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Abstract
Background Evaluation of the resting energy expenditure (REE) is essential to ensure an appropriate
dietary prescription for patients with type 2 diabetes. The aim of this study was to evaluate the accuracy
of predictive equations for REE estimation in patients with type 2 diabetes, considering indirect
calorimetry (IC) as the reference method.

Methods A cross-sectional study was conducted in 62 patients (31 men and 31 women) with type 2
diabetes. Clinical and laboratory variables were evaluated, as well as body composition by electrical
bioimpedance. The REE was measured by IC (QUARK RMR, Cosmed, Rome, Italy) and estimated by
predictive equations. Data were analyzed using Bland–Altman plots, paired t-tests, and Pearson’s
correlation coe�cients.

Results Patients in the sample had a mean age of 63.1 ± 5.2 years, median diabetes duration of 11 (1–
36) years, and mean A1C of 7.6 ± 1.2%. Body composition analysis revealed a mean fat free mass of
35.2 ± 11.8 kg and fat mass of 29.1 ± 8.8 kg. There was wide variation in the accuracy of REE values
predicted by equations when compared to those measured by IC. For women, the FAO/WHO/UNO
equation provided the best REE prediction in comparison to measured REE (-1.8% difference). For men,
the Oxford equation yielded values closest to those measured by IC (-1.3% difference).

Conclusions In this sample of the patients with type 2 diabetes, the best predictive equations to estimate
REE were FAO/WHO/UNO and Oxford for women and men, respectively.

Introduction
Diabetes mellitus (DM) is a chronic disease that affects a signi�cant proportion of the world population
[1]. Type 2 diabetes is the most common form of DM, usually occurring in adulthood, and is associated
with obesity in about 80% of cases [2]. The primary strategy for treating obese patients with type 2
diabetes is the loss of body mass through lifestyle changes [2], which has been associated with
improvement in glycemic control [2]. Among these interventions, an appropriate dietary prescription with
the goal of reducing body weight, taking into account each patient’s daily energy needs, is essential [3].
The main component of energy requirements is the total energy expenditure (TEE); calculating the TEE
requires knowledge of the resting energy expenditure (REE) [3].

The most accurate procedure for measuring REE is indirect calorimetry (IC), which is considered the
reference method [3]. However, its use is limited, requires special training, and is not always available in
clinical practice [3]. Thus, several predictive equations have been developed as alternative methods for
REE estimation [4–14].

Variability in REE may depend on several factors, such as sex, ethnicity, age, physical activity, genetic
factors, body composition, caloric intake, and the presence of diabetes or obesity [11]. Several studies
have evaluated REE using predictive equations across different populations [16–18] and ethnicities [19–
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26]. Studies considering sex have shown that REE is lower in women than in men [27–29]; one such study
found that REE measured by IC was 23% higher in men [27]. These data contributed to a follow-up study
conducted in obese men and women, which also demonstrated a signi�cant difference (REE higher in
men by approximately 335 kcal/day) [29].

In addition, the presence of diabetes is also associated with REE. Previous studies demonstrated that
patients with diabetes and poor glycemic control had higher REE [9, 25, 26]. Data on the use of REE
predictive equations in patients with type 2 diabetes have been described elsewhere [9, 10, 14, 21, 22, 24–
26, 30–35]; however, data on Brazilian diabetic patients are still scarce [34, 35]. A cross-sectional study of
obese Brazilian women with type 2 diabetes showed that some predictive equations underestimated REE
by approximately − 2.6%, while others overestimated it by 10.6%, when compared with IC measurement
[34]. A recent survey of Brazilian patients with type 2 diabetes of both sexes demonstrated wide variation
in REE values evaluated by predictive equations. The FAO/WHO/UNO equation showed the best accuracy
when compared to measured REE, but still underestimated it by -5.6% as compared to IC a difference of
100 kcal/day [35].

Considering that sex is an important variable in REE evaluation; that data in Brazilian patients with type 2
diabetes are insu�cient; and that poor glycemic control has been associated with an increase in REE,
evaluating the performance of predictive equations for REE in this population is essential to ensure that
adequate dietary interventions are being prescribed for diabetic patients. Within this context, the aim of
the present study was to evaluate the accuracy of the main predictive equations used in clinical practice
for the calculation of REE in a sample of Brazilian patients with type 2 diabetes, strati�ed by sex,
considering IC as the reference method.

Materials And Methods

Study design and patients
This cross-sectional study included 62 patients (31 men and 31 women) with type 2 diabetes. Type 2
diabetes was de�ned by age > 30 years at onset, no previous episode of ketoacidosis or documented
ketonuria, and insulin treatment (when necessary) only 5 years after diagnosis. The inclusion criteria were
not having received dietary counseling by a nutritionist in the preceding 6 months, age < 70 years, serum
creatinine < 2 mg/dL, normal thyroid function tests, and absence of severe liver disease, decompensated
heart failure, or any acute disease. The study protocol was approved by the Research Ethics Committee
(Approval number: 15.0625), and all subjects provided written informed consent for participation.

2.2 Clinical evaluation
Blood pressure was measured with a digital sphygmomanometer (Blood Pressure Monitor, model HEM-
705CP, Omron Healthcare Inc., Bannockburn, IL). Two measurements were obtained, 2 minutes apart, and
the mean recorded for analysis. Patients were considered hypertensive in case of systolic blood pressure 
≥ 140 mmHg on at least two occasions, history of hypertension, or current use of antihypertensive drugs.
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The anthropometric parameters used to assess nutritional status were body mass (with participants
barefoot and wearing lightweight clothing) and height, both measured with a calibrated anthropometric
scale (Filizola®). The body mass index (BMI) was calculated as the body mass (in kg) divided by the
height (in m) squared. Body composition analysis by electrical bioimpedance (InBody® 230, Seoul, South
Korea) was performed for determination of fat mass (FM) and fat-free mass (FFM), both in kg.

Habitual physical activity was measured objectively by step counting with a pedometer (HJ-321, Omron
Healthcare Inc.) and classi�ed into �ve levels: sedentary (< 5000 steps/day), low active (5000–7499
steps/day), somewhat active (7500–9999 steps/day), active (≥ 10000–12499 steps/day) and highly
active (≥ 12500 steps/day) [36]. Participants wore the pedometer for 7 days, attached to the waistband
of their clothing during waking hours, except when bathing or swimming. Participants were encouraged
not to alter their usual physical habits during the protocol.

Laboratory evaluation
Blood samples were obtained after a 12-hour fast. Plasma glucose level was determined by the glucose-
peroxidase enzymatic colorimetric method (Bio Diagnóstica), HbA1C by high-performance liquid
chromatography (Merck-Hitachi L-9100, Merck Diagnostica, Darmstadt, Germany; reference range, 4.8–
6.0%), total cholesterol and triglycerides by enzymatic colorimetric methods (Merck; Boehringer
Mannheim, Buenos Aires, Argentina), and high-density lipoprotein (HDL) by a homogeneous direct
method (AutoAnalyzer, ADVIA 1650). Low-density lipoprotein (LDL) cholesterol was calculated using the
Friedewald formula (LDL cholesterol = total cholesterol – HDL cholesterol – triglycerides/5).

Resting energy expenditure measurement
Objective measurement of REE was performed by IC. The IC protocol consisted of 10 min of rest on a
gurney in the supine position, followed by 30 min of collection of exhaled gases using the canopy dilution
technique and a coupled collection device. An open-circuit calorimeter (QUARK RMR, Cosmed, Rome,
Italy) was used to determine VO2 (oxygen consumption) and VCO2 (carbon dioxide production). To
calibrate the equipment, the volume of the turbine �owmeter was �rst calibrated electronically by the
system, followed by calibration of the collector plates using a known gas concentration. This process
was repeated for each test to standardize measurement. The �rst 10 min of gas collection were excluded
from the analysis; thus, VO2 and VCO2 (L/min) obtained during the �nal 20 min of each collection (mean
value) were used for REE calculation. The equation proposed by Weir [37], which incorporates a correction
factor and thus obviates the need to consider protein metabolism, was used to obtain values in kcal/min:
[(3.9 x VO2) + (1.1 x VCO2)]. The result in kcal/min was multiplied by 1,440 min to obtain the 24-hour REE.
Subjects were asked to refrain from all moderate- or high-intensity physical activity during the 24 h
preceding the test, and not to consume alcohol or caffeine. Smokers were instructed not to consume any
tobacco products for at least 12 h before the day of REE measurement. Additionally, the subjects were
instructed to fast for 12 h prior to the test (water freely allowed) and to have a good night’s sleep (at least
8 hours). Finally, all subjects either drove or were driven to the test site to avoid any energy expenditure
before determination of REE. All tests were performed between 06:30 and 08:00, in a temperature-
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controlled (23 °C) and sound-controlled room, under low luminosity. All participants continued to take
their usual medications during the study period; those who had morning doses to take received them after
IC.

Selection of equations for estimating resting energy
expenditure
The REE was estimated by eleven predictive equations, which were selected after a search of previous
publications on the theme [4–14]. To be included, the equations had to have been developed for adult
men and women and should be based on body weight, height, age, sex, and/or FM. Equations derived
only for speci�c ethnic groups or for individuals with BMI ≥ 40 kg/m² were not included (Supplement 1).

Statistical analysis
Sample size calculation was based on a study wherein the variability of REE in relation to glycemic
control, weight, age, and sex—particularly in male patients—demonstrated a multiple correlation
coe�cient of 0.9 [25]. Considering a study power of 80%, alpha error of 5%, and 20% attrition rate, 62
patients would be required.

REE was estimated by eleven commonly used predictive equations, according to sex and age: Harris-
Benedict [4], Bernstein [5], Scho�eld [6], FAO/WHO/UNO [7], Mi�in-St. Jeor [8], Gougeon [9], Huang [10],
Martin [11], Dietary Reference Intakes (DRIs) proposed by Institute Of Medicine [12], Oxford [13] and Ikeda
[14]. The Shapiro-Wilk normality test was used to determine the distribution of the variables. The bias
was calculated by subtracting the measured REE from the estimated REE. For each predictive equation,
the percentage of deviation of estimated REE from measured REE was calculated as [(estimated REE − 
measured REE) / measured REE] × 100.

The means of estimated REE and measured REE were compared by a paired Student’s t-test. Agreement
between estimated and measured REE was examined graphically by plotting the differences between the
predicted and the measured REE against their mean values, with 95% limits of agreement (mean
difference ± 1.96 standard deviation) [38]. Pearson’s correlation coe�cients were used to assess the
correlation between estimated and measured REE. Results are expressed as means and standard
deviations or medians and interquartile ranges. Data were analyzed using SPSS version 23.0, while
Bland–Altman plot values were analyzed in R version 3.3.3 (R Project for Statistical Computing, Vienna,
Austria). A p value of < 0.05 was considered signi�cant.

Results
A total of 62 patients with type 2 diabetes were included in the study (80.6% white; mean age, 63.1 ± 5.2
years; median disease duration, 11 [1–36] years; mean BMI, 30.1 ± 4.0 kg/m²). A �ow diagram of patient
selection is shown in Fig. 1. Men had greater body mass (89.9 ± 13.8 vs. 74.2 ± 11; p < 0.001) and FFM
(38.6 ± 12.1 vs. 31.7 ± 10.7; p = 0.009) when compared to women. Regarding physical activity, the median
number of steps/weeks was 5522 (1496–18097), thus classifying the majority of participants as less
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active. All participants (100%) had hypertension. Most had a lipid pro�le within normal limits; however,
fasting blood glucose and A1c levels were abnormal, as expected in a sample of patients with diabetes.
All were on oral antihyperglycemic agents (100%) and antihypertensive agents (100%), while 67.7% (n = 
42) also took lipid-lowering agents. The pro�le of the sample is described in Table 1.
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Table 1
Sample pro�le.

Variable Overall

(n = 62)

Men

(n = 31)

Women

(n = 31)

P-value

Age (years) 63.1 ± 5.2 63.5 ± 5.5 62.6 ± 4.9 0.473a

Duration of
diabetes (years)

Ethnicity (white)

11 (1–36)

50 (80.6%)

12 (1–36)

28 (90.3%)

10 (2–30)

22 (71%)

0.493b

0.307a

Weight (kg) 82.1 ± 14.8 89.9 ± 13.8 74.2 ± 11.2 < 0.001a

Height (cm) 164.8 ± 10.3 172.4 ± 7.6 157.2 ± 6.2 < 0.001a

BMI (kg/m²) 30.1 ± 4.0 30.3 ± 3.8 30.0 ± 4.2 0.736a

Fat-free mass
(kg)

35.2 ± 11.8 38.6 ± 12.1 31.7 ± 10.7 0.009a

Fat mass (Kg) 29.1 ± 8.8 27.9 ± 9.3 30.3 ± 8.3 0.278a

Physical activity
(steps/week)

5522 (1496–
18097)

5190 (1496–
18097)

6011(1941–
14316)

0.288a

Hypertension 62 (100%) 31 (100%) 31 (100%) —

Fasting plasma
glucose (mg/dL)

153.3 ± 46.2 162.9 ± 45.5 143.8 ± 45.6 0.105a

A1C (%) 7.6 (5.2–12.0) 7.9 (5.9–12.0) 7.2 (5.2–9.2) 0.126b

Total cholesterol
(mg/dL)

162.5 ± 40.3 158.0 ± 44.4 171.1 ± 33.7 0.197b

HDL cholesterol
(mg/dL)

44.7 ± 13.8 39.8 ± 8.7 52.7 ± 13.8 < 0.001b

Triglycerides
(mg/dL)

172 (49–681) 183 (49–681) 157 (68–342) 0.789b

BMI, body mass index; A1C, glycated hemoglobin; HDL, high-density lipoprotein.

Data presented as median (interquartile range), n (%), or mean ± standard deviation.

a Student’s t-test; b Mann–Whitney U test; c Chi-square test.

— Chi-square test impossible because 100% of the sample is hypertensive, on hypoglycemic agents,
and on antihypertensive agents.
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Variable Overall

(n = 62)

Men

(n = 31)

Women

(n = 31)

P-value

Medications

Oral
antihyperglycemi
c agents

Antihypertensive
agents

Hypolipidemic
agents

62 (100%)

62 (100%)

42 (67.7%)

31 (100%)

31 (100%)

22 (71%)

31 (100%)

31 (100%)

20 (64.5%)

—

—

0.587c

BMI, body mass index; A1C, glycated hemoglobin; HDL, high-density lipoprotein.

Data presented as median (interquartile range), n (%), or mean ± standard deviation.

a Student’s t-test; b Mann–Whitney U test; c Chi-square test.

— Chi-square test impossible because 100% of the sample is hypertensive, on hypoglycemic agents,
and on antihypertensive agents.

Table 2 shows the mean and standard deviation of REE as measured by IC and estimated by the
predictive equations, bias (percent deviation), and 95% limits of agreement. All variables were normally
distributed according to the Shapiro-Wilk test (data not shown). The mean REE measured by IC in men
and women was 1815.7 ± 262.3 kcal/day and 1473.4 ± 258.5 kcal/day respectively (p < 0.001). In all
patients, only the Bernstein equation showed no statistically signi�cant difference in relation to REE
measured by IC. When strati�ed by sex, in men, the Harris-Benedict, FAO/WHO/UNO, and Oxford
equations did not yield results signi�cantly different from REE measured directly by IC. In women, only
the FAO/WHO/UNO equation did not differ signi�cantly from REE as measured by IC.
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Table 2
Evaluation of measured and estimated REE in patients with type 2 diabetes.

  All

(n = 62)

Men

(n = 31)

Women

(n = 31)

  Mea
n

SD 95%
limit
s of

agre
eme
nt1

P-
valu
e*

Mea
n

SD 95%
limit
s of

agre
eme
nt1

P-
valu
e*

Mea
n

SD 95%
limit
s of

agre
eme
nt1

P-
valu
e*

Mea
sure
d
REE
by
IC
(kca
l/da
y)

164
4.6

310.
6

    181
5.7

262.
3

    147
3.4

258.
5

   

REE, resting energy expenditure; IC, indirect calorimetry; SD, standard deviation.

* Paired Student’s t-test to compare estimated and measured REE

1 (mean difference ± 1.96 SD of the difference)

2 (estimated − measured) (kcal in 24 h).

3 (difference/measured) × 100 (%).
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  All

(n = 62)

Men

(n = 31)

Women

(n = 31)

Esti
mat
ed
REE
(kca
l/da
y)

Harr
is-
Ben
edic
t [4]

Bias
²
(kca
l/da
y)

Perc
ent
devi
atio
n3

154
6.9

-97.
7

-3.5

262.
5

(-15
3.4;-
41.9
4)

0.00
1

173
4.4

-81.
3

-1.9

231.
8

(-16
7.8;
5.3)

0.06
5

135
9.3

-114
.1

-3.1

117.
1

(-18
9.0;
-39.
2)

0.00
4

Bern
stei
n[5]

Bias
2

(kca
l/da
y)

Perc
ent
devi
atio
n3

166
0.1

15.5

0.2

498.
9

(-10
5.3;
136.
3)

0.79
9

204
5.1

229.
4

2.2

438.
2

(22.
1;
436.
6)

0.03
1

127
5.0

-198
.4

-5.1

88.1 (-27
7.5;-
119.
3)

< 
0.00
1

REE, resting energy expenditure; IC, indirect calorimetry; SD, standard deviation.

* Paired Student’s t-test to compare estimated and measured REE

1 (mean difference ± 1.96 SD of the difference)

2 (estimated − measured) (kcal in 24 h).

3 (difference/measured) × 100 (%).
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  All

(n = 62)

Men

(n = 31)

Women

(n = 31)

Sch
o�el
d [6]

Bias
2

(kca
l/da
y)

Perc
ent
devi
atio
n3

147
8.5

-166
.1

-5.7

296.
7

(-22
3.6;-
108.
5)

< 
0.00
1

170
0.1

-115
.6

-2.6

225.
9

(-20
3.2;
-27.
9)

0.01
1

125
6.8

-216
.6

-5.8

162.
6

(-29
1.7;
141.
5)

< 
0.00
1

FAO
/WH
O/U
NO
[7]

Bias
2

(kca
l/da
y)

Perc
ent
devi
atio
n3

160
3.2

-41.
4

-2.4

257.
3

(-12
2.6;
-13.
0)

0.01
6

174
5.6

-70.
1

-1.6

227.
7

(-15
6.6;
16.3
)

0.10
8

140
7.8

-65.
6

-1.8

119.
3

(-13
7.9;
6.7)

0.07
4

REE, resting energy expenditure; IC, indirect calorimetry; SD, standard deviation.

* Paired Student’s t-test to compare estimated and measured REE

1 (mean difference ± 1.96 SD of the difference)

2 (estimated − measured) (kcal in 24 h).

3 (difference/measured) × 100 (%).
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  All

(n = 62)

Men

(n = 31)

Women

(n = 31)

Mi�
in–
St.J
eor
[8]

Bias
2

(kca
l/da
y)

Perc
ent
devi
atio
n3

145
4.9

-189
.7

-7.0

264.
4

(-24
3.7;-
135.
6)

< 
0.00
1

166
3.5

-152
.2

-3.7

181.
7

(-23
5.3;
-69.
0)

0.00
1

124
6.3

-227
.1

-6.4

138.
7

(-29
8.5;
155.
7)

< 
0.00
1

Gou
geo
n et
al.
[9]

Bias
2

(kca
l/da
y)

Perc
ent
devi
atio
n3

154
7.1

-97.
5

-3.2

248.
0

(-15
6.5;
-38.
3)

0.00
2

171
5.4

-100
.3

-2.3

196.
5

(-18
8.8;
-11.
7)

0.02
8

137
8.8

-94.
6

-2.3

167.
2

(-17
8.1;
-11.
1)

0.02
8

REE, resting energy expenditure; IC, indirect calorimetry; SD, standard deviation.

* Paired Student’s t-test to compare estimated and measured REE

1 (mean difference ± 1.96 SD of the difference)

2 (estimated − measured) (kcal in 24 h).

3 (difference/measured) × 100 (%).
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  All

(n = 62)

Men

(n = 31)

Women

(n = 31)

Hua
ng
et
al.
[10]

Bias
2

(kca
l/da
y)

Perc
ent
devi
atio
n3

205
2.6

408

11.5

369.
8

(337
.6;
478.
4)

< 
0.00
1

224
8.5

432.
8

8.1

345.
0

(324
.6;
541.
0)

< 
0.00
1

185
6.7

383.
3

8.1

282.
4

(287
.5;
478.
9)

< 
0.00
1

Mar
tin
et
al.
[11]

Bias
2

(kca
l/da
y)

Perc
ent
devi
atio
n3

133
0.6

-314

-9.1

236.
7

(-38
2.6;
-245
.2)

< 
0.00
1

142
8.2

-387
.5

-7.5

228.
0

(-49
1.9;
-283
.0)

< 
0.00
1

123
3

-240
.4

-5.6

205.
6

(-32
7.4;-
153.
3)

< 
0.00
1

REE, resting energy expenditure; IC, indirect calorimetry; SD, standard deviation.

* Paired Student’s t-test to compare estimated and measured REE

1 (mean difference ± 1.96 SD of the difference)

2 (estimated − measured) (kcal in 24 h).

3 (difference/measured) × 100 (%).
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  All

(n = 62)

Men

(n = 31)

Women

(n = 31)

Diet
ary
Refe
renc
e
Inta
kes
[12]

Bias
2

(kca
l/da
y)

Perc
ent
devi
atio
n3

208
6.8

442.
2

13.3

372.
5

(375
.9;
508.
4)

< 
0.00
1

239
5.4

579.
7

14.0

228.
0

(495
.3;
664.
0)

< 
0.00
1

177
8.1

304.
7

7.8

186.
7

(-22
5.6;
383.
7)

< 
0.00
1

Oxf
ord
[13]

Bias
2

(kca
l/da
y)

Perc
ent
devi
atio
n3

155
6.1

-88.
5

-3.2

271.
6

(-14
3.3;
-33.
6)

0.00
2

176
1.7

-54

-1.3

218.
9

(-13
8.4;
30.3
)

0.20
1

135
0.4

-123

-3.4

121.
3

(-19
5.8;-
50.1
)

0.00
2

REE, resting energy expenditure; IC, indirect calorimetry; SD, standard deviation.

* Paired Student’s t-test to compare estimated and measured REE

1 (mean difference ± 1.96 SD of the difference)

2 (estimated − measured) (kcal in 24 h).

3 (difference/measured) × 100 (%).
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  All

(n = 62)

Men

(n = 31)

Women

(n = 31)

Iked
a et
al.
[14]

Bias
2

(kca
l/da
y)

Perc
ent
devi
atio
n3

138
1.7

-262
.9

-8.8

151.
8

(-32
1.9;
-203
.7)

< 
0.00
1

145
8.6

-357
.1

-9.2

147.
6

(-43
6.1;
-278
.0)

< 
0.00
1

130
4.8

-168
.6

-4.4

113.
4

(-24
6.7;-
90.5
)

< 
0.00
1

REE, resting energy expenditure; IC, indirect calorimetry; SD, standard deviation.

* Paired Student’s t-test to compare estimated and measured REE

1 (mean difference ± 1.96 SD of the difference)

2 (estimated − measured) (kcal in 24 h).

3 (difference/measured) × 100 (%).

According to percent variation, the predictive equations that most underestimated REE as compared to IC
was that of Ikeda in men (-9.2%) and Mi�in St-Jeor in women (-6.4%). The equation proposed by
Bernstein underestimated the measured REE in men (-5.1%) and overestimated it in women (2.2%). The
equations that presented the best accuracy were Oxford for men (-1.3%) and FAO/WHO/UNO for women
(-1.8%), with a precision of 54 kcal and 65.6 kcal/day, respectively.

Figure 2 shows the differences in mean REE measured by IC and that estimated by the predictive
equations. The Bland–Altman plots suggest poor correlation between measured and estimated REE, with
broad concordance limits. The lower and upper limits are always higher in men, indicating that REE
variation is greater in this group. Positive, signi�cant correlations were observed in both sexes between IC-
measured REE and with most of the predictive equations. In men, only Bernstein’s proposed equation
showed no correlation with IC-measured REE measured by IC. Correlation analysis also showed a
signi�cant association (p < 0.001) between dependent and independent variables in both sexes. In
women, REE correlated positively with weight (r = 0.538), height (r = 0.516), and FFM (r = 0.492). In men,
REE correlated with weight (r = 0.557), BMI (r = 0.545), and FM (r = 0.482). We did not observe signi�cant
correlations between REE and glycemic control in this group of patients.
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Discussion
Few studies have compared REE values measured by IC versus those estimated by predictive equations
in Brazilian patients with type 2 diabetes [34, 35]. The REE values predicted by the Oxford and
FAO/WHO/UNO et al equations, in men and women respectively, were those closest to IC-measured REE
in our sample. Our results are consistent with those of a previous study conducted in Brazilians with type
2 diabetes, in which the FAO/WHO/UNO equation had the best performance for REE prediction,
underestimating it by -5.6% as compared to IC [35]. In healthy Chilean individuals of both sexes, the
Oxford equation also seems to be the best alternative for calculation of REE [39].

In our study, most predictive equations underestimated REE when compared to the reference criteria (-9.1
to -2.4% difference). In addition, we found a wide difference between measured and estimated REE, since
the equations cannot estimate values with the same consistency and magnitude as IC. Similar
discrepancies were also observed in other studies of patients with type 2 diabetes [34, 35].

Sex is a factor that has been associated with REE [27–29]. When comparing the FAO/WHO/UNO equation
in men and women, we found that it underestimated REE in both (-1.6% vs. -1.8%, respectively).
Conversely, in a study of French patients with type 2 diabetes, this equation overestimated REE in both
sexes [30]. In another study of Brazilian women with type 2 diabetes, the equation also overestimated
REE when compared to IC [34].

The Harris-Benedict equation is that most used in clinical practice to determine energy requirements [4].
However, studies have shown that it may not be appropriate to estimate REE in both sexes [40, 41]. In
men and women without diabetes, the equation overestimated REE by 9% [40] and 14% [41], respectively.
In our sample of individuals with diabetes, however, this equation underestimated REE in both men and
women (-1.9% vs. -3.1%, respectively). These �ndings are consistent with those of other studies which
evaluated the accuracy of this equation in patients with type 2 diabetes [10, 31, 35].

The American Dietetic Association (now the American Academy of Nutrition and Dietetics) previously
recommended use of the Mi�in-St. Jeor equation to estimate REE in overweight and obese individuals
[42]. However, in our study, this equation was the one that most underestimated REE in men and women,
with a difference of 152 kcal and 227 kcal/day, respectively. Similarly, the Scho�eld equation
underestimated REE in both sexes (-2.6% vs. -5.8%), while the Bernstein equation underestimated REE
only in females (-5.1%). These �ndings suggest that energy restriction calculations based on these
equations may be insu�cient to facilitate glycemic control and weight loss or maintenance in this
population.

Most of the equations evaluated in this study were originally developed in healthy, eutrophic populations
[4, 6–8, 10]. Thus, the differences we observed may have been due to the presence of obese patients
(BMI > 30 kg/m²) in our sample, as well as to the fact that, in individuals with diabetes, insulin resistance
is associated with abnormal metabolic reactions [43]. In fact, the presence of diabetes per se in�uences
REE [9, 10, 14, 26, 33]. Studies conducted in Japan have shown that obese individuals with type 2
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diabetes have a higher REE than their obese counterparts without type 2 diabetes, and that fasting blood
glucose levels can be one of the main determinants of this increase [14, 26]. More recently, a study also
performed in Japanese patients with type 2 diabetes showed that REE correlated signi�cantly with
plasma glucose and HbA1c [33]. The reasons for this phenomenon are not yet well established, but
factors such as increased gluconeogenesis [9], increased protein turnover [44], increased glycosuria [9],
and elevated levels of glucagon [45] may all in�uence REE in patients with diabetes.

In 2002, Gougeon et al evaluated the REE of women with type 2 diabetes and proposed an equation for
predicting REE that included plasma glucose, HbA1c, and FM as independent variables [9]. As already
noted, studies have shown that the presence of diabetes is an important variable that must be considered
when evaluating REE [9, 25, 26]. In our study, however, these variables did not correlate signi�cantly with
REE in patients of either sex. Moreover, the equation proposed by Gougeon et al underestimated REE by
2.3% in both sexes. Other equations developed in patients with diabetes were also evaluated in our study.
The equation by Huang et al. [10] overestimated REE with an 8.1% bias in both sexes. Martins et al.
underestimated by -7.5% in men and − 5.6% in women [11]. Different results were found in a study with
Brazilian women with type 2 diabetes, in which the Gougeon equation overestimated REE by 2.8% and
Hugan et al. equation underestimated by 11.2% [34].

The results of our study indicate that the DRIs equations to predict REE do not have an acceptable level
of precision when applied to Brazilian patients with type 2 diabetes. In our study, these equations
estimated higher REE values   when compared to the values   measured by IC, overestimating in men and
women by 14.0% and 7.8% respectively. In a recent study carried out with the elderly, this equation had a
bias of -7.2% in men and − 6.6% in women [46]. Other study she was reported as accurate to estimate REE
in men and women [47, 48].

The mean REE in the sample as a whole, measured objectively by IC, was 1644.6 ± 310 kcal/day. We
found that men with type 2 diabetes had a higher REE (≅ 324 kcal/day) when compared to women. This
corroborates previous studies conducted in obese individuals, which also demonstrated a higher REE in
men [27–29]. It is well established that body composition differs signi�cantly between men and women
[49], and the variability in REE found between the sexes is probably because men have greater overall
body mass and FFM than women. In our sample, we found signi�cant correlations (p < 0.001) of REE with
FM and FFM. REE correlated, albeit weakly, with FM in men (0.482) and with FFM in women (0.492).
Studies have shown that including body composition (FM and/or FFM) in REE predictive equations does
not improve their accuracy [32]. This is a relevant �nding, because equations based on anthropometric
parameters (weight and height) are more viable in clinical practice than equations based on body
composition.

Our study had some limitations. Seasonality may in�uence REE, and our protocol was carried out over a
1-year period, thus including all seasons. However, we standardized the temperature and humidity of the
environment where IC was performed so as to mitigate any seasonal in�uence on REE. Patients’ use of
antidiabetic agents may have been a limitation, as these medications are known to induce metabolic
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alterations in individuals with type 2 diabetes. This effect was minimized by instructing the patients to
take their �rst dose of the day only after REE measurement had been performed. On the other hand, this is
the �rst study performed in Brazilian patients with type 2 diabetes to include sex strati�cation. According
this, in the absence of IC, we suggest for clinical practice the use of the Oxford equations (≅ 54 kcal/day)
and FAO/WHO/UNO (≅ 65.6 kcal/day), for men and women, respectively.

Conclusions
Our �ndings suggest there is wide variability in the accuracy of predictive equations for REE. We
recommend that, in Brazilian patients with type 2 diabetes, the Oxford equation (for men) and the
FAO/WHO/UNO equation (for women) are the best options to estimate REE in clinical practice when IC is
unavailable or otherwise infeasible.
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Figure 1

Flowchart of patient selection.

Figure 2

Bland–Altman plots comparing indirect calorimetry (IC) and the following predictive equations for resting
energy expenditure (REE) in patients with type 2 diabetes: A) Harris-Benedict [4]; B) Bernstein [5]; C)
FAO/WHO/UNO [6]; D) Scho�eld [7]; E) Mi�in–St.Jeor [8]; F) Gougeon et al [9]; G) Huang et al [10]; H)
Martin et al [11]; I) Dietary Reference Intakes [12]; J) Oxford [13]; and K) Ikeda et al [14].
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