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Abstract 

In this article, the density functional theory is applied to investigate the mechanical properties 

of single-walled nanotubes of group IV of periodic table including carbon nanotube, silicon 

nanotube, germanium nanotube and stanene nanotube. (10,10) armchair nanotube is selected 

for the investigation. By establishing a link between potential energy expressions in the 

molecular and structural mechanics, a finite element approach is proposed for modeling the 

nanotubes. In the proposed model, the nanotubes are considered as an assemblage of beam 

elements. Young’s modulus of the nanotubes is computed by the proposed finite element 

model. Young's modulus of carbon, silicon, germanium, and tin nanotubes are obtained as 

1029, 159.82, 83.23 and 83.15 𝐺𝑃𝑎 respectively, using the density functional theory. Also, 

the finite element approach gives the values as 1090, 154.67, 85.2 and 82.6 𝐺𝑃𝑎 

respectively. It is shown that the finite element model can predict the results of the density 

functional theory with a good accuracy. 

Keywords: Density functional theory; Finite element method; Mechanical properties; Single-

walled nanotube; Group IV elements 

 

1. Introduction 

The discovery of carbon nanotubes led to a breakthrough in science and technology [1]. 

Single-walled carbon nanotubes (SWCNT) were synthesized by Bethune et al. [2] and Iijima 

and Ichihashi [3] using the arc-discharge methods. Ever since then, the nanotubes structures 

have been attracting researchers' attention in nanoscience communities.  
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Great properties, including high strength and stiffness, in the range of TPa, ability to 

withstand large elastic strain, and low density are reported for CNTs [4]. Obtaining 

mechanical properties, including elastic modulus of CNT, has been one of the most 

challenging topics in these researches. The structural parameters of CNTs influence their 

elastic parameters. After a comprehensive review on Young’s modulus of CNTs reported in 

the literature, different values were observed. However, all of them report the same 

magnitude order for Young’s modulus. Treacy et al. [5] reported Young’s modulus of CNTs 

as the average amount of 1.8 TPa using the relation between the Young's modulus and the 

vibrational energy. The mean value of the Young’s modulus was reported as 1.25 TPa by 

Krishnan et al. [6]. They estimated the stiffness of SWCNTs by observing freestanding 

vibration modes which are driven stochastically in a transmission electron microscope. 

Besides, Salvetat et al. [7] calculated an average of 0.81 TPa for CNT Young’s modulus.  

On the other hand, the theoretical approaches have been employed to calculate Young’s 

modulus of CNTs. Hernandez [8] and Van lier [9] reported the Young’s modulus of 

SWCNTs in range of 1.06 TPA to 1.14 TPa by using ab initio method. Using tight-binding 

methods, Young’s modulus of CNTs was reported in range of 0.676 TPa to 1.27 TPa [10,11]. 

Tserpes et al. [12] used finite element (FE) method to obtain the Young’s modulus between 

0.95 TPa and 1.05 TPa for armchair, zigzag, and chiral SWCNTs. Kalamkarov et al. [13] 

calculated Young’s modulus of CNTs with the diameters of 4Å to 35Å as 0.96 TPa to 1.04 

TPa.  

Ebrahimi et al. [14] employed density functional theory (DFT) to calculate the response of 

armchair SWCNT to axial tension. Zang et al. [15] used three different method including 

DFT, molecular dynamics (MD), and Car–Parrinello molecular dynamics (CPMD) to obtain 

Young’s modulus of SWCNT with the chirality of (3,3). Rafiee et al. [16] considered the 

influences of diameter and chirality on Young’s modulus of CNTs. It was found that Young’s 

modulus of CNT is not dependent on chirality and approximately independent from the CNT 

diameter. M. Zaeri [17] used MD methodology to obtain the value of 0.943 TPa for Young’s 

modulus of CNTs. Tuan Hung et al. [18] used DFT method to obtain mechanical strength of 

SWNTs with the diameters in the range of 0.3–0.8 nm. Their calculations showed that for the 

large SWNTs, Young’s modulus does not depend on the CNT diameter and chirality. 

After discovery and synthesis of graphene [19], other elements of group-IV in periodic table 

(including Silicon, Germanium and Stanene) with a graphene-like hexagonal structure were 

investigated looking for exceptional properties.  
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In this regard, silicene, germanene, and stanine, which are tow-dimensional layers made by 

Si, Ge, and Sn atoms, have been predicted [20–26]. Unlike graphene, 2D structure made by 

silicon, germanium and stanene have a buckled structure [20,22–24,27]. Mortazavi et al. [28] 

employed first-principle calculations to investigate the mechanical properties of silicene, 

germanene and stanene nanosheets. The predicted Young’s modulus for armchair 

configuration of silicene, germanene and stanene nanosheets were 61.7, 44 and 25.2 𝐺𝑃𝑎 

respectively. Besides, Young’s modulus of zigzag silicene, germanene and stanene 

nanosheets are 59, 43.4 and 25.2 𝐺𝑃𝑎, respectively. 

Silicon, Germanium and Tin nanotubes are tube-like nanostructures which are made from Si, 

Ge and Sn atoms. Byun et al. [29] investigated the responses of hypothetical silicon 

nanotubes (SiNT) under axial tensile force using an atomistic simulation. They compared the 

physical values related to the stiffness of SiNTs with those of CNTs and indicated that SiNTs 

are very brittle. Verma et al. [30] calculated cohesive energy, Young’s and shear moduli and 

Poisson’s ratio for SiNT with various diameters and chiralities. They obtained Young’s 

modulus of SiNT is in range of 100-200Gpa. Setoodeh et al. [31] investigated the mechanical 

properties of Silicon-Germanium nanotubes by MD method. Young’s modulus of Silicon-

Germanium nanotubes with different diameter with constant length of 15nm was obtained in 

the range of 48 to 52 GPa.nm. Abbasi et al. [32] investigated the adsorption of SO2 molecules 

on the armchair tin nanotube by using DFT calculations.  

In this paper, DFT method is utilized to calculate the elastic properties of group IV pristine 

nanotubes. The results are employed to develop a space frame finite element (FE) model. 

This mode can be used to evaluate the mechanical properties of the considered. Young’s 

moduli of the nanotubes computed by the proposed model are compared with the results of 

DFT approach. 

 

2. Modeling and Computational details 

2.1 DFT modeling 

DFT calculations are used as implemented in the SIESTA code. Structures are optimized 

with generalized GGA [33,34]. Besides, PBE exchange correlation is selected [32,33]. 

Integration of Brillouin zone is carried out with 1x1x40 for the Brillouin zone. Cut-off energy 

of plane-wave expansion is equal to 450 Ry. To optimize the geometry, numerical atomic 

orbitals are used under DZP (double zeta polarization) basis sets. While, the confinement 

energy is equal to 50 meV. Standard CG (conjugate-gradients) technique is used to perform 
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energy minimization.  The relaxation is continued until the applied force on all of the atoms 

be less than 0.04d0 eV/Å. 

Simulated unit cells are represented in Fig. 1. Here, a (10,10) armchair nanotube with 40 

atoms is considered for the simulations. Using the explained procedure, the geometrical bond 

length (𝑎) and buckling height (δ), see Fig. 2, of the group IV nanotubes are given in Table 1. 

 

2. FE Modeling 

Odegard et al. [36] developed a FE model for investigation the mechanical characteristics 

of the CNTs which is composed of beam elements. The elastic modulus of beam elements are 

obtained by linking the potential energies in the molecular mechanics and structural 

mechanics. This model was more developed by Li and Chou [37]. 

The total potential energy of a system in molecular mechanics is determined as the 

summation of bond stretching energy, 𝑈𝑟, bond angle bending, 𝑈𝜃, dihedral angle torsion, 

𝑈∅, out-of plane torsion, 𝑈𝜔, and nonbonding van der Waals energies, 𝑈𝑣𝑑𝑤 [38-39]: 

𝑈𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑈𝑟 + ∑ 𝑈𝜃 + ∑ 𝑈∅ + ∑ 𝑈𝜔 + ∑ 𝑈𝑣𝑑𝑤             
(1) 

Here, the 3rd and 4th terms are combined into a single equivalent term. Furthermore, 

harmonic forms are considered to state remaining terms [40,41]: 

𝑈𝑟 =
1

2
𝑘𝑟(𝑟 − 𝑟0)2 =

1

2
𝑘𝑟(∆𝑟)2  ,                              𝑘𝑟 =

𝑑2𝑈𝑟

𝑑∆𝑟2
 (2) 

𝑈𝜃 =
1

2
𝑘𝜃(𝜃 − 𝜃0)2 =

1

2
𝑘𝜃(∆𝜃)2  ,                            𝑘𝜃 =

𝑑2𝑈𝜃

𝑑𝜃2
     (3) 

𝑈𝜏 = 𝑈∅ + 𝑈𝜔 =
1

2
𝑘𝜏(𝜏 − 𝜏0)2 =

1

2
𝑘𝜏(∆𝜏)2  ,        𝑘𝜏 =

𝑑2𝑈𝜏

𝑑𝜏2
 (4) 

where 𝑘𝑟, 𝑘𝜃 and 𝑘𝜏 are the force constants. They are respectively associated with the 

bond stretching, bond bending angle, and bond torsion angle. The corresponding changes in 

the bond length, bond bending angle and bond dihedral angle are represented by ∆𝑟, ∆𝜃 and 

∆𝜏, respectively. If the bonds are considered as beams, their strain energies under tension 

force 𝑈𝐴, bending moment 𝑈𝑀 and torsional loading 𝑈𝜏 are expressed as [42,43]: 

𝑈𝐴 =
1

2
∫

𝐹2

𝐸𝐴

𝐿

0

𝑑𝐿 =
1

2

𝐹2𝐿

𝐸𝐴
=

1

2

𝐸𝐴

𝐿
(∆𝐿)2 (5) 
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𝐿
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𝑈𝜏 =
1

2
∫

𝑇2

𝐺𝐽

𝐿

0

𝑑𝐿 =
1

2

𝑇2𝐿

𝐺𝐽
=

1

2

𝐺𝐽

𝐿
(∆𝛽)2     (7) 

Here, E, G, A, L, I, and J are respectively Young's modulus, shear modulus, cross-

sectional area, length, moment of inertia, and polar moment of inertia of the beam. On the 

other hand, ∆L, α and ∆β are respectively the length change, bending angle and torsional 

angle. If the energies are compared from Eqs. (2) – (4) in the molecular mechanics to Eqs. (5) 

– (7) in the structural mechanics, the following relations would be obtained: 

𝐸𝐴

𝐿
= 𝐾𝑟 ,

𝐸𝐼

𝐿
= 𝐾𝜃,

𝐺𝐽

𝐿
= 𝐾𝜏 (8) 

A, I and J are equal to = 𝜋𝑑2/4 , 𝐼 = 𝜋𝑑2/64, and 𝐽 = 𝜋𝑑2/32. Hence, the beam 

properties are obtained as follows [42,43]: 

𝑑 = 4√
𝐾𝜃

𝐾𝑟
, 𝐸 =

𝐾𝑟
2𝐿

4𝜋𝐾𝜃
, 𝐺 =

𝐾𝑟
2𝐾𝜏𝐿

8𝜋𝐾𝜃
2     (9) 

The following relations are employed to evaluate the stiffnesses [44– 46]: 

𝑌𝑠 =
8√3 𝐾𝑟

𝐾𝑟𝑟1
2

𝐾𝜃
+ 18

 
(10) 

ϑ =

𝐾𝑟𝑟1
2

𝐾𝜃
− 6

𝐾𝑟𝑟1
2

𝐾𝜃
+ 18

 

(11) 

𝐾𝜏 = 24𝐷 (12) 

where 𝑌𝑠, ϑ and 𝐷 are surface (in-plane) Young's modulus, Poisson's ratio (the ratio of 

strain perpendicular to the loading direction to the strain along the loading direction) and 

flexural rigidity of the nanostructures. Moreover, 𝑟1 is the length of bonds in the equilibrated 

structure. To obtain, 𝑌𝑠, ϑ and 𝐷, DFT method is used.  
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3. Results and discussions  

3.1 DFT Results 

For the range of -0.05< ε < 0.05, variation of strain with respect to the strain energy for 

all nanotubes structures are shown Fig.3. Young’s modulus  is expressed by the following 

equation [47]:  

𝐸 =
1

𝑉0
(
𝜕2𝐸𝑠

𝜕휀2
)𝜀=0

       

(13) 

 

where 𝑽𝟎 is the equilibrium volume of the unit-cell, Es is the strain energy and ε is the 

uniaxial strain. Therefore, computing the 
𝜕2𝐸𝑠

𝜕𝜀2
 from Fig. 3, Young's modulus are obtained for 

different structures as the values given in Table 2. 

Poisson's ratio can also be obtained by dividing the transverse strain to axial strain as 

presented below:  

𝜗 = −
휀𝑡𝑟𝑎𝑛𝑠.

휀𝑎𝑥𝑖𝑎𝑙
 (14) 

Computed values for Poisson's ratio of the considered nanotubes are also given in Table 2. 

Fig. 4 depicts the stress-strain curves of the different considered nanotubes. As can be seen, at 

an equal tensile strain, CNT can tolerate significantly larger stress compared to other 

nanotubes. The same behavior is observed under compression. The smallest stress is 

associated with the SNNT. Furthermore, no important difference is observed in the tolerated 

stress by two other nanotubes. 

 

3.2 Flexural Rigidity  

If 𝐸𝐹 and 𝐾 are used to denote the strain energy per atom, 𝐸𝐹 and curvature of the 

structure, flexural rigidity is determined as [48]: 

𝐷 =
𝜕2𝐸𝐹

𝜕𝐾2
     (15) 

It should be noted that 𝐾 = 1/𝑅, and R is the radius of curvature.  Considering  𝐸𝑠ℎand 

𝐸𝑛 as the strain energy of unrolled (sheet) structure per atom and strain energy of rolled 

structure per atom,  𝐸𝐹 is obtained as [49]:  

𝐸𝐹 = 𝐸𝑛 − 𝐸𝑠ℎ     (16) 
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The strain energy per atom of CNT, SiNT, GeNT and SnNT are plotted in Fig.5 against 

K. Computing 
𝜕2𝐸𝐹

𝜕𝐾2  from this curves and substituting it into Eq. (15), flexural rigidity can be 

obtained. The resulted values are given in Table 2. 

Bond stiffnesses are computed for nanotubes by replacing the values of  𝑌𝑠, ϑ and 𝐷 from 

Table 2 into Eqs. (10)–(12). In this way, stiffnesses are obtained as the values given in Table 

3. 

Now beam properties are computed for nanotubes by substituting the bond stiffness 

which are given in Table 3 into Eq. (9). Hence, the beam properties for FE model are 

obtained as the values given in Table 4. 

 

3.2 FE results 

As same as DFT modeling, the (10,10) armchair nanotubes of CNT, SiNT, GeNT and 

SnNT are selected to model in ABAQUS 6.14 software. The length and diameter for each of 

them are shown in Table 5. In this approach, to obtain Young’s modulus of pristine NTs of 

group IV, all of degrees of freedom are restrained at one side and the strain is applied to the 

opposite side. Boundary condition and applied strain on the nanotubes are shown in Fig.5. To 

compute the elastic modulus, following equation is used: 

𝐸𝑁𝑇 =
𝜎

휀
=

𝐹
𝐴0

∆𝐿
𝐿0

 
 (17) 

where F is the force applied over the cross-sectional area ε is applied strain , ∆𝐿 length 

change, 𝐿0  initial length and 𝐴0 is the area of the nanotube cross section before the loading 

and is stated as: 

𝐴0 = 𝜋𝐷𝑡 (18) 

where D and t are mean diameter and thickness of the NT, respectively. The values of 

Young's modulus of nanotubes that obtaining by FE method are given in Table 5. 

As it can be seen, its accuracy is acceptable compared with DFT method. Therefore FE 

method can be a reliable and accurate substitute for the density functional method. Due to the 

good accuracy of the Young's modulus calculated by the FE method. It can be concluded that 

the FE method can be used to obtain the mechanical properties of the simulated nanotubes. 

The Young’s modulus of group-IV armchair nanotubes in range of (3,3) up to (15,15) are 
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depicted in Fig. 7 to compare. It can be concluded that the FE method can be used to obtain 

the mechanical characteristics of the simulated nanotubes. 

The results show that by increasing the radius of nanotubes at the same length leads to 

increasing Young’s modulus of the nanotube. Besides, Young’s modulus decreases by 

increasing the bond length. There is a great difference between the Young's modulus of CNT 

and the other nanotube including SiNT, GeNT and SnNT. As can be seen in Fig. 7, the 

Young’s modulus of CNTs at least 10 times larger than other nanotubes at the same chirality. 

For example the Young’s modulus of (5,5) armchair CNT, SiNT, GeNT and SnNT are 1021, 

106.4, 76.16 and 70.87𝐺𝑃𝑎 respectively.  

 

5. Conclusion 

In this study, the mechanical properties of (10,10) armchair CNT, SiNT, GeNT and SnNT 

were calculated by DFT method. Young's modulus, Poisson's ratio, and flexural rigidity of 

the pristine nanotube of group IV of periodic table were calculated from the DFT 

calculations. Then, they were employed to compute the properties of beam elements for FE 

simulation models. In the next step, a FE model was proposed base on DFT model.  Results 

of FE and DFT methods were compared and it is found that the developed FE model is able 

to predict the elastic characteristics of the nanotubes accurately. 
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Table Captions 

Table 1. Structural and electronic parameters for group IV elements [35] 

Table 2.  Young’s Modulus, Poisson’s Ratio and flexural rigidity of group IV nanotube 

Table 3.  Bond stiffnesses for group IV nanotubes 

Table 4.  Properties of beam elements for group IV nanotubes 

Table 5.  Young's modulus of group IV (10,10) armchair nanotubes obtained by FE method 

and comparing with DFT 

 

Figure Captions 

Fig. 1. Schematics of the simulated unit cells for different group IV nanotubes. (10,10) 

armchair nanotubes with 40 atoms are considered. 

Fig. 2. Representation of the bond length (d) and buckling height (𝛿) 

Fig. 3. Strain energy versus strain for (10,10) armchair nanotubes 

Fig. 4. Stress-strain curves of the considered nanotubes 

Fig. 5. Flexural rigidity CNT, SiNT, GeNT and SnNT 

Fig. 6. Loading conditions to obtain Young's modulus of nanotubes using the proposed FE model. 

Fig. 7. Young’s modulus of CNT, SiNT, GeNT and SnNT against diameter  
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Tables 

Table 1. Structural and electronic parameters for group IV elements [35] 

Sn Ge Si C  

4.673 4.060 3.868 2.468 a (A° )  

2.698 2.344 2.233 1.425 d (A° )  

0.85 0.69 0.45 0.00 δ    

a: Lattice constant 

d: In-plane nearest-neighbor distance 

 𝛿: Buckling height 

 

Table 2.  Young’s Modulus, Poisson’s Ratio and flexural rigidity of group IV nanotube 

SnNT GeNT SiNT CNT  

83.15 83.23 159.82 1029 Young’s Modulus(GPa) 

0.44 0.35 0.34 0.27 Poisson’s Ratio 

2.28517 1.50843 3.62909 1.97265 Flexural Rigidity (D) 

 

Table 3.  Bond stiffnesses for group IV nanotubes 

𝑁𝑎𝑛𝑜𝑡𝑢𝑏𝑒 𝑘𝑟(
𝑛𝑁

𝑛𝑚
) 𝑘𝜃(𝑛𝑁. 𝑛𝑚) 𝑘𝜏(𝑛𝑁. 𝑛𝑚) 

𝐶𝑁𝑇 8.335E-7 1.121E-9 2.787E-10 

𝑆𝑖𝑁𝑇 1.627E-7 4.419E-9 5.128E-10 

𝐺𝑒𝑁𝑇 1.220E-7 3.542E-9 2.132E-10 

𝑆𝑛𝑁𝑇 8.487E-7 2.485E-9 3.229E-10 
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Table 4.  Properties of beam elements for group IV nanotubes 

𝑁𝑎𝑛𝑜𝑡𝑢𝑏𝑒 𝑑(𝑛𝑚) 𝐸(𝑇𝑃𝑎) 𝐺(𝑇𝑃𝑎) 

𝐶𝑁𝑇 0.146 7.008 0.871 

𝑆𝑖𝑁𝑇 0.208 10.650 0.618 

𝐺𝑒𝑁𝑇 0.215 7.836 0.236 

𝑆𝑛𝑁𝑇 0.216 6.222 0.404 

 

Table 5.  Young's modulus of group IV (10,10) armchair nanotubes obtained by FE method 

and comparing with DFT 

Error(%) 

ENT (GPa)  

Length(A0) 
Average 

Diameter(A0) 
Nanotube Type DFT 

Method 

FE 

Method 

5.5 1029 1090 23.39 6.78 CNT 

0.6 159.82 154.67 36.74 10.66 SiNT 

2.3 83.23 85.2 38.57 11.19 GeNT 

0.6 83.15 82.6 44.39 12.88 SnNT 
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Figures 

 

 
 

 

(a) CNT (b) SiNT 

 

 
 

 

(c) GeNT (d) SnNT 

Fig. 1. Schematics of the simulated unit cells for different group IV nanotubes. (10,10) 

armchair nanotubes with 40 atoms are considered. 

 

Fig. 2. Representation of the bond length (d) and buckling height (𝛿) 
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(b) SiNT 

 

(a) CNT 

 

(d) SnNT 

 

(c) GeNT 

Fig. 3. Strain energy versus strain for (10,10) armchair nanotubes 
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Fig. 4. Stress-strain curves of the considered nanotubes 
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(a) CNT 

 

(b) SiNT 

 

 (c) GeNT 

 

(d) SnNT 

Fig. 5. Flexural rigidity CNT, SiNT, GeNT and SnNT 
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Fig. 6. Loading conditions to obtain Young's modulus of nanotubes using the proposed FE model. 
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Fig. 7. Young’s modulus of CNT, SiNT, GeNT and SnNT against diameter  

 

 

 

 

 

 

 

 


