Intraradicular diameter, remnant dentin thickness, and endodontic post-to-dentin distance: An investigation using CBCT and microscopy

Júlio C. M. Souza (jsouza@dem.uminho.pt)
University of Minho

Catarina Soares
University Institute of Health Sciences (IUCS), CESPU

Valter Fernandes
University Institute of Health Sciences (IUCS), CESPU

Oscar Carvalho
University of Minho

Filipe Silva
University of Minho

Mutlu Özcan
University of Zurich

Bruno Henriques
University of Minho

Research Article

Keywords: glass fiber-reinforced posts, endodontic posts, intraradicular, endodontics, root canal.

Posted Date: February 16th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-2530290/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

The objective of this work was to measure the tooth root canals’ diameter, remnant dentin thickness, and the endodontic post-to-dentin distance after three types of root canal preparation.

Thirty extracted human premolars were endodontically treated and groups of specimens were divided according to the cementation with two different endodontic post as follow: A) Fibio Fiberglass Post™, Anthogyr, France; B) multi-lament GFRC (Rebilda GT™, VOCO, Germany). Cone beam computed tomography (CBCT) and conventional x-ray analyses were performed before and after the endodontic post cementation. After cementation, specimens were cross-sectioned and inspected by optical microscopy and scanning electron microscopy at magnification from x30 up to x2000.

The shape variation of the root canal preparation caused a decrease in the thickness of the remnant tooth tissues. CBCT and microscopic analyses also revealed a clear variation of resin-matrix cement around all the endodontic GFRC posts. A multi-lament GFRC post provided a distribution of filaments although the resin-matrix cement revealed a high volume among the filaments. An increase in thickness and volume of resin-matrix cement was noticed at the coronal third since the fitting was compromised due to anatomic variations and root canal preparation. Defects such macro-scale pores, cracks, and voids were also detected by microscopic analyses.

The root canal preparation can promote a decrease in the thickness of the remnant tooth tissues that can increase the risks of clinical failures by fracture. The thickness and volume of resin-matrix cement varied around both GFRC posts. Additionally, that increased from the apex up to the coronal third due to the lack of fitting.

Clinical significance: The root canal preparation of teeth is the first step the fitting of glass fiber-reinforced composite (GFRC) post. However, the tooth tissues must be preserved to maintain the mechanical integrity of the restored tooth. An adequate fitting of the GFRC post along the intracanal regions can promote a well-distribution of the resin-matrix cement volume that decreases the risks of defects such as voids and cracks.

Introduction

Endodontic treatment is a clinical procedure in dentistry to treat teeth when pulp tissue has become irreversibly injured or necrotic due to caries or dental trauma [4–6]. The extensive loss of coronal structure compromises the mechanical behavior of endodontically treated teeth, leading to an increased risk of catastrophic fracture. The excessive reduction of the root canal dentin thickness occurs due to caries, access to the canals, over-instrumentation, large tapered endodontic instruments, previous restoration with large-diameter posts, or internal root resorption [3, 6, 7]. Such root canal damage can promote high risks of internal stress-induced fracture since strength is directly proportional to the volume of the remaining dental structure. Previous studies clearly show that a high volume of dentin provides a proper mechanical behavior of the remaining tooth structure [5, 7, 8]. In this way, the ferrule effect is a required
principle for restoration of endodontically treated teeth that have been submitted to extensive loss of tooth structure [2, 9, 10]. The use of tooth root intracanal posts become an alternative to retain coronal restorations and to provide a proper distribution of stresses through the tooth tissues by the ferrule effect [1, 2, 11–16]. However, several factors can be detrimental to the endodontically treated teeth such as the thickness of remnant tooth tissues, resin cement layer, and the materials’ properties. A mismatch in mechanical properties among synthetic and natural materials can result in concentration of stresses at the interfaces and failures by fracture [1, 2, 11–14]. Thus, the main factor that dictates the strength and long term survival of endodontically treated teeth is mainly related to the volume of remnant tooth tissues structure, selection of materials, cementation, and the integrity of the intracanal [2, 10, 17].

Several types of tooth root intracanal posts can be used for the restoration of endodontically treated teeth, such as cast metal posts, ceramic or composite standard-shaped posts, and ceramic or composite custom-made posts [1, 12, 14, 15]. Yttria stabilized tetragonal zirconia (3Y-TZP) can be used as standard or custom-made post, considering its high strength (3-point bending strength at ~1200 MPa) and fracture toughness (10–14 MPa.m$^{1/2}$) [18, 19]. Metal and ceramic posts have been used for many years, although some clinical limitations have been related to the over-instrumentation and the mismatch in elastic modulus that increases the risks of catastrophic fractures of endodontically treated teeth [11]. In the last years, glass fiber-reinforced composite (GFRC) posts became an alternative material to replace casting metal post systems because they reduced the risk of tooth fracture and less corrosion issues associated with metal posts. Commercially available GFRC posts are composed of glass fibers (60-80wt%) embedded in epoxy resin. Nowadays, GFRC have been the first choice materials considering the balanced elastic modulus [12, 14, 20] (30–50 GPa) and adequate strength (3-point bending strength at around 433–677 MPa [12, 14, 20]. In fact, those values of mechanical properties and the custom-made shape reduce the possibility of catastrophic fractures when an endodontically treated teeth are subjected to occlusal forces [11, 15]. Also, studies have shown that GFRC posts promote a restorable fracture pattern within a traumatic incident with a reliable prognosis [16, 21]. On the other hand, cast metal or 3Y-TZP posts can induce vertical fracture pattern and consequent unreparable prognosis.

The most common failure of endodontically treated teeth restored with GFRC posts is the debonding from the resin-matrix cement [12, 22, 23]. Additionally, fractures at the resin cement to dentin can also take place. Thus, the debonding and fractures can be associated with several factors related to materials, anatomic features, root canal shaping, remnant tooth tissues, and cementation [3, 20, 23–25]. Anatomical and restorative design differences along the root canal cause a variation of distance between the post to the intracanal dentin surface. Such space is filled by the resin-matrix cement on cementation, resulting in regions with thick and thin layers of resin-matrix cement [23, 26]. Multi-filaments GFRC posts have used to enhance the fitting and decrease the resin-matrix cement layer although further studies are required to validate the advantages and limitations of multi-filament GFRC posts. Thick layers of resin-matrix cements are prone to defects like macro- and micro-scale pores, cracks, and voids. In this way, the resin-matrix cement layer should be at micro-scale thickness, providing adequate retention and avoiding failures by crack propagation at those defects. According to previous studies, the highest bond strength
values of GFRC posts to intracanal surfaces were recorded when an appropriate fitting promoted a resin cement layer thickness at 0.1–0.3 mm [12, 22, 23].

The main aim of this study was to measure the tooth root canals' diameter, remnant dentin thickness, and the endodontic post-to-dentin distance after three types of root canal preparation. It was hypothesized that the dentin thickness decreases after invasive tooth root canal preparation and the post-to-dentin distance varies, considering anatomic and shaping factors.

Materials And Methods

Preparation of endodontically treated teeth

The manuscript of this laboratory study has been written according to Preferred Reporting Items for Laboratory studies in Endodontology 2021 guidelines [27]. The project was previously reviewed and approved by an institutional review board from the University Institute of Health Sciences (IUCS) at Cooperativa Ensino Superior Politécnico Universitário (CESPU), Portugal, with the Ethics protocols reference namely CE/IUCS/CESPU-18/2022. All procedures performed involving human participants followed the ethics standards of the IUCS ethics committee and therefore with the 1964 Helsinki declaration and its later amendments or comparable Ethics Standards. Informed consent was unnecessary following the national regulations and since all data were processed anonymously. The need for informed consent was waived by the ethics committee/Institutional Review Board of IUCS at CESPU, Portugal.

Each participant was in good oral health, with no history of antibiotic treatment during the previous 6 months. Thirty extracted human premolars (mean root length at 15 mm) with completely formed apex were selected considering root sizes and absence of caries, visible fracture lines, or cracks (Fig. 1A). Teeth were selected according to the Schneider method (26). Teeth were stored in 5% Chloramine for 7 days and then in distilled water at 4° C for 7 days. The anatomic crowns were initially sectioned, and all teeth were endodontically treated. The working length was determined by using an endodontic file type K-flexofile ISO # 10 until it is visible through the apical foramen and then 1 mm was subtracted. Mechanic-assisted instrumentation was carried out using reciprocating friction instrumentation with # 25.08 primary files (25mm) (Wave One™, Dentsply-Maillefer, Switzerland) (Fig. 1B). The canal was disinfected using 3% sodium hypochlorite solution (NaOCl) between each filing on which permeabilization procedure was performed with 10K file between every 3 reciprocating movements using a syringe with lateral irrigation needle (30G). The canals of the teeth were dried with calibrated paper cones (Dentsply-Maillefer, Switzerland). At last, the canals were filled using calibrated primary gutta percha cones (Dentsply Maillefer, Switzerland) plus single cone technique and vertical compaction with gutta-percha points and embedded within resin-matrix cement (AH-Plus™, Dentsply-Maillefer, Switzerland), as seen in Fig. 1C and 1D.
Gutta-percha was removed using reamers sizes 2, 3, 4 (Largo Peeso reamers™; Dentsply Intl, USA) (2A). A parallel-sided twist drill nº 6 (Parapost Black P-42™; Coltène/Whaledent Inc, USA) was used at low speed. No attempt to generate pressure on instruments against the intracanal dentin surfaces was made when using either Largo reamers or drills. Silicone stops (Dentsply Intl, USA) were placed on each drill to ensure that the canal shaping was achieved as previously determined lengths. The debris generated after each instrumentation were rinsed away with 2 mL of 3% NaOCl. After preparation, teeth root canals were thoroughly dried with paper points.

Glass fiber-reinforced composite (GFRC) (Fibio Fiberglass Post™, Anthogyr, France) or multi-filament GFRC (Rebidla, VOCO, Germany) posts were passively placed in the tooth root canals on the cementation. On cementation, a non-enriched ParaBond primer™ (Coltène, Whaledent,USA) was applied to the channel using a fine microbrush at reciprocating friction movement for 30 s. The excessive layer of primer was removed using paper tips and a light air stream was applied for 2 s. A mixture of parabond A & B adhesive™ (Coltène, Whaledent Inc, USA) was applied to the tooth root canal with a fine microbrush at reciprocating friction movement for 30 s. The excessive adhesive layer was removed using paper tips and a light air stream was applied for 2 s. At last, the resin-matrix cement material (ParaCore Automix™, Coltene Whaledent, USA) was applied directly into the intracanal space using a syringe tip. The GFRC post was also coated with the cement and then inserted into the tooth root canal on slight pressure. The excessive cement layer was removed and the cement was then light-cured using a light curing unit at 420-480nm wavelength (LY- A180, Anyang Zongyan Dental Material Co, Ltd, China) for 120 s. Specimens were then assembled with a self-curing acrylic resin (Ortho resin™; Dentsply, USA) in a short length of polyvinyl chloride mold. The dental inspector apparatus (Ney surveyor, Germany) was used to align the post space with the long axis of the tooth. To increase root retention in the acrylic resin block on push-out test, each root was scratched on the buccal and lingual surfaces with a tungsten carbide bur [28–31].

X-ray And Cbct Analyses

Periapical X-ray images of tooth roots were acquired by using a X-ray clinical apparatus (Corix 70 Plus KVP X-ray™, CORAMEX S.A, Mexico), as seen in Fig. 2. X-ray analyses were performed on triangular scanning technique at 70 kVp and 8 mA for 53 s [32]. Cone Beam computed tomography (CBCT) was performed to measure the tooth root canals’ diameter, remnant dentin thickness, and the endodontic post-to-dentin distance. The CBCT unit KaVo OP 3D™ (KAVO, Germany) used in this study operates in various configurations, expanding from panoramic-only through cephalometric and three-dimensional capabilities to accomplish three-in-one configuration.

The CBCT focal spot was at 0.5 mm, IEC 336 (IEC 60336/2005) while the tube voltage and the tube current were set at 60–95 kV and 3.2–16 mA, respectively. Image voxel size ranged from 80 up to 400 µm and the scanning was performed for 27–45 s. A fast scan time was provided by the complementary metal-oxide semiconductor (CMOS) X-ray detectors. The image volume sizes (H x Ø) were 5x5, 6x9, 9x11, 9x14 cm. Different resolution levels could be evaluated such as: low dose technology scan, standard
resolution scan, high resolution scan, and endo resolution scan. CBCT was coupled to the Blue Sky Plan 4™ software program (BlueSkyBio, USA). Two hundred and seventy-five axial cross-sectioned CBCT images were acquired for each tooth root specimen. Cross-sections were evaluated at each tooth root third: coronal, cervical, and apex. Tooth root canal diameter was measured prior to the placement of the endodontic post (Fig. 2B). Then, the endodontic post-to-dentin distance was measured at mesial, distal, buccal and lingual regions. Navigation and evaluation of the anatomical details was supported by the Blue Sky Plan software as previously reported in literature [33, 34].

Microstructural Analyses

Randomly endodontically treated teeth specimens were embedded in autopolymerizing polyether modified resin (Technovit 400™; Kulzer GmbH, Germany) and then cross-sectioned at 90 degrees relative to the plane of the GFRC post to resin-matric cement interface. Surfaces were wet ground down to 2400 Mesh using SiC abrasive papers and then polished with 1µm Al₂O₃ particles. Then, surfaces were ultrasonically cleaned in isopropyl alcohol for 10 min and then in distilled water for 10 min [2, 5, 9].

At first, cross-sectioned specimens were inspected by optical microscopy at magnification ranging from x10 up to x500. Microstructural analyses were performed using an optical microscope (Leica DM 2500 M™; Leica Microsystems, Germany) connected to a computer for image processing, using Leica Application Suite™ software (Leica Microsystems, Germany). A number of six micrographs were acquired at x500 magnification, for each specimen (n = 18). The software Adobe Photoshop™ (Adobe Systems Software, Ireland) was used to analyze black and white images, with the black regions representing the pores and the white regions representing the bulk material. Image J™ software (National Institutes of Health, USA) was used to quantify the porosity percentage of the cross-sections. Then, surfaces were sputter coated with a AgPd thin layer for scanning electron microscopy (SEM) analyses by using SEM unit JSM-6010 LV™ (JEOL, Japan) coupled to energy dispersive spectroscopy (EDS). The resin-matrix cement thickness and microstructure of the specimens was evaluated at high magnification ranging from x1000 up to x20000 under (SE) secondary and (BSE) backscattered electrons [34–36].

Statistical Analyses

Results were statistically analyzed by normality test Shapiro-Wilk and two-way ANOVA to determine statistical differences in values of diameter of the tooth root canals and thickness of the remnant tooth structure between groups. The t student test was used to compare the mean values of diameter of the tooth root canals and thickness of the remnant tooth structure. A probability value < 0.05 was considered significant. The power analysis performed by t student test or ANOVA, to determine the number of specimens for each group (n), revealed a test power of 100% in the present study. Statistical analyses were carried out using Origin Lab statistical software (Origin Lab, Northampton, MA, USA).

Results
As seen in Fig. 3, CBCT images revealed differences in diameter at different thirds of the tooth root canal prior to the placement of the endodontic post (Fig. 2B). The endodontic post-to-dentin distance was measured at mesial, distal, buccal and lingual regions. The mean values and standard deviation values recorded for tooth remnant thickness are shown in Fig. 4. On mesial and distal regions, invasive preparation revealed the lowest values of remnant tooth tissues in the three thirds (coronal, middle, and apex) as well as in the different graphs performed compared to the standard preparation and very conservative preparation. At mesial side, the mean values of remaining tooth thickness at the coronal third were recorded at 1.63, 1.49, and 1.21 mm at middle and apical thirds, respectively (Fig. 4A). Results showed statistically significant differences regarding the invasive preparation ($p < 0.05$). At the distal level, the mean values of remaining tooth thickness were recorded at 1.72, 1.46, and 1.45 mm, at coronal, middle, and apical thirds, respectively (Fig. 4B). Thus, thickness of the remnant tooth tissues decreased from the coronal to the apex third region.

Specimens on conservative preparation revealed larger remnant tooth tissues at the mesial and distal regions. As expected, thickness of the remnant tooth tissues also decreased from the coronal to the apex third region. At mesial side, the mean values of remaining tooth thickness were recorded at 2.01, 1.89, and 1.62 mm, at coronal, middle, and apical thirds, respectively (Fig. 4A). At the distal side, the mean values of remaining tooth thickness were recorded at 2.08, 1.85, and 1.31 mm, at coronal, middle, and apical thirds, respectively (Fig. 4B). Regarding coronal and middle thirds, specimens on conservative preparation did not show statistically significant differences ($p = 0.16$) when compared to the standard preparation.

The mean values and standard deviation values recorded for diameter measurement of tooth root canals after endodontic shaping procedures are shown in Fig. 5.

The invasive preparation provided the largest mean values of tooth root canal diameter. The diameter measurement mean values of tooth root canals after endodontic shaping procedures were recorded at 2.07, 1.91, and 1.45 mm, at coronal, middle, and apical thirds, respectively (Fig. 5). Results showed statistically significant differences between coronal or middle and apical third ($p < 0.05$). Specimens on conservative preparation revealed the smallest mean values of tooth root canal diameter. The diameter measurement mean values of tooth root canals after endodontic shaping procedures were recorded at 1.16, 0.74, and 0.55 mm, for coronal, middle, and apical thirds, respectively (Fig. 5). Results showed statistically significant differences between coronal and apical third ($p < 0.05$).

The mean values and standard deviation values recorded on the post to intracanal dentin distance measurement are shown in Fig. 6.

As seen in Fig. 6, the invasive preparation resulted in the largest distance measurements from the post to the tooth root canal surfaces in the different sections (coronal, middle and apex) at mesial, distal, and vestibular. Results showed statistically significant differences between groups ($p < 0.05$). However, specimens on standard preparation showed slightly higher values than that recorded for specimens from invasive preparation at the lingual anatomic side.
At the mesial side of specimens from invasive preparation, the distance mean values from the post to the intracanal dentin surfaces were recorded at 0.59, 0.42, and 0.13 mm, at coronal, middle, and apical thirds, respectively (Fig. 6A). At the distal side, the mean values were recorded at 0.45, 0.36, and 0.7 mm, at coronal, middle, and apical thirds, respectively (Fig. 6B). At the buccal side, the distance mean values from the post to the intracanal dentin surfaces were recorded at 1.43, 0.54, and 0.27 mm, respectively, at coronal, middle, and apical thirds, respectively (Fig. 6C). Finally, standard preparation revealed slightly higher values than that recorded for the invasive preparation at the lingual side. On the standard preparation, the distance mean values from the post to the intracanal dentin surfaces were recorded at 0.86, 0.59 and 0.25 mm, at coronal, middle, and apical thirds, respectively (Fig. 6D).

CBCT images of the GFRC post to dentin after invasive preparation of the tooth root canal are shown in Fig. 7A and C. The distance from the post to the remaining dentin was much more uniformly than at the coronal level. Microscopic images of the interfaces involving dentin, resin cement, and GFRC post can be seen in Fig. 7B, 7D and 8. As seen in Fig. 7A and B, the invasive tooth preparation promoted a larger destruction of tooth root inner tissues as noticeable by the space from the GFRC post to the intracanal dentin surfaces. Results showed statistically significant differences between groups \((p < 0.05) \). The space was filled by the resin-matrix cement although macro-scale voids were detected (Fig. 7B and D). In Fig. 7C, the post was fitted in the apex third region that decrease the cement layer as seen by the optical microscopy analysis (Fig. 7D and 8).

As seen in Fig. 8, the resin cement layer varies even though the GFRC post was in a good fit at the apical third region. Also, defects and macro-scale voids were detected at the resin-matrix cement layer (Fig. 8C and D).

CBCT images of the multi-filament GFRC post to dentin after invasive preparation of the tooth root canal are shown in Fig. 9. Before cementation, it is still noticeable space at the coronal third of the multi-filament GFRC post to dentin region although the apical third region was partially filled with the GFRC filaments.

Microscopic images of the interfaces involving dentin, resin cement, and multi-filament GFRC post can be seen in Fig. 10. It can be seen the GFRC filaments are distributed in the tooth root canal. However, the resin-matrix cement volume is high among the filaments that increases the presence of defects and macro-scale voids as seen in Fig. 10A, B, and C.

Discussion

In this study, the tooth root canal's diameter, remnant dentin thickness, and the endodontic post-to-dentin distance were measured by CBCT and traditional X-ray analyses. Teeth root canals were prepared by invasive, standard, or conservative endodontic procedures and then inspected by CBCT and traditional X-ray analyses. Then, a second set of analyses was performed after placement of GFRC posts. Also, GFRC posts were cemented and cross-sectioned for microscopic analyses. The results of the present study revealed similar thickness values of remnant dentin between conservative and standard canal shaping.
Also, the distance of GFRC post to dentin varied considering the anatomic features. The coronal third showed the highest post to dentin distance that provided the highest values of resin cement layer thickness. Thus, the present results support the hypothesis that dentin thickness decreases after invasive tooth root canal preparation and the post-to-dentin distance varies considering anatomic and shaping factors.

Regarding the thickness of remaining dentin on the mesial and distal side, invasive preparation resulted in less remaining dentin compared to the other two tooth root canal shaping. The thin thickness of tooth root tissues promotes a high risk of failures by catastrophic fracture under occlusal loading. A root fracture is a critical type of failure in endodontically treated teeth. Additionally, other several complications can occur during endodontic preparation such as perforations, canal transportation, protrusion, zipper formation, and instrument fracture [35–37]. Micro- and macro-scale cracks can appear in the dentin and enamel tissues on reciprocating friction movements over the endodontic treatment [35, 38, 39]. Cracks are spots of stress concentration leading to the catastrophic fracture from crack propagation [35, 38, 39]. Vertical oriented cracks are the worst type of defects to induce fracture in endodontically treated teeth [35]. The rotary and reciprocal NiTi endodontic files cause a significant increase in the percentage of microcrack formation when compared to the handheld NiTi file [35, 40, 41]. A study reported that ProTaper Universal™ and WaveOne™ systems showed significant improvements on the basic geometric parameters (area, perimeter, roundness, major diameter, minor diameter, volume, surface area, structure model index) in comparison with the Reciproc™ and SAF™ systems [42]. However, all systems performed similarly regarding the amount of worn dentin surfaces when the brushing motion was applied. Neither technique was capable of completely preparing the oval-shaped root canals [42].

At coronal level, the conservative preparation showed similar values of remnant tooth root tissues when compared to the standard procedure, although the conservative approach promoted more remaining tooth root on a high number of anatomical sites, as seen in Fig. 4. Regarding the remaining root thickness on the distal side of the tooth, the standard preparation showed higher mean values at the coronal and the apical level when compared with the invasive approach. Invasive preparation remains the most destructive preparation method considering remaining tooth root thickness (Fig. 4B). In comparison with the present results, previous findings have reported that an adequate selection of instruments and techniques can prevent excessive intracanal dentin damage leading to an enhanced stress distribution through the tooth tissues [35, 37, 43–45]. The stress magnitude must not exceed the strength of the tooth tissues. A study emphasized the difficult instrumentation aspects in larger root canals when compared to small and even complex systems (44). The complexity of the root canal system induces challenges for fulfilling the disinfection and shaping goals of tooth root canal treatment. Such anatomic features reveals clinical limitations since tapered instruments for apical preparation might weaken the tooth root structure at the mesiodistal surfaces [42, 46]. Also, variations in shaping and removal of dentin occurs due to the sensitivity of the operator.

The invasive preparation promoted the largest tooth root canal diameter values at the coronal, middle, and apex thirds. However, the standard preparation only promoted a larger tooth root canal diameter than
that recorded for conservative preparation at the middle and the apical thirds (Fig. 5). On the tooth root canal filling, heating of thermoplastic gutta-percha increases plastic deformation and fitting to the spaces within root canal system with oval-shape design. On the cooling of the gutta-percha, shrinkage occurs and results in macro- and micro-scale voids and gaps along the root canal filling. A recent study also proposed that the use of alternative sealing materials to gutta-percha would be beneficial to prevent microleakage when the size of the apex is larger than ISO #50 [46, 47]. Even though increasing the GFRC post diameter can improve the mechanical behavior, a variation of the resin-matrix cement can occur and therefore risks of fracture would depend on the thickness and number of defects.

Considering the mesial site, standard preparation of tooth root canals provided shorter distances from the post to the intracanal dentin surfaces compared to the invasive one (Fig. 6-A). In the distal view, the standard preparation showed higher mean values on the distance from the post to the remaining intracanal dentin in the coronal measurement of the tooth although revealed much lower values at the apical and middle thirds (Fig. 6-B). On the buccal side, the invasive preparation at all different thirds revealed high values of distance from the post to the remaining intracanal dentin when compared to the standard preparation. However, there were no statistical differences in the invasive preparation at the apical and middle third of the tooth (Fig. 6-C). Also, a multi-filament GFRC post revealed misfit of filaments mainly at the coronal third as seen in Fig. 9 and therefore there are limitations regarding the number and diameter of filaments. Burs with the same diameter of standard GFRC posts often allow a good fit of the posts within the tooth root canals although unfortunately shaping and anatomical discrepancies cause variations in the thickness of resin-matrix cement as seen in Figs. 7 and 8. In the same way, a large amount of resin-matrix cement can be noticed in the microstructure of the multi-filament GFRC post interface. Indeed, the resin-matrix cement layer tends become thick in clinical situations concerning the misfit of the GFRC post to the intracanal space [43]. Thick layers of resin-matrix cement are susceptible to the presence of defects such as macro- to nano-scale voids, pores, or cracks [23, 43]. Also, the polymerization shrinkage stresses become higher in thick resin-matrix cement layers [43]. In this way, failures related to thick resin-matrix cement layer can occur in the oral environment such as fracture at the GFRC post to dentin interface, microleakage, and progressive degradation that can further compromise the post-endodontic adhesive interface [48, 49].

On the other hand, the literature has reported controversial results on the influence of resin-matrix cement thickness on the adhesion of standard and custom-made endodontic posts to tooth root canal [43]. Several studies have suggested that a thick layer of cement may induce detachment of GFRC posts [22, 23, 43, 50–52] although other studies [53, 54] have shown that the bond strength was not influenced by increasing the thickness of the resin-matrix cement layer. Self-adhesive resin-matrix cements have been recently suggested for the cementation of GFRC posts and indirect restorations [43, 55]. Such recommendation is based on the fact that self-adhesive cements are not as sensitive as conventional resin-matrix cements, which require the previous use of bonding systems [43]. Nevertheless, the use of self-adhesive resin-matrix cement is limited in enclosed spaces. The lack of direct clinical visualization and monitoring of adhesive procedures increase the risks of clinical failures and defects into the resin-matrix cement leading to a low bond strength of GFRC posts to resin cements and the root dentin [43]. A
study showed the occurrence of a strong correlation between thick resin-matrix cement thickness and low bond strength values [43]. It should be highlighted that clinicians should seek improved cementation techniques providing the lowest resin-matrix cement thickness when around GFRC posts. Furthermore, custom-made procedures involving GFRC posts and resin-matrix composites are strategic approaches to promote an adequate fitting of GFRC posts to different tooth intracanal shape [42, 48].

Conclusions

Within the limitations of this in vitro study, the following conclusions can be drawn:

- A conservative tooth root canal preparation provides adequate volume of remnant dentin and enamel tissues for further restoration. Also, a conservative approach can promote a proper fitting of the endodontic post to the intracanal dentin. On the other hand, the invasive tooth root canal preparation promotes a severe destruction of the tooth root tissues that increases the risks of catastrophic fractures from the propagation of cracks;

- After invasive preparation, the fitting of the standard or multi-filament GFRC post is compromised that increases the occurrence of spaces from the post to the intracanal dentin surfaces mainly at the coronal third. Spaces are filled by resin-matrix cements on cementation although thick cement layers increase the possibility of defects (i.e., cracks and pores) and stress concentration leading to catastrophic fractures. The fitting of multi-filament GFRC posts has limitations regarding the number and diameter of filaments. Thus, the volume of resin-matrix cement around multi-filament GFRC posts varies among the filaments.

- Further studies should assess the percentage of defects in different thickness of resin-matrix cements regarding standard and multi-filament GFRC posts. The chemical composition and viscosity of the resin-matrix cement should be correlated with the filling of the intracanal spaces. Also, the number and diameter of filaments of novel GFRC posts should be related to the type of tooth root canal.

Declarations

Ethics approval and consent to participate: All procedures performed involving human participants followed the ethics standards of the research committee of the University Institute of Health Sciences (IUCS) at Cooperativa Ensino Superior Politécnico Universitário (CESPU), Portugal, and therefore with the 1964 Helsinki declaration and its later amendments or comparable ethics standards. The project for the present study was previously reviewed and approved by the IUCS Ethics committe with the following Ethics Protocols Reference number: CE/IUCS/CESPU-18/2022. Informed consent was unnecessary following the national regulations and since all data were processed anonymously. The need for informed consent was waived by the ethics committee/Institutional Review Board of IUCS at CESPU, Portugal.

Consent for publication: Not applicable.
Availability of data and materials: The datasets used and/or analysed during the current study available from the corresponding author on reasonable request.

Competing interests: All the authors declare that they have no competing interests.

Funding: This work was supported by FCT-Portugal [UID/EEA/04436/2013, SFRH/BPD/123769/ 2016, and Project LaserMULTICER [POCI-01-0145-FEDER-031035].

Authors' contributions: Conceptualization, J.C.M.S., B.H., V.F., C.S., methodology, V.F., C.S., O.C., and J.C.M.S., investigation, V.F., C.S., O.C., writing—original draft preparation, V.F., C.S., writing—review and editing, J.C.M.S., M.O., F.S., B.H. Supervision, F.S., J.C.M.S., and M.O. All authors participated in the writing process, read and approved the final manuscript.

Acknowledgements: The authors acknowledge the Portuguese Foundation for Science and Technology (FCT) for the financial support.

References

Figures

Figure 1

(A) View of the first premolar selected for root canal preparation. (B) Mechanic-assisted instrumentation on reciprocating friction instrumentation with Wave One™ primary # 25.08 files, 25mm (Dentsply-Maillefer, Switzerland). (C) Tooth root canals filled with cement and guttas perchas on obturation. (D) Preparation for cementation was initiated by enlarging the root canals with Largo Peeso Reamers™ (Dentsply, USA).
Figure 2

Schematics of the preparation of endodontically treated teeth and measurements.
Figure 3

CBCT images of the post to dentin distance at mesial, distal, vestibular and lingual regions (invasive, standard, and conservative preparations).

Figure 4
Thickness values of the remnant tooth structure at (A) mesial and (B) distal after invasive, standard, conservative preparation. *Represents statistic differences between groups ($p < 0.05$).

Figure 5

Diameter measurement of the tooth root canals after endodontic shaping procedures (A) after invasive, standard, conservative preparation. *Represents statistic differences between groups ($p < 0.05$).
Figure 6

Measurement of the post to intracanal dentin distance at (A) mesial, (B) distal, (C) buccal, and (D) lingual regions after invasive, standard, conservative preparation. *Represents statistic differences between groups ($p < 0.05$).
Figure 7

CBCT and microstructural images of the GFRC post to dentin distance on invasive preparation. (A,C) CBCT images of a sagittal cross-section view of the tooth with a GFRC post prior to cementation: zoom view of (A) coronal and (C) apical third. (B) Optical microscopy of a horizontal cross-section of the GFRC post to dentin interface in the (B) coronal and (D) apical third after cementation.
Figure 8

Optical microscopy images of a horizontal cross-section of the GFRC post to dentin interface in the apical third after cementation. (B,C, D) Zoom view of the interface.
Figure 9

CBCT images of the post to dentin distance on invasive preparation prior to cementation. (A) sagittal and (B) cross-section view. (D) coronal, (E) middle, and (F) apical cross-section view.
Figure 10

Optical microscopy images of a horizontal cross-section of the multi-filament GFRC post to dentin interface in the (A) coronal, (B) middle, and (C,D) apical third after cementation. (D) Zoom view of the interface.