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Abstract
Whole Exome Sequencing (WES) has been a useful tool to improve molecular diagnosis in hypopituitarism, leading to the
discovery of at least 8 new genes in the last 7 years. However, some genes associated with hypopituitarism show low coverage in
this methodology, limiting its use for molecular diagnosis. Our objective is to compare three library prepping kits, NimbleGen
(Roche), SureSelect (Agilent) and Nextera (Illumina) examining the best performance related to sequencing quality, exon extension
coverage (≥98%) and base depth read (≥20x) of 44 genes associated with hypopituitarism and 32 involved in pituitary
development. Three different groups composed of 2 HapMap samples (Group 1), 2 Brazilian patients with hypopituitarism and
their respective mothers (Group 2) and 109 random Brazilian samples (Group 3) were sequenced in Illumina platform. Group 1 and
3 were performed using all three library prepping kits, while group 2 was performed with NimbleGen and SureSelect. Although all
technologies covered the selected genes with similar efficiency regarding poor (less than 20%) and rich (more than 80%) GC areas,
SureSelect has shown to reach the most uniform coverage in the selected region with a lower level of duplicate reads, as well as a
higher number of identified pathogenic variants.

Introduction
Combined Pituitary Hormone Deficiency (CPHD) is the deficiency of one or more pituitary hormones, affecting 1:8000 births
worldwide1. It may lead to short stature, weight gain, infertility, among other problems depending on which hormones are not being
produced. It can be either idiopathic or congenital, and either non-syndromic, leading only to pituitary hormonal deficiencies, or
syndromic, with extra-pituitary phenotypes, such as septo-optic dysplasia and holoprosencephaly2.

Several genes have been reported carrying mutations leading to CPHD and most of them were described by using the gene
candidate approach by using the Sanger Method. However, all the genes described so far explain only a small percentage (around
15%) of the patients’ clinical features, as both Fang et al2 and DeRienzo et al3 have pointed out. Nowadays, the method of choice
is Whole Exome Sequencing (WES), capable of sequencing every coding region of the genome, allows for the researcher to
investigate known genes as well as finding novel variants in yet unknown ones, increasing the possibility of reaching a diagnosis
for these patients.

We used the NimbleGen kit Ez v3 to prepare DNA samples for WES of 23 patients with idiopathic hypopituitarism (11 isolated
cases, 12 families). However, it was noted that some genes had a lower coverage than what was expected for a trustworthy variant
calling, making it impossible to analyze these regions. The lack of proper coverage in these genes may be due to high GC content,
as this is a known source of bias originating from the necessary PCR step in library preparation4. This uneven coverage can also
be observed in databases such as gnomAD, which has graphs showing median coverage of genes in big sample groups.

Previous studies have already investigated different methodologies involving prepping kits5–8. Therefore, to elucidate which
technology better covers important regions for proper molecular diagnosis of CPHD patients, we decided to compare different
library prepping kits for WES for a set of known genes. This region is comprised by those already identified in published studies as
causing CPHD, along with 32 genes with no known pathogenic mutations related to hormone deficiency, but having a role in
pituitary development during embryogenesis9.

Results
Sequencing Quality, Duplicate reads, Probe Analysis of genes involved in CPDH or pituitary development, GC regions, Coverage,
Variant Calling and Public databases will be presented as the results in three studied groups (Group 1, comprised of 2 Japanese
HapMap samples sequenced by Shigemizu et al5; Group 2, comprised of 2 patients with hypopituitarism and their mothers; and
Group 3, of random 109 Brazilian samples (Figure 1).

Sequencing Quality

Sequencing quality was analyzed to check whether all samples had comparable Phred scores and number of sequenced reads.
Although FASTQC10 showed that sequencing quality was proper and medium reads for Group 1 were similar to each other, Group 2
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had a great difference in the number of sequenced reads, with SureSelect attaining 97 million reads and NimbleGen only 69
million. To compare raw base depth considering only these parameters, SureSelect’s was 93.95x and NimbleGen’s 54.25x. Group 3
showed large variation among its sequenced reads, SureSelect with 89 million reads (raw base depth of 99.39x), Nextera with 91
million (95.18x) and NimbleGen 70 million (55.75x) (Table 1).

Despite the divergent raw coverage among the technologies used, it is possible to observe that even at low coverages of 1x and 5x,
SureSelect can capture a higher amount of intended target in all 3 groups, and at higher depths, this tendency was clearer. A fairer
comparison can be observed in Group 1, which had the least variation in raw reads sequenced and mean coverages >100x in all
three technologies, where at higher depths SureSelect (90.02% at 50x) can cover more percentage of bases than Nextera (69.77%
at 50x) or NimbleGen’s (86.25% at 50x). This data suggests that SureSelect approach can capture target in a more homogeneous
aspect than the other two technologies.

Duplicates

Estimating the number of PCR duplications among technologies is an important step to check the bias in target covered regions.
PCR duplicated reads could lead to error base-calling variants, being a byproduct of the PCR step, which is applied in library
construction in all technologies studied here. The use of this parameter to evaluate these technologies could indicate a good
horizontal coverage of regions with a low cost per sequencing. NimbleGen’s duplication was the biggest in CPHD genes than any
other kit, while SureSelect’s duplication was the lowest, although it showed larger variance of duplication rate among samples
(Figure 2). This result reinforces that SureSelect approach showed less uneven coverage than NimbleGen or Nextera.

Probe Analysis of 76 genes involved in CPDH or pituitary development during embryogenesis

It is important to check whether all the used methodologies had designed probes to our region of interest, which span across
161,022 bp, as this may result in better coverage in some genes. However, it was shown that although not all regions had probes
specifically designed for them, the entire region was covered by nearby probes. The overlapping probes in these regions can be
seen in Figure 3.

GC regions

                Investigation of the coverage in regions regarding GC content show that all methodologies have bias regarding GC areas,
rich (>80%) or low (<20%). Outside CG-rich regions, NimbleGen shows less depth than the other methodologies, which could be an
effect of lower mean coverage out of overall coverage (Figure 4). However, it is important to observe that Nextera showed a
preference in covering lower over higher GC-rich regions. In our context this is important, because comparing the 76 genes of
interest in this study to 76 random genes from the genome, it is possible to see that our chosen group does have a bigger
frequency of higher GC areas. However, it is not statistically different from the random gene group (Figure 5).

Coverage

Regarding overall coverage, the best out of the three kits was Agilent’s SureSelect, which had good coverage both for the entire
exonic region as well as our region of interest, as seen in graphics on Figures 6 and 7. Here, the graphics show that at 20x, which is
the reliable depth for variant calling, SureSelect shows the highest percentage coverage across all comparisons, most importantly
this is also observed in our region of interest that targeted 76 genes. While Illumina’s Nextera maintained a lower coverage in both
gene groups, Roche’s NimbleGen had a slight fall in coverage for our regions of interest. However, in regard to the whole WES
region, it was comparable to SureSelect.

Variant Calling

The main goal of a researcher when using WES is to find variants that can explain the patient’s phenotype. Usually, the focus lies
on exonic or splice site regions, as they have a higher probability of having impact on the resulting protein and thus being
deleterious.
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All technologies are rather similar in the number of called variants in all regions, both whole exome region and specific CPHD
genes, although Nextera seems to have a higher number of called variants in out-of-exon regions, such as intronic, downstream,
and upstream (Table 2; Table 3).

Public databases

ClinVar is a public archive of the relationship between human phenotypes and genomic variations with supporting evidence,
facilitating the association between human variation and clinical findings11. For such, when submitting new evidence, users must
include the clinical significance according to ACMG criteria12. We determine whether these technologies can cover every known
pathogenic variant in hypopituitarism genes, so as not to miss any probable cause of the studied phenotype.

ClinVar presents 1808 pathogenic or likely pathogenic variants in the 76 genes here studied. Mean coverage of each loci was
performed to check which sequencing kit was able to cover the most of these variants at least 20x. In all the 3 groups, the
SureSelect library has a lower number of uncovered variants (22 variants out of 1808). Similarly, NimbleGen library had 80 not
covered in any of the sample groups. A quick summary of this information can be seen in Table 4, and for more detail on these
variants and their loci, they can be found in Supplementary Information Table S1 of this paper.

ABraOM is a variant repository with the frequency of variants found in a normal Brazilian population. Currently, it consists of
Whole Genome Sequencing of 1,171 unrelated elderly individuals 13. In an earlier version, composed of WES of 609 elderly
individuals; 207,621 variants appeared only in this repository, which are then believed to be exclusive to the Brazilian population14.

Since our goal involves the efficiency of different sequencing library preparation kits in a Brazilian population specifically, we
analyzed the variants found in ABraOM patients in the 76 genes studied, out of which 175 were exonic and found to be exclusive
of the Brazilian population (Figure 8). Across all 3 groups, SureSelect was the library with lowest number of uncovered variants
(Table 5); Supplementary Information Table S2.

Discussion
When using high throughput sequencing technologies, it is necessary to perform quality and coverage analysis before variant
filtering, to ensure reliable results. Generally, the coverage of genes known to cause the phenotype is not discussed in published
articles that report new variant findings in hypopituitarism. This fact, along with experiences with low coverage in WES sequencing
in some of our samples using the NimbleGen kit, which had to be remade, led us to compare the efficiency of other kits available to
the general market and to us. As many other comparisons on these kits have already been made5–7, we decided to focus our
comparison in important regions to the disease we have been studying, as to shed light to researchers in this field which approach
is better to use in their cohort. For that, we selected genes that are important to pituitary development during embryogenesis, as
well as genes that have been associated with hypopituitarism15–30.

The use of simpler technologies such as gene panels, can be tempting regarding tricky parts of the genome such as the one
mentioned in this study, but a low number of molecular diagnosis has been reached according to the literature. Nakaguma et al.
had a 4% success rate in diagnosing 117 patients using a custom gene panel with 26 genes previously related to
hypopituitarism31. However, as stated by the author, this was a cohort previously screened and the use of gene panels may return
a higher success rate (closer to 15%) if used in a cohort naïve of diagnostic approach, similar to the number found in the overall
diagnostic rate for CPHD patients3,31. Even so, the approach of using WES is perhaps a better option, since it gives way to the
discovery of new genetic causes2,3.

We also opted to broaden our samples groups and, unlike other comparisons made previously, added different group samples,
such as a patient with the disease in question and random Brazilian samples. This was done to ensure that different known biases
common to the technique of WES, such as sample, run or laboratory bias were not a big factor on the obtained results4. Unlike
other populations, few information about the Brazilian population is available in the literature, as evidenced by the only two
existing databases containing samples from this group, ABraOM and SELA14,32.



Page 5/16

As all technologies studied are of great quality and achieve their goals, the answer to the question of which is best and should be
used comes down to specific parameters and depends on the researcher’s targets7. For most investigators of WES in regards to
medical sciences, the small difference in coverage of coding regions is of great importance, as it directly reflects the ability to
identify rare variants5. This is also the case for most researchers trying to obtain molecular diagnosis for CPHD patients.

Our results come in contrast to the findings of Clark et al, that report that the densely packed and overlapping baits of Roche’s
NimbleGen granted a higher coverage of targeted regions with a slightly higher edge in sensitivity for SNPs and indels7. However, it
should be noted the use of different versions of library preparation kits, as theirs was v2.0 of the kit while ours was v3.0, which
may explain this difference. This is further exemplified by Asan et al, who concluded that between NimbleGen v1.0 and SureSelect
All Human Exon, that the latter had a higher number of SNPs8. Both studies noted that NimbleGen needed a lower number of reads
to reach the expected coverage, which is corroborated by our results, as it reached comparable coverage to the other kits even with
a lower number of sequenced reads7,8.

It was also noted by other studies that Illumina’s Nextera had an increase in read depth in areas with 40 to 60% of GC content5,6.
This, however, did not translate to a higher coverage in genes implicated in CPHD with a high GC content, such as SOX3. In fact, it
presented with the lowest coverage among the kits. This may be due to its fragmentation being done by enzymes, which has a
greater fragment bias since it is not random shearing like in mechanical fragmentation. Therefore, other kits that use mechanical
shearing for library preparation may have a more adequate coverage in these regions.

Lastly, Agilent’s SureSelect All Human Exon v5’s higher coverage in coding regions is seen across different comparison studies, as
well as here5,6. Not only it reached a higher expected coverage in the whole exonic region, but also for our specific region of
hypopituitarism genes and those present in pituitary development. We compared coverage of known pathogenic or likely
pathogenic loci in our region of interest found on ClinVar across kits, as well as of loci related to Brazilian polymorphisms
according to ABraOM. In both cases, SureSelect had the best number of loci covered. Therefore, it is a strong contender for the
best kit out of the three.

In conclusion, when comparing library preparation kits for WES taking into consideration studies looking for molecular diagnosis
of CPHD patients, Agilent’s SureSelect kit has the best performance.  Moreover, regardless of the methodology used, it is of utmost
importance to properly analyze whether every known causative gene has been properly covered in the sequenced samples, so as
not to miss variants.

Methods
Editorial Policies and Ethical Considerations

This study was approved by CEP (Comitê de Ética em Pesquisa) and CONEP (Comissão Nacional de Ética em Pesquisa) ethics
committees under the number CAAE 06425812.4.0000.0068. All participants or their guardians signed a written form of informed
consent agreeing to be involved in the study, according to resolution CNS 466/12. 

Samples and sequencing

First, we analyzed two HapMap samples, both prepared with each of the technologies Nextera (Illumina Inc.), SureSelect v5
(Agilent Inc. Santa Clara, CA, USA) and NimbleGen SeqCap EZ v3 (IntegenX Inc., Pleasanton, CA, USA), that have been sequenced
and made available by Shigemizu et al. at the DNA Data Bank of Japan (DDBJ) under DRA0037365. Each of the technologies
differ in size of target region, spanning from 45 Mb (Nextera) to 50 Mb (SureSelect) and 64 Mb (NimbleGen). Secondly, four
Brazilian individuals (patients I and II and their mothers) were sequenced using NimbleGen and SureSelect v5 technologies for
comparison between both technologies. The corresponding data was available at SRA under PRJNA686987. Lastly, a randomized
cohort of Brazilian patients were prepared with Nextera (20 samples), NimbleGen (43) and SureSelect v5 (21) following kit’s
protocol and were analyzed in the same way as previous groups. NimbleGen’s sequencing was performed at the Sequencing Core
of University of Michigan in collaboration with Dr. Sally Camper, while the other kits were sequenced at Hospital das Clínicas
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University of São Paulo’s SELA (Sequenciamento em Larga Escala), following manufacturer’s protocols specific for each kit. A
breakdown on the sample groups analyzed can be found in Figure 1.

Chosen region

From searching the literature, we have selected 76 genes, shown in Table 6, that either are present in pituitary embryogenesis or
have mutations found in CPHD patients, despite level of evidence when their variants were classified using ACMG criteria, as
shown in Table 7. This region is referred to as “our region of interest” in the text. Meanwhile, the whole exome region each kit
targets for sequencing may be referred to as “global region”.

Bioinformatics Analysis

Sequencing quality was checked using FASTQC software (v.0.11.2)10, followed by alignment using BWA (v.0.6.1-r104)33 with hg19
assembly as reference genome. PCR Duplications removal was performed using samtools (v.1.6)34 or Picard (v.2.18.2)35

algorithms. Realignment and recalibration were performed using GATK version 2.8, while coverage analysis was performed using
the softwares BedTools (version 2.25.0)36 and Qualimap2 (version 2.2.1) 37. Finally, variants were called using GATK’s
HaplotypeCaller v3.2.238 and annotated with SnpEff39.

A comprehensive visualization of gene by gene coverage was performed with R function plot.baseCoverage, which can be found in
github (https://github.com/anna-benedetti9/plot-basecoverage). This function takes as input a bed file created with bedtools
coverage -d and plots the coverage of any given gene found in the file.

Lastly, the analysis described by Naslavsky et al14 was applied to filter for quality variants in the AbraOM database. Any variant
that appeared in any other populational databases such as 1000 Genomes, ESP6500, gnomAD and ExAC was excluded to filter for
variants that are exclusive to the normal Brazilian population in our region of interest.
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Tables
Table 1. Mean sequencing parameters of each technology for each of the 3 groups.

  Group 1 Group 2 Group 3

Nextera NimbleGen SureSelect NimbleGen SureSelect Nextera NimbleGen SureSelect

Total
reads

97,307,852 99,959,956 98,589,533 69,915,783 97,503,227 91,929,866 67,156,725 89,435,182

Mapped
reads (%)

95,070,415
(97.7)

98,771,192
(98.8)

97,548,776
(98.9)

69,166,641
(98.93)

97,320,814
(99.84)

91,666,213
(99.78)

66,475,108
(98.99)

89,334,131
(99,9)

Duplicated
reads (%)

8,070,034
(8.29)

3,949,071
(3.95)

14,931,303
(15.14)

12,267,790
(17.55)

15,413,175
(15.8)

9,276,850
(10.09)

12,388,245
(18.45)

12,102,113
(13.53)

Mapped to
region (%)

260,987
(0.27)

209,992.5
(0.21)

325,906
(0.34)

119,715.5
(0.17)

242,078.5
(0,27)

287,133.5
(0.34)

113,787.5
(0.17)

212,250.5
(0.29)

Duplicated
mapped to
region (%)

70,561
(15.55)

7,858.5
(3.75)

57,284.5
(17.6)

26,160.5
(22.86)

51,946.5
(18.91)

48,493.5
(17.05)

26,936
(24.01)

48,706.5
(9.22)

Mean
coverage

102.2 134.2 158.6 53.6 97.11 95.18 53.08 100.28

Coverage
1x (%)

99.67 99.35 99.92 99.6 99.88 99.1 99.41 99.85

Coverage
5x (%)

98.63 97.99 99.75 98.51 99.77 96.78 98.08 99.60

Coverage
10x (%)

96.96 96.90 99.42 97.2 99.55 93.91 96.67 99.01

Coverage
20x (%)

92.08 95.2 98.44 93.12 98.65 87.97 91.47 96.28

Coverage
30x (%)

85.46 93.19 96.96 82.52 96.72 81.64 80.18 90.81

Coverage
50x (%)

69.78 86.25 92.3 46.1 88 68.29 45.9 73.56
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  Group 1 Group 2 Group 3

Nextera NimbleGen SureSelect NimbleGen SureSelect Nextera NimbleGen SureSelect

Missense 24,970 24,413.5 24,191.5 25,047.5 24,510.5 21,213.93 22,300.45 21,492

Synonymous 29,114 28,796.5 28,651 30,024.5 30,152.25 26,236.21 27,083.94 26,784

Frameshift
indels

714.5 698.5 673.5 593.75 504 565.07 503.29 430

Stop Gain 183 178.5 162 176.75 162.5 163.85 168 130

Stop Loss 74 62.5 64.5 59.25 58.5 56.42 58.25 57

Exonic region 66,190 65,221.5 63,386.5 71,354.25 69,414.75 55,806.57 59,785.84 56,474.5

Intronic region 138,684 138,459 130,390 517,024 753,994 88,117.64 111,574.8 90,008.5

Downstream
region

22,767.5 23,510.5 21,144.5 60,635 82,473.5 15,470.14 20,243,94 15,825

Upstream
region

18,085.5 18,315.5 17,211 50,803.25 77,520.75 11,732.07 15,331.52 12,197

Splice region 9,990.5 10,079.5 8,857.5 9,228.75 7,957.5 7,157.07 7,728.67 6,718.5

Total 75,925.5 77,682.5 70,153.5 285,339.8 438,573.2 53,185.29 68,378.19 51,722

Table 2. Breakdown of variants by type that were called in each of the groups in the whole exonic region.

 

 

Table 3. Breakdown of variants by type that were called in each of the groups in the genes related to CPHD or present in pituitary
embryogenesis.

  Group 1 Group 2 Group 3

Nextera NimbleGen SureSelect NimbleGen SureSelect Nextera NimbleGen SureSelect

Missense 76 69 70 83.25 43.5 50.57 54.77 46.5

Synonymous 161 153.5 65.5 159.5 91.5 105.64 82.87 154.5

Frameshift indels 2 2 2 28.5 0 2.35 3.12 3

Exonic region 246 229 99.5 122.25 119.5 151.07 117.32 209.5

Intronic region 5 5 13.5 8.25 74 11.64 138.19 16

Downstream
region

13 18.5 9.5 64.5 26.25 35.14 14 13

Upstream region 4.5 7.5 34 20 43.5 7.42 11.06 14.5

Splice region 10.5 2 5 21.75 5.75 68 0 0

Total 74 71 72.5 78.5 78.25 71.28 72.48 76.5
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Table 4. Number of variants found in ClinVar described as pathogenic or likely pathogenic in any of the genes related to
hypopituitarism with low coverage (less than 20x) for each of the groups (Group 1: HapMap samples; Group 2: Hypopituitarism
patients and their mothers; Group 3: Random Brazilin samples)

  Group 1 Group 2 Group 3

  Nextera NimbleGen SureSelect NimbleGen SureSelect Nextera NimbleGen SureSelect

Low covered
variants

27 83 16 85 8 90 86 22

 

Table 5. Number of variants found in ABraOM as exclusive to the Brazilian population in any of the genes related to
hypopituitarism with low coverage (less than 20x) for each of the groups (Group 1: HapMap samples; Group 2: Hypopituitarism
patients and their mothers; Group 3: Random Brazilin samples)

  Group 1 Group 2 Group 3

  Nextera NimbleGen SureSelect NimbleGen SureSelect Nextera NimbleGen SureSelect

Low covered
variants

15 18 0 21 0 20 19 1

                   

 

 

Table 6. Genes found in the literature and their respective entrezID that are used in this study, divided in two groups of those with
pathogenic variants related to hypopituitarism and those that are present in pituitary embryogenesis, but no pathogenic variants
described to this day.
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Related to hypopituitarism (entrezID) Present in pituitary embryogenesis (entrezID)

ARNT2 (9915) KCNQ1 (3784) AES (166) SIX3 (6496)

CDH2 (1000) LEPR (3953) BMP2 (650) SIX6 (4990)

CDON (50937) LHX3 (8022) BMP4 (652) SOX4 (6659)

DMXL2 (23312) LHX4 (89884) BMP7 (655) TBX2 (6909)

FGF8 (2253) NFKB2 (4791) BMPR1A (657) TBX3 (6926)

FGFR1 (2260) OTX2 (5015) CHD7 (55636) TCF4 (6625)

FOXA2 (3170) PAX6 (5080) CTNNB1 (1499) TLE1 (7088)

GH1 (2688) PITX2 (5308) FGF10 (2255) WNT4 (54361)

GHR (2690) PNPLA6 (10908) FGF18 (8817) ZSWIM6 (57688)

GHRH (2691) POU1F1 (5449) GATA2 (2624)  

GHRHR (2692) PROKR2 (128674) GATA3 (2625)  

GHSR (2693) PROP1 (5626) GLI3 (2737)  

GLI2 (2736) RNPC3 (55599) HES1 (3280)  

GPR161 (23432) SHH (6469) HES5 (388585)  

HDAC6 (10013) SLC15A4 (121260) HNRNPU (3192)  

HESX1 (8820) SLC20A1 (6574) ISL1 (3670)  

HHIP (64399) SOX2 (6657) LHX2 (9355)  

IFT172 (26160) SOX3 (6658) NOTCH2 (4853)  

IGSF1 (3547) TCF7L1 (83439) POLR3A (11128)  

IRF6 (3664) TGIF1 (7050) RAX (30062)  

JAK1 (3716) WDR11 (55717) RBM28 (55131)  

KAL1 (3730) WNT5A (7474) RBPJ (3516)  

 

Table 7. Variants found in hypopituitarism patients in different studies and each of their ACMG classification according to
Varsome.
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Gene Variant ACMG

CLASSIFICATION

Reference

ARNT2 c.1372_1373dupTC/p.S459Ffs*53 Pathogenic Webb et al, 2013

ZSWIM6 c.3487C>T/p.R1163W Likely pathogenic Smith et al, 2014

PNPLA6 Many VUS† Synofzik et al, 2014; Hufnagel et
al, 2015

HNRNPU c.1615 –1G>A Pathogenic Zhu et al, 2015

GPR161 c.47T>A/p.L16Q VUS Karaca et al, 2015

CDON c.2764G>T/p.E922X VUS Bashamboo et al, 2016

CHD7 c.2194C>G/p.P732A Benign Gregory et al, 2013

IFT172 c.5179T>C/p.C1727R; c.337–2A>C Likely Pathogenic;
Pathogenic

Lucas-Herald et al, 2015

DMXL2 c.5824_5838delAGTGATGGCAATGGA /
p.D1947Sdel

Likely pathogenic Tata et al, 2014

KAL1 c.1704C>A/p.H568Q VUS Takagi et al, 2014

KCNQ1 c.347G>T/p.R116L; c.1106C>T/p.P369L Likely pathogenic; Likely
pathogenic

Tommiska et al, 2017

IRF6 c.697C>T/p.R233C VUS Starink et al, 2017

NFKB2 c.2596A>C/p.S866R VUS Lal et al, 2017

FOXA2 c.505T>C/p.S169P Likely pathogenic Giri et al, 2017

JAK1 8Mb Deletion of Ch 1p31.1 - 1p31.3 VUS Thakur et al, 2017

LEPR VUS

SLC15A4 c.1367C>T/p.P456L; c.250C>T/p.L84F VUS; VUS Simm et al, 2017

SLC20A1 c.266T>C/p.L89S; c.1561C>T/p.L521F Likely pathogenic

MAGEL2‡ c.3019C>T/p.Q1007X Pathogenic Hidalgo-Santos et al, 2018

† Variant of uncertain significance

‡Not included in this study.

 

Figures
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Figure 1

Representation of number of samples prepared with each technology, divided in 3 groups according to the type of samples. (a)
Group 1 is comprised of 2 samples that were sequenced using three different technologies; (b) Group 2 is formed by 4 samples
sequenced using two different technologies and; (c) Group 3 is comprised of 103 samples that were sequenced by one of the three
technologies.
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Figure 2

Duplication rates for each of the technologies considering both regions of each technology. The X axis represents each technology,
while the Y axis the duplication rate, with representation for the median. Box and whiskers represent interquartile, minimum and
maximum values. Line inside the box represent the median value, while outside dots are outliers.

Figure 3

Venn diagram of overlapping probes designed by each technology. Nextera is the only technology with probes designed for the
entire region of interest, while NimbleGen has more probes than SureSelect.

Figure 4

GC content graphs to indicate efficiency in coverage for each of the technologies. The X axis indicates GC content and the Y axis
the mean coverage of the kit. The vertical bar shows that the darker the color, higher the number of samples with that coverage. (A)
Nextera, (B) NimbleGen and (C) SureSelect.
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Figure 5

Comparison histogram of GC content in the chosen 76 genes used in the study and 76 random genes selected from the genome.
The X axis represents the GC quantity, and the Y axis the frequency of genes.

Figure 6

Depth in coverage for the whole exonic region. The X axis represent the depth of coverage, while the Y axis the bases covered in
percent. The horizontal line denotes the optimal coverage of 20 times per base. (A) Group 1, (B) Group 2 and (C) Group 3.
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Figure 7

Depth in coverage for the region of interest composed of 76 genes or 161,022 bp. The X axis represent the depth of coverage, while
the Y axis the bases covered in percent. The horizontal line denotes the optimal coverage of 20 times per base. (A) Group 1, (B)
Group 2 and (C) Group 3.

Figure 8

Filtering steps applied to variants found in ABraOM that were located in the region of interest composed of 76 genes. The first two
steps are related to base quality (GATK and USP) while the last one is related to frequency of these variants in international
databases (dbSNP, 1000 genomes and gnomAD).

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

SupplementaryTableS1.xlsx

SupplementaryTableS2.xlsx

https://assets.researchsquare.com/files/rs-244377/v1/6ef592c7ad95786f69774fe0.xlsx
https://assets.researchsquare.com/files/rs-244377/v1/9523461e07f6970dcaa26463.xlsx

