Effects of exposure to incense smoke associated with impaired lung function and respiratory disease: A Systematic Review

I Made Dwi Mertha Adnyana (i.made.dwi.mertha-2021@fk.unair.ac.id)
Tropical Medicine, Faculty of Medicine, Universitas Airlangga
https://orcid.org/0000-0002-7167-7612

Budi Utomo (budiutomo@fk.unair.ac.id)
Department of Public Health and Preventive Medicine, Faculty of Medicine, Universitas Airlangga
https://orcid.org/0000-0001-6060-9190

Linda Dewanti
Department of Public Health and Preventive Medicine, Faculty of Medicine, Universitas Airlangga
https://orcid.org/0000-0001-7300-0309

Shifa Fauziyah
Delima Husada Gresik Health Analyst Academy
https://orcid.org/0000-0002-2928-2967

Dwinka Syafira Eljatin
Tropical Medicine, Faculty of Medicine, Universitas Airlangga
https://orcid.org/0000-0003-1883-2780

Muhamad Frendy Setyawan
Tropical Medicine, Faculty of Medicine, Universitas Airlangga
https://orcid.org/0000-0002-3159-9226

Lesty Helda Marsel Sumah
Tropical Medicine, Faculty of Medicine, Universitas Airlangga
https://orcid.org/0000-0002-9246-8369

Citra Al Karina
Tropical Medicine, Faculty of Medicine, Universitas Airlangga
https://orcid.org/0000-0002-8976-9873

Systematic Review

Keywords: Air quality, Environmental Health, Incense smoke, Inhalation exposure, respiratory disease

Posted Date: February 3rd, 2023

DOI: https://doi.org/10.21203/rs.3.rs-2492485/v2

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Version of Record: A version of this preprint was published at National Journal of Community Medicine on May 1st, 2023. See the published version at https://doi.org/10.55489/njcm.140520232875.
Abstract

Incense (bakhour) is used by the community through ceremonies, traditional health practices, and aromatherapy. Nevertheless, evidence from experiments and studies of populations suggests that a habit of burning incense makes the lungs work less well. The study investigated the relationship between exposure to incense smoke and impaired lung function and respiratory diseases. Data tracing was carried out systematically by following PRISMA guidelines and establishing inclusion and exclusion criteria for filtering, selecting, and including articles registered in the PROSPERO database. This study describes respiratory symptoms/diseases, home use of incense, and lung function measurement. Six articles were included; 6 articles (100%) reported using incense indoors, and five (83%) reported using incense outside the home. Respiratory symptoms and diseases caused by exposure to incense sticks are 5 (83%) shortness of breath, 6 (100%) wheezing, asthma, and inflammation of the lungs, 2 (33%) chronic obstructive pulmonary disease, and 4 (67%) allergic rhinitis. Incense smoke particles decrease lung function based on FVC, FEV, PEFR, and FEF values of 25-75%. The results indicate that smoking incense adversely affects lung function and leads to respiratory diseases. The community and related parties can minimize and conduct education and prevention related to simultaneous incense exposure in the community to reduce the burden of diseases and disorders due to respiratory incense smoke in areas that use it daily.

Introduction

Incense (bakhour) in the community is generally used for the ceremony. In addition, burning incense is used as a traditional health practice to utilize fragrant scents for medicinal purposes called Usada (Hindu-Balinese) and Ayurveda (Hindu-Indian) [1], [2]. Burning incense inside and outside homes, places of worship, and other public places has been used for generations, especially in the Asian region [3]. It is reported that the global consumption of incense exceeds 200 million tons per year. Therefore, it has considerable health and environmental implications [4]. Daily incense burning will continue to contribute to polluting particulates that can degrade the environment and lower the degree of health through decreased respiratory tract function [5], [6]. According to several studies, exposure to incense smoke can impair lung organ function and create harmful health effects, considerably raising the risk of respiratory diseases caused by pollution [7], [8].

It has been reported that incense smoke contains nitrogen dioxide (NO₂), carbon monoxide (CO), sulfur dioxide (SO₂), hydrogen sulfide (H₂S), particulate matter (PM₁, PM₂,5, PM₁₀), ozone (O₃), TSP (Total Suspended Particulate), volatile organic compounds (VOCs), and polycyclic aromatic hydrocarbons (PAHs) [9]–[13]. Incense smoke inhaled by humans is considered more dangerous than people who smoke passively [14], [15] and has produced various impacts, especially diseases of the upper and lower intestinal tracts. Previous research has revealed and proven that exposure to incense smoke causes breathing difficulties such as asthma, chronic obstructive pulmonary disease (COPD), wheezing or whistling, rhinitis, and pneumonia to mortality in the respiratory system [7], [16]–[18].
The constituents contained in incense smoke are considered detrimental to health and the environment [19]–[21]. This is caused by carcinogens capable of damaging the human respiratory organs for an extended period with the intensity of routine or frequent exposure [21]–[25]. Previous studies that have revealed the clinical effects of incense smoke exposure in experimental animals and humans have not been widely reported, especially those associated with changes in lung function and the mechanisms of the underlying changes. The study aimed to investigate the relationship between exposure to incense smoke and impaired lung function and respiratory diseases by focusing on respiratory disease symptoms, lung function examinations in incense users inside and outside the home, and testing the effects of incense smoke exposure on humans and experimental animals. This review hopes that long-term exposure to incense smoke on the environment and human and animal health and that the preventative actions that can be done to limit the hazards posed, especially for those who use it daily, will be revealed.

Method

Systematic review registration

This systematic review uses the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocol guidelines [26]. The study has been listed on the PROSPERO database with the registration number CRD420222988868.

Eligibility criteria

The articles selected in this review are cross-sectional, cohort, observational, and experimental studies. The feasibility of the article is determined by the researcher independently by reviewing eligible titles and abstracts based on the criteria: (1) animals or humans exposed to incense smoke or direct contact with exposure to incense smoke; (2) exposure to incense smoke is carried out indoors or outdoors; (3) the selected article is included in the original type of article; (4) the year published between 2016-2021 and entered into reputable journals (Scopus and Web of Science). The year range is selected depending on the novelty of the research, and the journal's reputation determines the article's credibility. In this review, the article should discuss exposure to incense smoke, impaired lung function due to incense smoke, damage mechanisms due to incense smoke, content in incense smoke, and other respiratory diseases affected by incense smoke and changes in lung tissue due to inhaling incense smoke. Articles that do not meet the criteria for eligibility, duplicates, discontinued, and irrelevant studies are excluded at this stage.

Sources of information, literature search strategies, and study selection

In this review, we use a trusted database and credible sources to find articles that fit the topic of discussion raised. PubMed (MeSH term) ("exposure incense" AND "Lungs"); ScienceDirect ("exposure
incense" AND "Lungs" AND "respiratory disease"); ProQuest ("exposure incense" AND "Lungs" AND "respiratory disease"); Cochrane Library ("exposure incense AND "respiratory disease"); Emerald and Nature ("exposure incense\ AND "lung disease OR "respiratory disease"). All articles could be included and filtered in two eligibility stages. The first screening stage is assessed by selecting titles and abstracts from articles relevant to a predetermined topic. Furthermore, abstracts that meet the inclusion criteria are included in this review, while those that do not will be excluded. The second stage will be filtered based on the results and discussions on the research topic and will be conducted as a comprehensive and independent analysis as review material. The study exceptions are described in the PRISMA diagram (Figure 1).

Data extraction

Data extraction was carried out independently using each selected article's standard structure and form. The information collected and summarized in each article includes the first author's name and year of publication, study period (month or years), gender, respiratory symptoms/diseases (Breathlessness, Wheezing, COPD, Asthma, Rhinitis, and Pneumonia), home use of incense (outside and inside), measurement of lung function (FEV1 (%), FVC (L/s), PEFR (L/s), FEF 25-75%), sample size, intervention, design study, and outcome. Three authors carried out the data extraction, and if there was disagreement in some interpretation, it was resolved by deliberation until consensus.

Quality assessment

The quality assessment of the articles in this study was conducted independently by three authors using the Joanna Briggs Institute (JBI) critical assessment checklist for cross-sectional, cohort, observational, and experimental studies (RCT) [26]. If disagreements between authors arose, they were resolved through deliberation to reach a consensus.

Data collection and analysis of data

The data collection protocol for this box was approved before starting the analysis and the work project. Bibliographic data results in features and follow-up results are extracted independently. The data was further reconciled to obtain data related to incense smoke exposure on impaired lung function and respiratory diseases in this review. In the selected article, we found a significant structural difference. The appeasement of comparisons of each article and the varying size of results resulted in a meta-analysis. However, we presented the results of evidence-based synthesis in a comprehensive and articulated manner in the narrative and summary of the table.
Results And Discussion

Search results

The literature search in this work returned six original articles that meet the inclusion and exclusion criteria (Table 1). The articles were published between 2016 and 2021. Five articles were on human subjects, whereas one used mice. The process of finding articles, filtering, eligibility, and inclusion following PRISMA diagrams and PICOS Framework can be observed in figure 1.

Study summary

This study included six reports of research findings on the association between exposure to incense smoke and impaired lung function and respiratory diseases. Incense smoke is known to have a terrible impact on human health, mainly resulting in chronic diseases whose symptoms have been known and felt for a long time. This review obtained studies that used human objects as much as 5 (83.33%) and only used the test animal model 1 (16.67%). The length of time of the study varied from 3, 4, 6, 12, and 24 months. Studies to determine the effects of exposure were dominated by cohort studies 3 (50%), cross-sectional studies 2 (33.33%), and experimental studies 1 (16.67%).

Furthermore, the use of incense in the community serves various needs such as a means of worship, a medium of meditation, and traditional medicine based on USADA and Ayurveda in the form of aromatherapy and room fragrance [2], [4], [27]. People who use incense in the house reach 100% (6), while the use of incense outside the house is only 5 (83.33%). The high use of incense in the house indicates the ease of polluting particulates carried by air and contained in incense smoke into the human body and causing damage to the respiratory tract, including the lungs. The accumulation of air in the house can reduce lung capacity resulting in respiratory disorders and diseases.

The danger caused by exposure to incense smoke in the room indicates pollutants trapped in the house and will stick to objects in the room [31], [32]. Furthermore, the person or individual in the room will inhale the existing constituents, resulting in respiratory disorders and diseases [17], [33]. Moreover, a puff of smoke in space can alter the temperature, relative humidity, and air exchange rate. It will accelerate the rate at which carcinogenic chemicals from incense smoke enter the human body [10], [34]. Quickly smoke from burning incense into the body through the respiratory tract will produce various symptoms and diseases in the respiratory system. In this study, it was reported that people experienced symptoms of respiratory disorders such as 5 (83%) reported shortness of breath, 6 (100%) experiencing wheezing, asthma, and inflammation of the lungs, 2 (33%) the presence of COPD and 4 (67%) had chronic rhinitis. These results show a risk of being affected by incense smoke to impaired lung function and respiratory diseases both indoors and outdoors [16], [35], [36]. This study reported that smoke from burning incense harms respiratory tract health, mainly resulting in impaired lung function [27], [29]. Table 2 displays a decline in lung function based on FVC, FEV, PEFR, and FEF 25-75%. In addition, incense smoke particles
with a tiny size of < 1 μm decrease the value of FEV1 and FVC in lung function. This can cause clogged airways and increase inflammation in the bronchi and alveoli due to the lung's capacity to receive oxygen, presented in Table 2.

Incense smoke pollutants in reducing lung capacity and inducing respiratory disease

The lungs become a very vital organ for human life. Exposure to pollutants with high intensity can cause disruption, damage, and failure of respiratory system function [17]. Incense smoke has small particles and ash that can harm human health and significantly change lung organs’ shape and function [27], [31]. Several studies indicate that incense smoke can irritate the airway, increase inflammation in the lung organs, decrease oxygen intake into the lungs as a result of alveolar thickening and necrosis in the bronchi, and trigger cytokine and chemokine expression in the epithelium of the airway, resulting in a decrease in lung function and respiratory diseases [18]. Research conducted by Zhang et al. [28] involving 4,041 children in 27 elementary schools exposed to incense smoke continuously showed that exposure to incense smoke adversely affected lung function by reducing work power and improving symptoms of respiratory diseases. Incense burning smoke is 1.39 times higher risk of causing bronchitis in boys (OR = 1.39). Exposure to smoke is the risk of causing bronchiolitis 1.72 higher in girls (OR = 1.72) and wheezing, and asthma is 1.49 higher in all treatment groups (OR = 1.49). This indicates that exposure to incense smoke is toxic to the lung organs, especially the bronchi and alveoli, and decreases pulmonary function, triggering the disease. Studies on the high risk of disease in one gender are not explained openly and explicitly. However, the odds ratio (OR) value indicates that exposure to incense smoke is associated with lower lung function.

The use of incense in the house is a greater risk of smoke being inhaled into the body through the respiratory tract. Tran et al. [34] revealed that exposure to incense smoke increases particulate matter concentrations 2.5 (PM$_{2.5}$) indoors by 120% more than those who do not use it. The frequency of using incense with high intensity (daily) is at risk of 61.6% higher than using incense sometimes. In addition, daily use of incense had an 18.5% higher risk of increased particulate matter concentrations. This happens because incense smoke particles are microscopic and easily in and out of the respiratory tract; houses that have poor ventilation can accelerate inflammatory processes in the lung organs and decrease pulmonary function and cause respiratory diseases [30], [35], [37]. Another study revealed that people who grow incensed 2-4 times daily indoors result in incense smoke containing carbon monoxide concentration in the lungs, subsequently interacting with inflammatory cells and exacerbating chronic respiratory conditions that cause asthma, COPD, rhinitis, and pneumonia [12].

Decreased lung function and increased respiratory diseases are closely related to the content of pollutants contained in incense smoke [9]. Burned incense releases toxic compounds that cannot directly degrade the environment [9], [11]. Burning incense for various purposes produces exhaust gases from imperfect combustion. Carbon monoxide content has been reported to cause poisoning from long-term
use of incense that can damage the alveoli organs and reduce lung function and capacity [12].
Symptoms of CO gas poisoning in incense smoke are shortness of breath, vomiting, and headaches [37].
Furthermore, particulate matter (PM$_{1,2.5,10}$) in incense smoke can worsen respiratory diseases, damage
tissues, and be concentrated in the lungs resulting in necrosis and impaired lung function [14]. The
condensed concentration of sulfur dioxide and nitrogen dioxide in the lungs induces inflammation, the
release of the bronchi, and modifications to the pulmonary system's defenses, resulting in a significant
risk of necrosis, hyperresponsiveness (AHR), and impaired bronchial epithelial barrier function. In
addition, VOCs and PAHs found in incense smoke have been associated with asthma exacerbations,
irritation of the barrier epithelium, rhinitis, decreased oxygen absorption capacity to the lungs, and
alveolar obstruction [13], [38]. Exposure to incense smoke induces respiratory diseases including
wheezing, asthma, COPD, shortness of breath, chest tightness, lung inflammation, and rhinitis [16], [18],
[30]. Figure 2 briefly explains incense smoke can hurt lung function and cause respiratory diseases.

Conclusion

Six articles published between 2016 and 2021 discuss the impact of incense smoke inhalation, which is
linked to impaired lung function and respiratory diseases. There is a high risk of respiratory disease and
capacity associated with the short- and long-term usage of incense at home and everywhere else. Incense
burning does not significantly affect lung function. Epidemiological studies reveal that Nitrogen dioxide,
Carbon monoxide, Sulfur dioxide, Hydrogen Sulfide, Particulate Matter, Ozone, Total Suspended
Particulate, VOCs, and PAHs are the main constituents responsible for the decreased function, capacity,
and structure of the lungs associated with a decrease of FVC, FEV, PEFR, and FEF values of 25-75%.
Exposure to incense smoke causes various respiratory diseases: wheezing, asthma, COPD, shortness of
breath, chest tightness, lung inflammation, and rhinitis. In the future, an in-depth study is needed
regarding exposure and the impact caused by the habit of burning incense on changes in the lungs'
capacity, function, and ability to minimize the occurrence of respiratory diseases.

Declarations

ACKNOWLEDGEMENTS

The author should thank Prodia Educational and Research Institute (PERI Scholarship) for funding his
master's degree at Universitas Airlangga.

References

Tables

Table 1. Summary of evidence and studies on the effects of exposure to incense smoke
<table>
<thead>
<tr>
<th>Ref.</th>
<th>n</th>
<th>Sample (n)</th>
<th>Intervention</th>
<th>Design study</th>
<th>Result</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>[27]</td>
<td>125</td>
<td>80 45</td>
<td>Comparing the lung function of people exposed to incense smoke regularly (> 2 times/week) or daily with people who are not exposed to regular incense smoke (< 2 times/week)</td>
<td>Cross-sectional</td>
<td>The prevalence of wheezing or whistling was 35.5% in the exposed group and 6.4% in the non-exposed group. Prolonged exposure to incense smoke (≥ 2 times/week) is positively associated with the occurrence of respiratory distress symptoms: wheezing or whistling (AOR: 1.96; 95% CI: 1.06–3.64); shortness of breath (AOR: 1.23; 95% CI: 0.82–3.09); chest tightness (AOR: 1.54; 95% CI: 1.07–3.61); shortness of breath (AOR: 1.68; 95% CI: 1.13–3.17); and being awakened by a cough attack (AOR: 2.19; 95% CI wheeze or whistling (AOR: 1.96; 95% CI: 1.06–3.64); shortness of breath (AOR: 1.23; 95% CI: 0.82–3.89); chest tightness (AOR: 1.54; 95% CI: 1.07–3.61); shortness of breath (AOR: 1.68; 95% CI: 1.13–3.17); and being awakened by a cough attack (AOR: 2.19; 95% CI: 1.06–3.64).</td>
<td>Exposure to incense smoke more than twice a week resulted in a high risk of impaired lung function. A more significant proportion of incense shop employees have decreased lung function, and burning incense inside the home results in a decreased lung function index. Regular exposure to incense smoke can result in lung damage greater than no exposure. Burning incense in the house is 2.05 times more at risk, resulting in decreased lung function and causing respiratory diseases.</td>
</tr>
<tr>
<td>[28]</td>
<td>4.041</td>
<td>N/A 3.811</td>
<td>Tested the link between burned incense and impaired lung function and respiratory disease in children in 27 primary schools from 2012 to 2014</td>
<td>Cohort</td>
<td>The average age of children used as a sample was 9.1 years. A total of 808 people reported the use of incense at home. The results of identification of respiratory diseases/symptoms obtained 147 (3.6%) asthma; 1656 (41.0%) allergic rhinitis; 115 (2.8%) Inflammation of the mucous membranes; 527 (13.0%) bronchitis; 123 (3.0%) bronchiolitis; 42 (1.0%) pneumonia; 399 (9.9%) wheezing; 1098 (27.2%) dry cough; and 501 (12.4%) cough phlegm. Males have higher FVC, FEV1, PEF, and MMEF scores than women, according to the findings of lung function tests. Blooming incense is related to a higher incidence of bronchitis (odds ratio (OR) = 1.39, 95 % confidence interval (CI): 1.11, 1.72) and bronchiolitis (OR = 1.72, 95% CI: 1.14, 2.56). A higher prevalence of pneumonia (OR = 2.79, 95% CI: 1.10, 6.87) and wheezing (OR = 1.49, 95% CI: 1.10, 2.05) is also associated with incense use in males, but not in females.</td>
<td>Exposure to incense smoke adversely affects lung function by reducing workability and increasing symptoms of respiratory diseases. Males are susceptible to developing bronchitis, bronchiolitis, pneumonia, and wheezing from incense smoke. Children who inhale incense smoke inside and outside the home have impaired lung function, lower lung function index, and an increased risk of developing respiratory diseases.</td>
</tr>
<tr>
<td>[29]</td>
<td>60</td>
<td>N/A N/A</td>
<td>The effects of exposure to incense smoke on impaired lung function in Pandits and Pujaris are examined using FVC, pulmonary function tests, and symptoms.</td>
<td>Observational</td>
<td>The results showed that of the 60 pandits and pujaris obtained, 15 people had a FeV1 value less than the normal range, 38 people had a FeV1 value in the normal range, and seven people had a FeV1 value more than the average distance. FVC examination, 51 people have FVC values below the normal range; 6 ordinary FVC people and 3 FVC people exceeded normal limits. Fifteen people below standard obtained FEV1/FVC ratio values of 25-75%.</td>
<td>There was a decrease in lung function in Pandits and Pujaris in the temple, with a decrease in FVC, FEV, PEF, and FEF values of 25-75%. Gas/incense smoke accumulation in the home.</td>
</tr>
</tbody>
</table>
FEV, PEFR, and FEF values of 25-75%.

To investigate the pulmonary function associated with burning incense, pundits and pujaris without a history of smoking, asthma, or allergic rhinitis participated in a mass screening study.

Check; 6 people were in the normal range, and 39 had FEV1/FVC ratios exceeding the standard limit. Meanwhile, 53 people were less than average; 5 ordinary people and two people exceeded the standard limit.

Continuous exposure to incense smoke increases the risk of discomfort in the throat and nose among temple employees. Daily burning of incense contributes to the emission of high levels of pollutants that cause increased oxidative stress, induce an irritating response, alter lung structure, and decrease lung function.

dry throat, cough, fatigue, dizziness, and respiratory tract infections.

18 COPD patients reported that the majority (83.3%) of them lived in rural areas and opened their windows and doors during the day (77.8%). The measurement of concentrations of pollutants revealed PM10 and PM2.5. 30 minutes after incense burning, PM10 and PM2.5 concentrations were the highest, followed by PM2.5 levels. Five levels were equivalent to concentration levels one hour after burning incense. PM2.5 concentrations increased considerably 10 minutes (B = 439.4, P<0.01), 20 minutes (B = 423.2, P<0.05), and 30 minutes (B = 439.4, P<0.01) after burning incense, but concentrations returned to baseline 1 hour, 3 hours, and 5 hours afterward.

PM10 levels were comparable to PM2.5 levels, with concentrations increasing considerably at 10 minutes (B = 609.6, P<0.01), 20 minutes (B = 774.5, P<0.05), and 30 minutes (B = 403.2, P<0.01) after burning incense and returning to the initial level 1 hour, three h, and five h later.

Daily exposure to outdoor and indoor incense smoke is a risk factor associated with impaired lung function. More than 70% of study participants experienced a decrease in FVC and FEV1, indicators of decreased lung function and capacity that will cause respiratory diseases.

The findings of personal attribute exams and environmental exposure in the samples revealed that boys had higher average FVC and FEV scores than girls (3.70±0.58 L vs. 2.77±0.40 L) and that 71% of students were exposed to incense-burning smoke at home for religious worship.

Lung function assessments associated with incense burning and household exposure resulted in an average FVC score of 0.07 L lower for males and 0.05 L lower for females. Using incense daily (both p<0.05).

Z-scores for FVC and FEV1 were substantially lower in students with daily exposure to incense burning, compared to those who stayed at home without burning incense (β=−.107 (SE=.033) during z-scores of FVC −.144 (SE=.041) for z-scores of FEV1, p<.05).

The incense smoke I inhaled led to impaired lung function.

Six-week-old female mice were...
exposed to incense smoke to explore the association between incense smoke exposure and impaired lung function and asthma. There are three treatment groups, namely (1) rats not exposed to incense smoke (IS); (2) rats exposed to high doses of IS; and (3) Mice exposed to low doses of IS. High doses of incense burned 3.2 g, and low doses of 1.6 g burned for 60 minutes. Exposure is carried out in stages by giving smoke exposure to is-filled exposure rooms and fresh air at 4 L/minute.

The mRNA levels of claudin-1, -2, -10b, and -12 were significantly reduced by exposure to IS 6 hours after exposure; claudin-3, -7, -18, E-cadherin, and ZO-1 at 9 hours post-exposure; and claudin-15 and occludin at 24 hours post-exposure, as determined by qRT-PCR analysis of exposed mouse lung tissue.

Table 2. Lung capacity measurements are associated with respiratory disease caused by incense smoke inhalation

<table>
<thead>
<tr>
<th>Ref</th>
<th>Study period (month)</th>
<th>Gender (n)</th>
<th>Respiratory symptoms/diseases</th>
<th>Home use of incense</th>
<th>Measurement of Lung Function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>M</td>
<td>F</td>
<td>BTH</td>
<td>WZ</td>
</tr>
<tr>
<td>[27]</td>
<td>3</td>
<td>65</td>
<td>60</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>[28]</td>
<td>24</td>
<td>2.063</td>
<td>1.978</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>[29]</td>
<td>4</td>
<td>38</td>
<td>22</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>[30]</td>
<td>6</td>
<td>16</td>
<td>2</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>[31]</td>
<td>12</td>
<td>2.485</td>
<td>2.525</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>[7]</td>
<td>6</td>
<td>0</td>
<td>35</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
Abbreviation: M = Male; F = Female; N/A = Not applicable; + = positive; - = negative; BTH = Breathlessness; WZ = Wheezing; CPD = Chronic Obstructive Pulmonary Disease; ASM = Asthma; RH = Rhinitis; PNU = Pneumonia.

Figures
Figure 1

Process sorting, filtering, and determining articles based on PRISMA diagrams

Figure 2

A brief mechanism of exposure to incense smoke decreases lung function