applying the LCFCN loss on the original activation map usually leads to small blobs around the center of the objects which158

form poor segmentation masks. However, with the activation map refined using the affinity matrix, the predicted blobs make159

better segmentation of the located objects. We call our method A-LCFCN as an LCFCN model that uses an affinity-based160

module.161

3.5 Training on Pseudo Ground-truth Masks162

A trained A-LCFCN can be used to output a refined activation map for each training image. These maps are used to generate163

pseudo ground-truth segmentation labels for the training images. The outputs are first upsampled to the resolution of the image164

by bilinear interpolation. For each pixel, the class label associated with the largest activation score is selected, which could be165

either background or foreground. This procedure gives us segmentation labels for the training images which can be used for166

training a fully-supervised segmentation network, which could be any model such as DeepLabV312. At test time, the trained167

fully-supervised segmentation network is used to get the final segmentation predictions.168

3.6 Network Architecture169

While our framework can use any fully convolutional architecture, we chose a ResNet38 model based on the version defined170

in Ahn and Kwak 2 due to its ability to recover fine shapes of objects. However, instead of having two networks, one for the171

affinity output and one for the activation output, we used a shared ResNet38 as the backbone which we found to improve the172

results and speed up training.173

The affinity branch consists of three layers of 1×1 convolution with 64, 128, 256 channels, respectively, to be applied on 3174

levels of feature maps from the backbone. The results are bilinearly upsampled to the same size and concatenated as a single175

feature map. This feature map then goes through a 1×1 convolution with 448 channels to obtain affinity features.176

The activation branch consists of one 1x1 convolution with 2 channels. It is applied on the last feature map of the backbone177

to obtain the background and the foreground activation map. These activation maps are refined using random walk with the178

affinity branch to get improved segmentations.179

For the fully supervised segmentation model that is trained on the pseudo ground-truth masks, we use a model that consists180

of a backbone that extracts the image features and an upsampling path that aggregates and upscales feature maps to output a181

score for each pixel. The backbone is an ImageNet pretrained network such as ResNet382 and the upsampling layers are based182

on FCN841. The output is a score for each pixel i indicating the probability that it belongs to background or foreground. The183

final output is an argmax between the scores to get the final segmentation labels.184
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4 Experiments185

We evaluate our models on two splits of the DeepFish dataset49, FishSeg and FishLoc to compare segmentation performance.186

We show that our method A-LCFCN outperforms the fully supervised segmentation method if the labeling effort between187

acquiring per-pixel labels and point annotations is fixed. Further, we show that our method outperforms other methods that do188

not use affinity. We further show that training on pseudo ground-truth masks generated by A-LCFCN using a fully segmentation189

model boosts segmentation performance even further.190

4.1 DeepFish49
191

The DeepFish dataset1 consists of around 40 thousand images obtained from 20 different marine habitats in tropical Australia192

(Figure 2). For each habitat, a fixed camera has been deployed underwater to capture a stream of images over a long period of193

time. The purpose is to understand fish dynamics, monitor their count, and estimate their sizes and shapes.194

The dataset is divided into 3 groups: FishClf that contains classification labels about whether an image has fish or not,195

FishLoc that contains point-level annotatons indicating the fish location, and FishSeg that contains segmentation labels of the196

fish. Since our models require at least point-level supervision, we use FishLoc and FishSeg for our benchmarks.197

FishLoc Dataset. It consists of 3200 images where each image is labeled with point-level annotations indicating the locations198

of the fish. It is divided into a training set (n = 1600), a validation set (n = 640), and a test set (n = 960). The point-level199

annotations are binary masks, in which the non-zero entries represent the (x, y) coordinates around the centroid of each fish200

within the images (Figure 2).201

FishSeg Dataset. It consists of 620 images with corresponding segmentation masks (see Figure4), separated into a training set202

(n = 310), validation set (n = 124), and a test set (n = 186). The images are resized into a fixed dimension 256×455 pixels and203

normalized using ImageNet statistics48. According to Saleh et al. 49 , it takes around 2 minutes to acquire the segmentation mask204

of a single fish. From the segmentation masks, we acquire point-level annotations by taking the pixel with the largest distance205

transform of the masks as the centroid (Figure 1). These annotations allow us to train weakly supervised segmentation models.206

Our models were trained either on FishLoc’s or FishSeg’s training set. For both cases we use FishSeg’s test set to evaluate207

the segmentation performance. We have removed training images from FishLoc that overlap with FishSeg’s test set for reliable208

results.209

4.2 Evaluation Procedure210

We evaluate our models against Intersection over Union (IoU), which is a standard metric for semantic segmentation that211

measures the overlap between the prediction and the ground truth: IoU = T P
T P+FP+FN where TP, FP, and FN is the number of212

true positive, false positive and false negative pixels across all images in the test set.213

We also measure the model’s efficacy in predicting the fish count using mean absolute error which is defined as, MAE =214

1
N ∑

N
i=1 |Ĉi−Ci|, where Ci is the true fish count for image i and Ĉi is the model’s predicted fish count for image i. This metric215

is standard for object counting20,36 and it measures the number of miscounts the model is making on average across the test216

images.217

We also measure localization performance using Grid Average Mean Absolute Error (GAME)20 which is defined218

as,GAME(L) = 1
N ∑

N
i=1

(
∑

4L

l=1

∣∣Ĉl
i − cl

i

∣∣) , where, Ĉl
i is the estimated count in a region l of image n, and cl

i is the ground219

truth for the same region in the same image. The higher L, the more restrictive the GAME metric will be. We present results for220

GAME(L = 4) which divides the image using a grid of 256 non-overlapping regions where we compute the sum of the MAE221

across these sub-regions.222

4.3 Methods and Baselines223

We compare our method against two other weakly supervised image segmentation methods and a fully-supervised method. All224

these methods use the same feature extracting backbone of ResNet38, which we describe below.225

Fully supervised fully convolutional neural network (FS-FCN). This method is trained with the true per-pixel class labels226

(full supervision). It combines a weighted cross-entropy loss and weighted IoU loss as defined in Eq.(3) and (5) from Wei227

et al. 56 , respectively. It is an efficient method that can learn from ground truth segmentation masks that are imbalanced between228

different classes. In our case thee number of pixels corresponding to fish is much lower than those to the background.229

Point-level loss (PL-FCN). This method uses the loss function described in Bearman et al. 4 which minimizes the cross-230

entropy against the provided point-level annotations. It also encourages all pixel predictions to be background for background231

images.232

1Found here: https://github.com/alzayats/DeepFish
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Ground Truth PL-FCN LCFCN A-LCFCN A-LCFCN + PM

Figure 4. Qualitative results. We show the predictions obtained from training LCFCN and A-LCFCN. With the affinity
branch the predictions are much closer to the ground-truth labels.

LCFCN. This method is trained using the loss function proposed by Laradji et al. 32 against point level annotations to produce233

a single blob per object and locate objects effectively. LCFCN is based on a semantic segmentation architecture that is similar234

to FCN41. Since it was originally designed for counting and localization, LCFCN optimizes a loss function that ensures that235

only a single small blob is predicted around the centre of each object. This prevents the model from predicting large blobs that236

merge several object instances.237

A-LCFCN (ours). This method extends LCFCN by adding an affinity branch as described in Section 3. Inspired by Affin-238

ityNet2, this branch predicts class-agnostic semantic similarity between pairs of neighbouring coordinates. The predicted239

similarities are used in a random walk42 as transition probabilities to refine the activation scores obtained from the activation240

branch.241

A-LCFCN + PM (ours). This method first uses the output of a trained A-LCFCN on the training set to obtain pseudo mask242

labels. Then an FS-FCN is trained on these pseudo masks and is used to output the final segmentation results.243

Implementation Details Our methods use an Imagenet48 pre-trained ResNet3857. The models are trained with a batch size of244

1 for 1000 epochs with ADAM26 and learning rates of 10−4, 10−5 and 10−6. We report the scores on the test set of FishSeg245

using the model with the learning rate that achieved the best validation score. We used early stopping with patience of 10246

epochs.247

Table 1. Comparison between methods on the FishSeg test set. Foreground is the IoU between the predicted fish
segmentation and their ground-truth, and Background is the IoU between the predicted background segmentation and its
ground-truth.

FishLoc FishSeg
Background Foreground mIoU Background Foreground mIoU

FS-FCN∗ 0.992 0.663 0.827 0.992 0.663 0.827
PL-FCN 0.931 0.214 0.573 0.910 0.173 0.542
A-LCFCN 0.993 0.727 0.860 0.993 0.713 0.853
LCFCN 0.989 0.559 0.774 0.992 0.684 0.838
LCFCN+PM 0.994 0.764 0.879 0.993 0.730 0.862

4.4 Comparison against Weak Supervision248

We train the proposed method and baselines on the FishSeg and FishLoc training sets and report the results on the FishSeg test249

set in Table 1. Our results include 3 statistics, the Intersection-over-Union (IoU) between the predicted foreground mask and250

the fish true mask, the predicted background mask and the true background mask, and their average (mIoU).251
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Table 2. Counting and Localization Results.

MAE GAME
always-median 0.575 -
LCFCN 0.032 0.066
A-LCFCN 0.057 0.066
A-LCFCN+PM 0.097 0.063

Training on the FishLoc train set, A-LCFCN obtains a significantly higher IoU than LCFCN and PL-FCN methods. As252

shown in the qualitative results (Figure 4), we see that LCFCN produces small blobs around the center of the objects while253

PL-FCN outputs large blobs. For both cases, they do not consider the shape of the object as much as A-LCFCN, suggesting254

that the affinity branch helps in focusing on the segmentation boundaries.255

Training on the FishSeg train set which contains less images than FishLoc, the margin improvement between A-LCFCN256

and LCFCN is smaller. Further, LCFCN performed better when trained on the FishSeg training set than with FishLoc. We257

observed that the reason behind this result is that LCFCN starts outputting smaller blobs around the object centers the more258

images it trains on. Thus, it learns to perform better localization at the expense of worse segmentation. On the other hand,259

A-LCFCN achieved improved segmentation results when trained on the larger training set FishLoc than FishSeg. This result260

suggests that, with enough images, the affinity branch helps the model focus on achieving better segmentation.261

We also report the results of A-LCFCN + PM which shows a consistent improvement over A-LCFCN for both FishLoc and262

FishSeg benchmarks. This result shows that a fully supervised method can use noisy labels generated from A-LCFCN to further263

improve the predicted segmentation labels. In Figure 4 we see that this procedure significantly improves the segmentation264

boundaries over A-LCFCN’s output.265

4.5 Comparison against Full Supervision266

In Table 1 we report the results of our methods when fixing the annotation budget. The annotation budget was fixed at around267

1500 seconds, which is the estimated it took to annotate the FishLoc dataset. The average time of annotating a single fish and268

images without fish was one second49. For FS-FCN which was trained on segmentation annotations, the training set consisted269

of 161 background images and 11 foreground images as it required around 2 minutes to segment a single fish. We see that270

A-LCFCN + PM outperforms FS-FCN in this setup by a significant margin, which suggests that with A-LCFCN point-level271

annotations are more cost-efficient in terms of labeling effort and segmentation performance.272

4.6 Counting and Localization Results273

To further evaluate the quality of the representations learned by A-LCFCN, we also test it on the FishLoc dataset for the274

counting and localization tasks. These tasks are essential for marine biologists, which have to assess and track changes in275

large fish populations13,24. Thus, having a model that automates the localization of these fishes can greatly reduce the cost of276

tracking large populations, thus helping marine scientist to do efficient monitoring. For our models, the counts are the number277

of predicted blobs in the image using the connected components algorithms described in Laradji et al. 32 .278

As a reference, we added the MAE result of ‘always-median‘ in Table 2 which is a model that outputs a count of 1 for every279

test image as it is the median fish count in the training set. We see that although A-LCFCN+PM has improved segmentation280

over A-LCFCN and LCFCN, the counting and localization counts are very similar. These results 2 suggest that we can solely281

use A-LCFCN+PM for the tasks of segmentation, localization and counting to have a comprehensive analysis of a fish habitat.282

5 Conclusion283

In this paper, we presented a novel affinity-based segmentation method that only requires point-level supervision for efficient284

monitoring of fisheries. Our approach, A-LCFCN, is trained end-to-end with the LCFCN loss and eliminates the need of285

explicit supervision for obtaining the pair-wise affinities between pixels. The proposed method combines the output of any286

standard segmentation architecture with the predicted affinity matrix to improve the segmentation masks with a random walk.287

Thus, the proposed method is agnostic to the architecture and can be used to improve the segmentation results of any standard288

backbone. Experimental results demonstrate that A-LCFCN produces significantly better segmentation masks than previous289

point-level segmentation methods. We also demonstrate that A-LCFCN gets closer to full supervision when used to generate290

pseudo-masks to train fully-supervised segmentation network. These results are particularly encouraging for reducing the costs291

of fish monitoring and achieving sustainable fisheries.292
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Data Availability293

The code is publicly available at https://github.com/IssamLaradji/affinity_lcfcn294

References295

1. J. Ahn and S. Kwak. Learning pixel-level semantic affinity with image-level supervision for weakly supervised semantic296

segmentation. In CVPR, 2018.297

2. J. Ahn and S. Kwak. Learning pixel-level semantic affinity with image-level supervision for weakly supervised semantic298

segmentation. In CVPR, 2018.299

3. J. Ahn, S. Cho, and S. Kwak. Weakly supervised learning of instance segmentation with inter-pixel relations. In CVPR,300

2019.301

4. A. Bearman, O. Russakovsky, V. Ferrari, and L. Fei-Fei. What’s the point: Semantic segmentation with point supervision.302

ECCV, 2016.303

5. T. A. Beddow, L. G. Ross, and J. A. Marchant. Predicting salmon biomass remotely using a digital stereo-imaging304

technique. Aquaculture, 146(3-4):189–203, 1996.305

6. B. Berges, S. Sakinan, and E. van Helmond. Practical implementation of real-time fish classification from acoustic306

broadband echo sounder data-realfishecho progress report: Year 1-june 2017. Technical report, Wageningen Marine307

Research, 2017.308

7. A. Booman, M. Parin, and A. Zugarramurdi. Efficiency of size sorting of fish. International journal of production309

economics, 48(3):259–265, 1997.310

8. R. Briq, M. Moeller, and J. Gall. Convolutional simplex projection network (cspn) for weakly supervised semantic311

segmentation. In BMVC, 2018.312

9. L.-C. Chen, A. Schwing, A. Yuille, and R. Urtasun. Learning deep structured models. In International Conference on313

Machine Learning, pages 1785–1794, 2015.314

10. L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Deeplab: Semantic image segmentation with deep315

convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine316

intelligence, 40(4):834–848, 2017.317

11. L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Deeplab: Semantic image segmentation with deep318

convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine319

intelligence, 40(4):834–848, 2017.320

12. L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam. Rethinking atrous convolution for semantic image segmentation.321

arXiv preprint arXiv:1706.05587, 2017.322

13. S. Cui, Y. Zhou, Y. Wang, and L. Zhai. Fish detection using deep learning. Applied Computational Intelligence and Soft323

Computing, 2020, 2020.324

14. C. L. Delgado. Fish to 2020: Supply and demand in changing global markets, volume 62. WorldFish, 2003.325

15. M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. The pascal visual object classes (voc) challenge.326

IJCV, 2010.327

16. A. F. Fernandes, E. M. Turra, E. R. de Alvarenga, T. L. Passafaro, F. B. Lopes, G. F. Alves, V. Singh, and G. J. Rosa. Deep328

Learning image segmentation for extraction of fish body measurements and prediction of body weight and carcass traits in329

Nile tilapia. Computers and Electronics in Agriculture, 170:105–274, 2020.330

17. M. G. French, M. H. Fisher, M. Mackiewicz, and C. L. Needle. Convolutional Neural Networks for Counting Fish in331

Fisheries Surveillance Video. In BMVC, 2015.332

18. R. Garcia, R. Prados, J. Quintana, A. Tempelaar, N. Gracias, S. Rosen, H. Vagstol, and K. Lovall. Automatic segmentation333

of fish using deep learning with application to fish size measurement. ICES Journal of Marine Science, 2019.334

19. R. Garcia, R. Prados, J. Quintana, A. Tempelaar, N. Gracias, S. Rosen, H. Vågstøl, and K. Løvall. Automatic segmentation335

of fish using deep learning with application to fish size measurement. ICES Journal of Marine Science, 77(4):1354–1366,336

2020.337

20. R. Guerrero, B. Torre, R. Lopez, S. Maldonado, and D. Onoro. Extremely overlapping vehicle counting. In IbPRIA, 2015.338

21. M. Hao, H. Yu, and D. Li. The measurement of fish size by machine vision-a review. In International Conference on339

Computer and Computing Technologies in Agriculture, pages 15–32, 2015.340

22. K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In ICCV, pages 2961–2969, 2017.341

23. R. Hu, P. Dollar, K. He, T. Darrell, and R. Girshick. Learning to segment every thing. In CVPR, 2018.342

24. A. Jalal, A. Salman, A. Mian, M. Shortis, and F. Shafait. Fish detection and species classification in underwater343

environments using deep learning with temporal information. Ecological Informatics, 57:101088, 2020.344

9/11

https://github.com/IssamLaradji/affinity_lcfcn


25. S. Jégou, M. Drozdzal, D. Vazquez, A. Romero, and Y. Bengio. The one hundred layers tiramisu: Fully convolutional345

densenets for semantic segmentation. In CVPR, 2017.346

26. D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.347

27. D. A. Konovalov, A. Saleh, J. A. Domingos, R. D. White, and D. R. Jerry. Estimating mass of harvested asian seabass lates348

calcarifer from images. World Journal of Engineering and Technology, 6(03):15, 2018.349

28. D. A. Konovalov, A. Saleh, D. B. Efremova, J. A. Domingos, and D. R. Jerry. Automatic weight estimation of harvested350

fish from images. In 2019 Digital Image Computing: Techniques and Applications (DICTA), 2019.351

29. P. Krähenbühl and V. Koltun. Efficient inference in fully connected crfs with gaussian edge potentials. In Advances in352

neural information processing systems, pages 109–117, 2011.353

30. I. Laradji, P. Rodriguez, F. Branchaud-Charron, K. Lensink, P. Atighehchian, W. Parker, D. Vazquez, and354

D. Nowrouzezahrai. A weakly supervised region-based active learning method for covid-19 segmentation in ct im-355

ages. arXiv preprint arXiv:2007.07012, 2020.356

31. I. Laradji, P. Rodriguez, O. Manas, K. Lensink, M. Law, L. Kurzman, W. Parker, D. Vazquez, and D. Nowrouzezahrai. A357

weakly supervised consistency-based learning method for covid-19 segmentation in ct images. In WACV, 2021.358

32. I. H. Laradji, N. Rostamzadeh, P. O. Pinheiro, D. Vazquez, and M. Schmidt. Where are the blobs: Counting by localization359

with point supervision. ECCV, 2018.360

33. I. H. Laradji, N. Rostamzadeh, P. O. Pinheiro, D. Vázquez, and M. Schmidt. Instance segmentation with point supervision.361

ICIP, 2019.362

34. I. H. Laradji, D. Vazquez, and M. Schmidt. Where are the masks: Instance segmentation with image-level supervision. In363

BMVC, 2019.364

35. I. H. Laradji, R. Pardinas, P. Rodriguez, and D. Vazquez. Looc: Localize overlapping objects with count supervision. In365

ICIP, 2020.366

36. V. Lempitsky and A. Zisserman. Learning to count objects in images. In NIPS, 2010.367

37. A. Levin, D. Lischinski, and Y. Weiss. A closed-form solution to natural image matting. IEEE transactions on pattern368

analysis and machine intelligence, 30(2):228–242, 2007.369

38. Y. Li, X. Zhang, and D. Chen. Csrnet: Dilated convolutional neural networks for understanding the highly congested370

scenes. In CVPR, 2018.371

39. S. Liu, S. De Mello, J. Gu, G. Zhong, M.-H. Yang, and J. Kautz. Learning affinity via spatial propagation networks. In372

NIPS, 2017.373

40. Z. Liu, X. Li, P. Luo, C.-C. Loy, and X. Tang. Semantic image segmentation via deep parsing network. In Proceedings of374

the IEEE international conference on computer vision, pages 1377–1385, 2015.375

41. J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015.376

42. L. Lovász et al. Random walks on graphs: A survey. Combinatorics, Paul erdos is eighty, 2(1):1–46, 1993.377

43. M. Maire, T. Narihira, and S. X. Yu. Affinity cnn: Learning pixel-centric pairwise relations for figure/ground embedding.378

In CVPR, 2016.379

44. A. Pobitzer, E. Ona, G. Macaulay, R. Korneliussen, A. Totland, Y. Heggelund, and I. Eliassen. Pre-catch sizing of herring and380

mackerel using broadband acoustics. In ICES Symposium on “Marine Ecosystem Acoustics (Some Acoustics)—Observing381

the Ocean Interior in Support of Integrated Management, pages 25–28, 2015.382

45. J. Redmon and A. Farhadi. Yolov3: An incremental improvement. arXiv, 2018.383

46. S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. In384

NIPS, 2015.385

47. M. A. P. Roda, E. Gilman, T. Huntington, S. J. Kennelly, P. Suuronen, M. Chaloupka, and P. A. Medley. A third assessment386

of global marine fisheries discards. Food and Agriculture Organization of the United Nations, 2019.387

48. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C.388

Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision389

(IJCV), 115(3), 2015.390

49. A. Saleh, I. H. Laradji, D. A. Konovalov, M. Bradley, D. Vazquez, and M. Sheaves. A realistic fish-habitat dataset to391

evaluate algorithms for underwater visual analysis. Scientific Reports, 10(1):1–10, 2020.392

50. J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on pattern analysis and machine393

intelligence, 22(8):888–905, 2000.394

51. K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint395

arXiv:1409.1556, 2014.396

52. H. O. Song, R. Girshick, S. Jegelka, J. Mairal, Z. Harchaoui, and T. Darrell. On learning to localize objects with minimal397

supervision. arXiv preprint arXiv:1403.1024, 2014.398

53. H. O. Song, Y. J. Lee, S. Jegelka, and T. Darrell. Weakly-supervised discovery of visual pattern configurations. In NIPS,399

10/11



2014.400

54. N. Strachan. Length measurement of fish by computer vision. Computers and electronics in agriculture, 8(2):93–104,401

1993.402

55. P. Vernaza and M. Chandraker. Learning random walk label propagation for weakly-supervised semantic segmentation. In403

CVPR, 2017.404

56. J. Wei, S. Wang, and Q. Huang. F3net: Fusion, feedback and focus for salient object detection. arXiv preprint405

arXiv:1911.11445, 2019.406

57. Z. Wu, C. Shen, and A. Van Den Hengel. Wider or deeper: Revisiting the resnet model for visual recognition. Pattern407

Recognition, 90:119–133, 2019.408

58. Y. Ying, X. Rao, Y. Zhao, Y. Jiang, et al. Application of machine vision technique to automatic quality identification of409

agricultural products (i). Transactions of the Chinese Society of Agricultural Engineering, 16(1):103–108, 2000.410

59. C. Yu, X. Fan, Z. Hu, X. Xia, Y. Zhao, R. Li, and Y. Bai. Segmentation and measurement scheme for fish morphological411

features based on mask r-cnn. Information Processing in Agriculture, 2020.412

Acknowledgements413

Alzayat Saleh is funded by an Australian Research Training Program (RTP) Scholarship.414

Author Contributions415

I.H.L. is the main contributor of this work. A.S. and P.R. assisted I.H.L. in writing the manuscript and coding the experiments.416

D.N. and M.R.A revised the manuscript. D.V. supervised the project.417

Corresponding author :418

Correspondence to issam.laradji@gmail.com419

Additional Information420

Competing interests The authors declare no competing interests.421

11/11

issam.laradji@gmail.com

	Introduction
	Related Work
	Methodology
	Obtaining the Activation Map
	Obtaining the Affinity Matrix
	Refining the Activation Map with Affinity
	Training the Weakly Supervised Model
	Training on Pseudo Ground-truth Masks
	Network Architecture

	Experiments
	DeepFish saleh2020realistic
	Evaluation Procedure
	Methods and Baselines
	Comparison against Weak Supervision
	Comparison against Full Supervision
	Counting and Localization Results

	Conclusion
	References

