Higher-order expansions of powered beta-normal extremes

Yingying Jiang (✉ 240506274@qq.com)

Research Article

Keywords: Rate of convergence, Powered extreme, Beta-normal distribution, Higher-order expansion

Posted Date: January 3rd, 2023

DOI: https://doi.org/10.21203/rs.3.rs-2418689/v1

License: ☒ ① This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Additional Declarations: No competing interests reported.
Higher-order expansions of powered beta-normal extremes

Yingying Jiang1,3* Baokun Li2

1School of Mathematics and Statistics, Sichuan University of Science and Engineering, Zigong, China
2School of Statistics, Southwestern University of Finance and Economics, Chengdu, China
3South Sichuan Center for Applied Mathematics, China

Abstract: Higher-order asymptotic expansions of powered beta-normal extremes are derived in this paper. Furthermore, we establish the rates of convergence of distributions of normalized extremes. It is shown that with optimal normalizing constants the convergence rates of powered beta-normal extremes depend on the power index.

Keywords: Rate of convergence; Powered extreme; Beta-normal distribution; Higher-order expansion

1 Introduction

The beta-normal distribution due to Eugene et al. (2002) can be defined as follows. Let \(X\) be a random variable with cumulative distribution function (CDF). The CDF for a generalized class of distribution \(X\) is given by

\[
G(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \int_0^{F(x)} t^{\alpha-1}(1-t)^{\beta-1}dt, \tag{1.1}
\]

where \(0 < \alpha, \beta < \infty\), \(\Gamma(\cdot)\) denotes the gamma function.

The probability density function (PDF) of the generalized class of distribution \(G(x)\) is

\[
g(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} [F(x)]^{\alpha-1}[1 - F(x)]^{\beta-1}F'(x). \tag{1.2}
\]

When \(F(x)\) is the CDF of the standard normal distribution, the random variable \(X\) is said to have beta-normal distribution \(\text{BN}(\alpha, \beta)\), with probability density function

\[
g_{\alpha, \beta}(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \left[\Phi(x)\right]^{\alpha-1}\left[1 - \Phi(x)\right]^{\beta-1}\phi(x), \tag{1.3}
\]

*Corresponding author. Email-address: 240506274@qq.com
where \(-\infty < x < \infty, 0 < \alpha, \beta < \infty, \Phi(\cdot)\) and \(\phi(\cdot)\) denote the standard normal cumulative distribution function and the standard normal probability density function, respectively.Obviously, \(BN(1, 1)\) is a standard normal distribution.

Eugene et al. (2002) systematically studied the shape properties of the beta-normal distribution and discussed its great flexibility in modeling skewed and bimodal distributions. Extensions and applications of beta-normal distribution families, see Gupta and Nadarajah (2005), Famoye and Lee (2004), \(\text{Rêgo et al.}(2012)\) and others.

The aim of this paper is to deduce the higher-order expansions of powered beta-normal extremes. Hall (1980) studied the asymptotic distribution behavior of normalized powered extremes for standard normal distribution. Hall (1980) also obtained the convergence rates of distributions of powered extremes which depend on the power index. Zhou and Ling (2016) deduced the higher-order expansions of distributions of powered extremes for standard normal samples. Xiong and Peng (2020) considered the higher-order distributional expansions and convergence rates of powered skew-normal extremes. Other papers studying the higher-order expansions of distributions of the extremes are: Liao et al. (2013) for the log-skew-normal distribution; Liao et al. (2014) for the skew-normal distribution; Du et al. (2016) for generalized gamma distribution; Huang (2018) for generalized Maxwell sample; Beranger et al. (2019a, 2019b) for the extended skew-normal distribution and multivariate skew-normal distribution, and references therein.

Throughout the paper, let \(\{X_n, n \geq 1\}\) be a sequence of independent and identically distributed (i.i.d.) random variables with the beta-normal pdf given by (1.3), and let \(M_n = \bigvee_{i=1}^{n} X_i\) denote the largest of the first \(n\). In order to obtained the higher-order expansions of normalized \(|M_n|^t\) of beta-normal random variables, we define the optimal normalized constants as follows:

for \(t \neq 2\), let

\[
c_n = \beta^{-1} t b_n^{-2}, \quad d_n = b_n^t,
\]

and for \(t = 2\), set

\[
c'_n = 2\beta^{-1} (1 - b_n^{-2}), \quad d'_n = b_n^2 - 2b_n^{-2},
\]

where \(b_n > 0\) is the solution of the following equation

\[
\frac{(2\pi)^{-\frac{\alpha}{2}} \Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\beta + 1)} b_n^{-\beta} e^{-\frac{\beta}{2} b_n^2} = \frac{1}{n}.
\]

The contents of this paper are arranged as follow: Section 2 presents main results for the asymptotic behavior of normalizing powered beta-normal extremes. All the proofs are given in section 3.

2 Main results

In this section, we first state that the limit distribution of normalized powered extreme of beta-normal distribution is the Gumbel extreme value distribution \(\Lambda(x)\).
Theorem 2.1. Let \(\{x_n, n \geq 1\} \) be a sequence of independent and identical random variables with the pdf given by (1.3), and let \(M_n = \sqrt[n]{X_i} \) denote its partial maximum. We have
(i) For \(0 < t \neq 2 \), then
\[
P(|M_n|^t \leq c_n x + d_n) \to \Lambda(x), \quad x \in R
\] (2.1)
as \(n \to \infty \), where the normalized constants \(c_n \) and \(d_n \) are given by (1.4).
(ii) For \(t = 2 \), then
\[
P(|M_n|^t \leq c_n' x + d_n') \to \Lambda(x), \quad x \in R
\] (2.2)
as \(n \to \infty \), where the normalized constants \(c_n' \) and \(d_n' \) are given by (1.5).

In the following Theorem 2.2, we present the higher-order expansions for the cdf of \(|M_n|^t \) under the norming constants \(c_n \) and \(d_n \) given by (1.4).

Theorem 2.2. Under the assumptions of Theorem 2.1, for \(0 < t \neq 2 \), we have as \(n \to \infty \)
\[
b_n^2 \left[b_n^2 \left(P(|M_n|^t \leq c_n x + d_n) - \Lambda(x) \right) - \kappa(t, x) \Lambda(x) \right] \to \omega(t, x) \Lambda(x),
\] (2.3)
where
\[
\kappa(t, x) = e^{-x} \left[(1 - \frac{1}{2} t) \beta^{-1} x^2 + x + \beta \right]
\] (2.4)
and
\[
\omega(t, x) = e^{-x} \left[-\frac{1}{8} (t - 2)^2 \beta^{-2} x^4 + \frac{1}{6} (t - 2)(2t + 3\beta - 2) \beta^{-2} x^3 + \frac{1}{2} (\beta - 1) t \right. \\
-3\beta \left. \right] \beta^{-1} x^2 - (\beta + 2)x - \frac{1}{2} \beta (\beta + 5) \right] + \frac{1}{2} e^{-2x} \left[(\frac{1}{2} t - 1) \beta^{-1} x^2 - x - \beta \right]^2.
\] (2.5)

Remark 2.1. Theorem 2.2 shows that the optimal convergence rate of \(|M_n|^t \) to Gumbel extreme value density function \(\Lambda(x) \) is proportional to \(1/\log(x) \) for all \(0 < t \neq 2 \) since \(b_n^2 \sim 2\beta^{-1} \log n \) as \(n \to \infty \) by (1.6).

Theorem 2.3 establishes the asymptotic expansion of the distribution of \(|M_n|^t \) in order to gain the rate of convergence as \(t = 2 \).

Theorem 2.3. For norming constants \(c_n' \) and \(d_n' \) given by (1.5), we have as \(n \to \infty \)
\[
b_n^2 \left[b_n^4 \left(P(|M_n|^2 \leq c_n' x + d_n') - \Lambda(x) \right) - \kappa'(x) \Lambda(x) \right] \to \omega'(x) \Lambda(x),
\] (2.6)
where
\[
\kappa'(x) = -e^{-x} \left[\beta^{-1} x^2 + 3x + \frac{7}{2} \beta \right],
\] (2.7)
and
\[
\omega'(x) = e^{-x} \left[\frac{4}{3} \beta^{-2} x^3 + 6\beta^{-1} x^2 + 14x + \frac{43}{3} \beta \right].
\] (2.8)

Remark 2.2. Theorem 2.3 presents accurate convergence rate of \(|M_n|^2 \) to \(\Lambda(x) \) is proportional to \(1/(\log(x))^2 \), which is rather faster than that for the other cases.
3 proof

In order to prove the main results, we need some auxiliary results. Lemma 3.1 derives the distributional tail representation of the beta-normal distribution, which is the further conclusion from Jiang et al. (2022).

Lemma 3.1. Let $G_{\alpha, \beta}(x)$ and $g_{\alpha, \beta}(x)$ denote respectively, the cdf and pdf of $BN(\alpha, \beta)$, then

$$1 - G_{\alpha, \beta}(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta + 1)} \frac{\phi^\beta(x)}{x^\beta} \left[1 - \beta x^{-2} + \frac{1}{2} \beta(\beta + 5)x^{-4} - \frac{1}{6} \beta(\beta^2 + 15\beta + 74)x^{-6} + O(x^{-8}) \right]$$

for large x.

Proof. By integration by parts, we have

$$1 - G_{\alpha, \beta}(x) = \frac{1}{\beta} \frac{\Phi(-x)}{\phi(x)} g_{\alpha, \beta}(x) \left[1 + \frac{\alpha - 1}{\beta + 1}(\Phi^{-1}(x) - 1) + \frac{(\alpha - 1)(\alpha - 2)}{(\beta + 1)(\beta + 2)}(\Phi^{-1}(x) - 1)^2
ight.$$

$$+ \ldots + \frac{(\alpha - 1)(\alpha - 2)\ldots(\alpha - n)}{(\beta + 1)(\beta + 2)\ldots(\beta + n)}(\Phi^{-1}(x) - 1)^n(1 + o(1)) \right]$$

for large x. It is easy to check that for all r,

$$x^r(\Phi^{-1}(x) - 1) \to 0,$$

and

$$x^r(\Phi^{\alpha-1}(x) - 1) \to 0,$$

as $x \to \infty$.

For large x, we have

$$1 - \Phi(x) = \frac{\phi(x)}{x}(1 - x^{-2} + 3x^{-4} - 15x^{-6} + O(x^{-8})).$$

Thus, by (3.2), (3.3), (3.4) and (3.5), we have

$$1 - G_{\alpha, \beta}(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta + 1)} \frac{\phi^\beta(x)}{x^\beta} \left[1 - \beta x^{-2} + \frac{1}{2} \beta(\beta + 5)x^{-4} - \frac{1}{6} \beta(\beta^2 + 15\beta + 74)x^{-6} + O(x^{-8}) \right]$$

for large x, which is (3.1). The proof is complete.

Proof of Theorem 2.1. For large n and $0 < t \neq 2$, $c_n x + d_n > 0$, where c_n and d_n
are normalizing constants given by (1.4). We have \((c_nx + d_n)^\dagger = [\beta^{-1}tb_n^{-2}x + b_n^\dagger] = b_n[1+\beta a_n^2 x + O(a_n^4)] = a_n x + b_n + O(a_n^3)\), where \(a_n = \beta^{-1}b_n^{-1}\) with \(b_n\) is the solution of (1.6).

Utilizing (1.6) and (3.1), for large \(n\) we have

\[
\begin{align*}
n \left[1 - \gamma_{\alpha,\beta}(a_n x + b_n + O(a_n^3))\right] &\sim n \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\beta + 1)} \phi^\beta(a_n x + b_n + O(a_n^3)) \\
&= n \frac{(2\pi)^{-\frac{\alpha}{2}} \Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\beta + 1)} (a_n x + b_n + O(a_n^3))^{-\beta} \exp \left\{ -\frac{\beta}{2} (a_n x + b_n + O(a_n^3))^2 \right\} \\
&= n \frac{(2\pi)^{-\frac{\alpha}{2}} \Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\beta + 1)} b_n^{-\beta} (1 + \beta a_n^2 x + O(a_n^4))^{-\beta} \exp \left\{ -\frac{\beta}{2} b_n^2 (1 + 2\beta a_n^2 x + O(a_n^4)) \right\} \\
&= n \frac{(2\pi)^{-\frac{\alpha}{2}} \Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\beta + 1)} b_n^{-\beta} e^{-\frac{\beta}{2} b_n^2} (1 - \beta a_n^2 x + O(a_n^4)) \exp \left\{ -x + O(a_n^3) \right\} \\
&= (1 - \beta^2 a_n^2 x + O(a_n^4)) \exp \left\{ -x + O(a_n^3) \right\} \\
&\to e^{-x}
\end{align*}
\]
as \(n \to \infty\). Then

\[
P(|M_n|^t \leq c_n x + d_n) = P(M_n \leq (c_n x + d_n)^\dagger) - P(M_n \leq -(c_n x + d_n)^\dagger)
\]

\[
= \gamma_{\alpha,\beta}(a_n x + b_n + O(a_n^3)) + o(1)
\]

\[
\to \Lambda(x)
\]
as \(n \to \infty\). For \(t = 2\), note that

\[
\frac{c'_n}{c_n} \to 1, \quad \frac{d'_n - d_n}{c_n} \to 0
\]
as \(n \to \infty\). So, the result follows by Theorem1.2.3 in Leadbetter et al.(1983). The proof is complete.

Proof of Theorem 2.2. Note that for \(0 < t \neq 2\) and sufficiently large \(n\), \(c_n x + d_n > 0\).

We have by (1.4) that \(z_n = (c_n x + d_n)^\dagger = (\beta^{-1}tb_n^{-2}x + b_n^\dagger) = b_n(\beta a_n^2 x + 1)^\dagger\) with \(a_n = \beta^{-1}b_n^{-1}\). For large \(n\), we have the following Taylor’s expansion

\[
z_n^k = b_n^k \left[1 + k\beta a_n^2 x + \frac{1}{2} k(k - t)\beta^2 a_n^4 x^2 + \frac{1}{6} k(k - t)(k - 2t)\beta^3 a_n^6 x^3 + O(a_n^8) \right], k \in \mathbb{R}, \text{ (3.6)}
\]

Then

\[
1 - \beta z_n^{-2} + \frac{1}{2} \beta(\beta + 5) z_n^{-4}
\]

\[
= 1 - \beta \left[\beta^2 a_n^2 (1 - 2\beta a_n^2 x + O(a_n^4)) \right] + \frac{1}{2} \beta(\beta + 5) \left[\beta^4 a_n^4 (1 - 4\beta a_n^2 x + O(a_n^4)) \right]
\]

\[
= 1 - \beta^3 a_n^2 + \left[\frac{1}{2} \beta(\beta + 5) + 2x \right] \beta^4 a_n^4 + O(a_n^6).
\]

(3.7)
Further, applying (3.6) with \(k = 2 \) and \(k = -\beta \), we have
\[
e^{-\frac{4}{3}z_n^2} = e^{-\frac{4}{3}z_n^2} \cdot e^{-x} \left[1 - \frac{1}{2}(2-t)\beta x^2 a_n^2 + \left(\frac{1}{8}(2-t)x - \frac{1}{3}(1-t) \right) (2-t)\beta^2 x^3 a_n^4 + O(a_n^6) \right]
\]
and
\[
\frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\beta + 1)} \frac{\phi^\beta(z_n)}{z_n^\beta}
= \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\beta + 1)} (2\pi)^{-\frac{3}{2}} e^{-\frac{4}{3}z_n^2} z_n^{-\beta}
\]
\[
= \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\beta + 1)} (2\pi)^{-\frac{3}{2}} e^{-\frac{4}{3}z_n^2} z_n^{-\beta} \cdot e^{-x} \left[1 - \frac{1}{2}(2-t)\beta x^2 a_n^2 + \left(\frac{1}{8}(2-t)x - \frac{1}{3}(1-t) \right) (2-t)\beta^2 x^3 a_n^4 + O(a_n^6) \right]
\times \beta^2 x^3 a_n^4 + O(a_n^6)\right]
= n^{-1} e^{-x} \left[1 + \left(\frac{1}{2}(t-1)\beta x^2 - \beta^2 x \right) a_n^2 + \left(\frac{1}{8}(2-t)^2\beta^2 x^4 + \frac{1}{6}(2-t)(2t + 3\beta - 2)\beta^2 x^3
\right.
\left. + \frac{1}{2}(t + \beta)\beta^3 x^2 \right) a_n^4 + O(a_n^6) \right] \times \left[1 - \beta^3 a_n^2 + \left(\frac{1}{2}\beta(\beta + 5) + 2x \right) \beta^4 a_n^4 + O(a_n^6) \right]
:= n^{-1} e^{-x} \left[1 + A_1(t,x) a_n^2 + A_2(t,x) a_n^4 + O(a_n^6) \right],
\]
where (3.7) and (3.8), have
\[
\frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\beta + 1)} \frac{\phi^\beta(z_n)}{z_n^\beta} \left(1 - \beta z_n^{-2} + \frac{1}{2} \beta(\beta + 5) z_n^{-4} \right)
= n^{-1} e^{-x} \left[1 + \left(\frac{1}{2}(t-1)\beta x^2 - \beta^2 x \right) a_n^2 + \left(\frac{1}{8}(2-t)^2\beta^2 x^4 + \frac{1}{6}(2-t)(2t + 3\beta - 2)\beta^2 x^3
\right.
\left. + \frac{1}{2}(t + \beta)\beta^3 x^2 \right) a_n^4 + O(a_n^6) \right] \times \left[1 - \beta^3 a_n^2 + \left(\frac{1}{2}\beta(\beta + 5) + 2x \right) \beta^4 a_n^4 + O(a_n^6) \right]
\]
where
\[
A_1(t,x) = \left(\frac{1}{2}(t-1)\beta x^2 - \beta^2 x - \beta^3 \right)
\]
and
\[
A_2(t,x) = \frac{1}{8}(2-t)^2\beta^2 x^4 + \frac{1}{6}(2-t)(2t + 3\beta - 2)\beta^2 x^3 + \frac{1}{2}(3\beta + (1 - \beta)t)\beta^3 x^2
\left. + \beta^4(\beta + 2)x + \frac{1}{2}\beta^5(\beta + 5). \right]
\]
Note that \(P(M_n \leq -(c_n x + d_n) \beta) = o(a_n^r), r > 6, \) and \(\log(1-x) = -x + O(x^2) \) as \(x \to 0, \)
so by (3.9), we have

\[P(|M_n| \leq c_n x + d_n) = P(M_n \leq (c_n x + d_n)^{1/2}) - P(M_n \leq -(c_n x + d_n)^{1/2}) \]
\[= G_{\alpha, \beta}^n(\sigma) - G_{\alpha, \beta}^n(c_n x + d_n) \]
\[= \left\{ 1 - \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta + 1)} \frac{\phi^2(z_n)}{z_n} \left[1 - \beta z_n^{-2} + \frac{1}{2} \beta^5 z_n^{-4} + O(z_n^{-6}) \right] \right\}^n + o(a_n^6) \]
\[= \left\{ 1 - n^{-1} e^{-x}[1 + A_1(t, x) a_n^2 + A_2(t, x) a_n^4 + O(a_n^6)] \right\}^n + o(a_n^6) \]
\[= \Lambda(x) \exp \left\{ e^{-x}[-A_1(t, x) a_n^2 - A_2(t, x) a_n^4 + O(a_n^6)] \right\} + o(a_n^6) \]
\[= \Lambda(x) + e^{-x} A_1(t, x) a_n^2 + \left(\frac{1}{2} e^{-2x} A_2(t, x) - e^{-x} A_2(t, x) \right) a_n^4 + O(a_n^6) \]
\[= \Lambda(x) + \Lambda(x) [\kappa(t, x) b_n^{-2} + \omega(t, x) b_n^{-4} + O(b_n^{-6})]. \]

The proof is complete.

Proof of Theorem 2.3. For \(t = 2, z_n = (c_n x + d_n)^{1/2} = b_n [1 + 2 \beta (x + \beta) a_n^4]^{1/2} \) with \(a_n = \beta^{-1} b_n^{-1} \). Hence, for large \(n \),

\[
z_n^k = b_n^k \left[1 + k \beta x a_n^2 + \left(\frac{1}{2} (k - 2) x^2 - \beta x - \beta^3 \right) k \beta^3 a_n^4 + \left(\frac{1}{6} (k - 4) x^3 - \beta x^2 - \beta^2 x \right) \right.
\times k(k - 2) \beta^3 a_n^6 + O(a_n^8) \].

Especially, with \(k = -2, -4 \), we obtain

\[
1 - \beta z_n^{-2} + \frac{1}{2} \beta (\beta + 5) z_n^{-4} - \frac{1}{6} \beta (\beta^2 + 15 \beta + 74) z_n^{-6} = 1 - \beta z_2^{-2} - \frac{1}{2} \beta^2 (x + \beta (5 \beta + 4)) a_n^4 - 2 \beta^5 \left(2 x^2 + \beta (5 \beta + 4) x + \frac{1}{12} \beta^2 (\beta^2 + 15 \beta + 86) \right) a_n^6 + O(a_n^8).
\]

Using \(e^x = 1 + x + \frac{1}{2} x^2 + \frac{1}{6} x^3 + O(x^4) \), \(x \to 0 \) and the equality (3.8) with \(k = 2 \) and \(k = -\beta \), we have

\[
e^{-\frac{1}{2} \beta z_n^2} = e^{-\frac{1}{2} \beta z_n^2} \cdot e^{-x} \left(1 + \beta^2 (x + \beta) a_n^2 + \frac{1}{2} \beta^4 (x + \beta) a_n^4 + \frac{1}{6} \beta^6 (x + \beta) a_n^6 + O(a_n^8) \right),
\]

and

\[
z_n^{-\beta} = b_n^{-\beta} \left[1 - \beta^2 x a_n^2 + \beta^3 \left(\frac{1}{2} (\beta + 2) x^2 + \beta x + \beta^2 \right) a_n^4 - \beta^4 (\beta + 2) \left(\frac{1}{6} (\beta + 4) x^3 \right. \right.
\]
\[
+ \beta x^2 + \beta^2 x \right) a_n^6 + O(a_n^8) \].

Combining (3.9), (3.10) and (3.11), we can derive

\[
\frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta + 1)} \frac{\phi(z_n)}{z_n^\beta} \left[1 - \beta z_n^{-2} + \frac{1}{2} \beta(\beta + 5)z_n^{-4} - \frac{1}{6} \beta(\beta^2 + 15\beta + 74)z_n^{-6} + O(z_n^{-8}) \right]
\]

\[
= \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta + 1)} (2\pi)^{-\frac{3}{2}} \cdot e^{-\frac{\beta z_n^2}{2}} \cdot z_n^{-\beta} \left[1 - \beta z_n^{-2} + \frac{1}{2} \beta(\beta + 5)z_n^{-4} - \frac{1}{6} \beta(\beta^2 + 15\beta + 74)z_n^{-6} + O(z_n^{-8}) \right]
\]

\[
= n^{-1}e^{-x} \left[1 + \beta^3 a_n^2 + \left(x^2 + \beta x + \frac{1}{2} \beta(\beta + 2) \right) \beta^3 a_n^4 + \frac{1}{6} \left(-8x^3 + 6\beta(\beta - 2)x^2 + 6\beta^2 \right. \right. \times (\beta - 2)x + \beta^4(\beta + 6) \left. \left. \right) \beta^4 a_n^6 + O(a_n^8) \right]
\times \left[1 - \beta^3 a_n^2 + \frac{1}{2} \left(4x + \beta(\beta + 5) \right) \beta^4 a_n^4 - 2(2x^2 + \beta(\beta + 6)x + \frac{1}{12} \beta^2(\beta^2 + 15\beta + 86)) \beta^4 a_n^6 + O(a_n^8) \right]
\]

\[
= n^{-1}e^{-x} \left[1 + \left(x^2 + 3\beta x + \frac{7}{2} \beta^2 \right) \beta^3 a_n^4 + \left(- \frac{4}{3} x^3 - 6\beta x^2 - 14\beta^2 x - \frac{43}{3} \beta^3 \right) \beta^4 a_n^6 + O(a_n^8) \right]
\]

\[
= n^{-1}e^{-x} \left[1 + A_1(t, x)a_n^4 + A_2(t, x)a_n^6 + O(a_n^8) \right].
\]

Similar to the proof of Theorem 2.2,

\[
P(|M_n|^2 \leq c_n' x + d_n') = P(M_n \leq (c_n' x + d_n')^{\frac{1}{2}}) - P(M_n \leq -(c_n' x + d_n')^{\frac{1}{2}})
\]

\[
= \left\{ 1 - \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta + 1)} \frac{\phi(z_n)}{z_n^\beta} \left[1 - \beta z_n^{-2} + \frac{1}{2} \beta(\beta + 5)z_n^{-4} - \frac{1}{6} \beta(\beta^2 + 15\beta + 74)z_n^{-6} + O(z_n^{-8}) \right] \right\}^n
\]

\[
+ o(a_n^8)
\]

\[
= \left\{ 1 - n^{-1}e^{-x} \left[1 + A_1(t, x)a_n^4 + A_2(t, x)a_n^6 + O(a_n^8) \right] \right\}^n + o(a_n^8)
\]

\[
= \Lambda(x) \exp \left\{ -e^{-x} \left[A_1(t, x)a_n^4 + A_2(t, x)a_n^6 + O(a_n^8) \right] \right\} + o(a_n^8)
\]

\[
= \Lambda(x) + \Lambda(x) \left[-e^{-x} A_1(t, x)a_n^4 - e^{-x} A_2(t, x)a_n^6 + O(a_n^8) \right]
\]

\[
= \Lambda(x) + \Lambda(x) \left[\kappa'(t, x)b_n^4 + \omega'(t, x)b_n^6 + O(b_n^8) \right],
\]

which completes the proof.

Acknowledgements
We thank the editor in chief and referees for a careful reading of the manuscript and a number of perceptive and useful suggestions which improves it greatly.

Funding
The research was supported by the Scientific Research Fund of Sichuan University of Science & Engineering under Grant 2019RC10 and the Opening Project of Sichuan Province University Key Laboratory of Bridge Non-destruction Detecting and Engineering Computing (2018QZJ01).

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
YJ: conceptualization, computation, funding acquisition, writing-original draft, writing-review and editing. BL: problem statement, supervision, writing-review, and provision of study resources. All authors read and approved the final manuscript.

References

