Efficient hip joint distraction using the AO large femoral distractor in treating acetabular fractures associated with marginal impaction and intraarticular incarcerated fragments

Mahmoud Badran
Assiut University Hospital

Ahmed A. Khalifa
ahmed_adel0391@med.svu.edu.eg
South valley university

Ali Fergany
Assiut University Hospital

Bahaaeldin Ibrahim
Assiut University Hospital

Mohamed Moustafa
Assiut University Hospital

Ephrem Adem
Hawassa University

Botond Gilyen
Mures County Emergency Hospital

Osama Farouk
Assiut University Hospital

Research Article

Keywords: Acetabulum fractures, Incarcerated fragment, Marginal impaction, large femoral distractor

Posted Date: January 3rd, 2023

DOI: https://doi.org/10.21203/rs.3.rs-2386224/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.
Version of Record: A version of this preprint was published at BMC Musculoskeletal Disorders on March 27th, 2024. See the published version at https://doi.org/10.1186/s12891-023-07143-w.
Abstract

Purpose

The results after acetabular fracture are primarily related to the quality of articular reduction. Using the AO large femoral distractor, incarcerated fragments can be easily removed, and elevation of marginally impacted fragments can be done under direct visualization without further re-dislocating the joint. The current study aimed to evaluate our early results of using the AO large femoral distractor as an assisting tool during ORIF of acetabular fractures associated with marginal impaction or intraarticular incarcerated fragments.

Methods

Eighteen patients were included in this retrospective case series study diagnosed with an acetabular fracture associated with either marginal impaction injury or an intraarticular incarcerated fragment. On a usual operative table, all patients were operated upon in a prone position through the Kocher Langenbeck approach. The AO large femoral distractor was used to facilitate hip joint distraction. Postoperative fracture reduction and joint clearance were assessed in the immediate postoperative CT scans.

Results

The average age of the patients was 30 ± 8.2 years; 13 (72.2%) were males. All cases had a posterior wall fracture, and it was associated with transverse fractures, posterior column fractures, and T-type fractures in five (27.8%), two (11.1%), and one (5.6%) patients, respectively. Intraarticular incarcerated fragments were present in 13 (72.2%) cases and marginal impaction in five (27.8%). Fracture reduction measured on the postoperative CT scans showed an anatomical reduction in 14 (77.8%) patients, imperfect in four (22.2%), and complete clearance of the hip joint of any incarcerated fragments.

Conclusion

The use of the AO large femoral distractor is a reliable and reproducible technique that can be applied to assist removal of incarcerated intraarticular fragments and to ease the reduction of marginally impacted injuries associated with acetabular fractures.

Introduction

Acetabular fractures commonly affect young adults after high-energy trauma. An isolated posterior wall fracture is the most common type, accounting for 20–35% of cases, with a reported incidence of intraarticular incarcerated fragments occurring in up to 8% of the cases [1–4]. Obtaining anatomical
Acetabular fracture reduction is paramount, as imperfect reduction or leaving loose fragments intraarticularly could fasten the development of post-traumatic secondary osteoarthritis [5–9].

These fractures are usually challenging to treat owing to their complex anatomy and associated injury patterns, such as the presence of joint surface impaction injuries; and intraarticular incarcerated fragments; even more, the complexity is aggravated when dealing with muscular or obese patients [6, 7], so a lot of reduction techniques and tools were suggested to facilitate the management [10].

For intraarticular incarcerated fragments and in cases associated with marginal impaction injuries, it is better to treat these injuries under direct vision, which is usually tricky due to the anatomical nature and concavity of the hip joint [4, 11, 12]. Various techniques were used to facilitate this process, including hip dislocation, which could further add to the soft tissue envelop injury and cause traction on the sciatic nerve [13, 12]; some surgeons suggested hip arthroscopy [14, 15]; however, this needs special equipment, training, and could be associated with specific complications such as neuropraxia, perineal soft tissues injuries, and ankle joint pain [16,17].

To avoid the drawbacks and limitations of the previous techniques, joint distraction had been introduced as a practical option; this could be achieved through various techniques, either by operating on a traction table; however, if such a table was not available, surgeons either use manual traction or various tools such as the AO large femoral distractor to assist joint distraction [18, 19].

The AO large femoral distractor was used to reduce various fractures at different anatomical locations, such as femoral fractures [13, 20], tibial fractures [21], and calcaneal fractures [22]. It was reported as an assisting tool during acetabular fracture surgery [23, 18].

This study aimed to evaluate and report our experience using the AO large femoral distractor as an assisting tool to obtain anatomical reduction assessed in postoperative plain radiographs and CT scans in acetabular fractures associated with marginal impaction or intraarticular incarcerated fragments.

Patients And Methods

This was a retrospective study based on data extracted from our pelvis trauma registry at a level one trauma center of a university tertiary referral hospital. Demographic data, fracture classification according to the Letournel and Judet system, type of intervention, operative details, and postoperative outcomes were collected for all patients diagnosed with acetabular fractures and admitted to our hospital.

During the study period (between 2018 and 2021), 420 patients were identified with acetabular fracture, which was treated surgically, and the operative notes were reviewed to identify patients in which femoral distractor was used, this revealed 55 patients. Of those, we included patients with a preoperative diagnosis of a concomitant marginal impaction or intraarticular incarcerated fragments; this revealed 25
patients; after excluding patients with incomplete radiographs or CT scans (either preoperatively or postoperatively), this led to 18 Patients being included for final analysis.

Surgical technique:

Although the femoral distractor is always available in the operative theater, its uses are decided during the preoperative planning. All cases were operated upon by two senior trauma surgeons specialized in acetabular and pelvis trauma surgery. All patients were operated on under spinal anesthesia on a usual operative translucent table (non-traction) in a prone position. The surgeon stands on the side of the affected limb and image intensification from the contralateral side, and after proper draping, through the standard Kocher Langenbeck (KL) approach, the posterior wall and column of the acetabulum were exposed in standard fashion. After clearing the joint from soft tissue debris and hematoma, the universal distractor was applied following the description by Calafi and Routt [18].

Two Schanz pins (5mm) were applied, one proximally in the dense supr acetabular bony area of the iliac at least two centimeters above the joint and another distally limited to the level of the lesser trochanter. Then the sliding carriage was applied on the greater trochanter side for caudally directed distraction. The pins on the iliac side were tightened maximally, and the spindle nuts on both sides of the sliding carriage were turned to distract the joint. Once adequate joint distraction was achieved, ranging from 10 to 15mm (while taking care of sciatic nerve tension first by direct palpation of the nerve and second by flexing the knee to relax the nerve), intra-articular fragments could be easily visualized and removed. In cases where a marginal impaction was present, disimpaction of the articular fragment was done under direct vision facilitated by the joint distraction, followed by anatomical reduction and bone grafting (Fig. 1).

Postoperative Quality of Reduction assessment:

In our unit, patients routinely undergo immediate postoperative CT scan assessment concomitant with plain radiographs. Three radiographic views (anteroposterior and Judet (obturator and iliac) views) were obtained, and the residual fracture displacement was measured; the reduction quality was graded according to Matta’s criteria as anatomic (0 to 1mm of displacement), imperfect (2 to 3 mm), or poor (> 3 mm) [24]. For the postoperative CT scan, the axial, sagittal, and coronal plane views were evaluated according to the method described by Verbeek et al. [25, 26] for precise assessment of the quality of fracture reduction and hip joint congruity. Furthermore, CT scans were evaluated for the presence of residual intraarticular incarcerated fragments. Radiographic and CT scan evaluations were performed by two of the authors who were not involved in the surgical procedures (Figs. 2,3,and 4).

Statistical analysis

Descriptive analysis was used to present the data, including reporting averages, standard deviations, ranges, numbers, and percentages.
Results

The average age of the patients was 30 ± 8.2 years (range 18 to 50), 13 (72.2%) were males, and the right side was affected in 11 (61.1%) patients. Regarding fracture classifications, all cases had a posterior wall fracture; in five (27.8%), it was associated with transverse fracture; in two (11.1%) with posterior column fracture; and one (5.6%) patient had an associated T-type fracture. Intraarticular incarcerated fragments were present in 13 (72.2%) cases, while marginal impaction was present in five (27.8%). There were no intraoperative complications related to the femoral distractor usage, and it was not aborted in any of the cases. Fracture reduction measured on the postoperative CT scans showed an anatomical reduction in 14 (77.8%) patients, imperfect in four (22.2%), and complete clearance of the hip joint of any incarcerated fragments.

Discussion

In most cases, surgical treatment for acetabular fractures is needed to achieve anatomical reduction and restore the congruency and stability of the joint [2, 11]. One keystone element of the surgical technique is optimum visualization, which is usually difficult due to limited access while the hip joint is in a reduced position; this could be eased through a limited distraction of the hip joint using a large femoral distractor [23, 18].

In the current study, we obtained anatomical reduction and clearance of intraarticular incarcerated fragments (as confirmed by postoperative CT scans) while treating acetabular fractures through a Kocher Langenbeck approach with the assistance of a large AO femoral distractor without the need for a traction operative table.

The direction of the initial traumatic forces and the presence of an associated hip dislocation determines the acetabular fracture complexity and further affects fractured fragments size, comminution, displacement, and the presence or absence of marginal impaction at the articular surface of the acetabulum or the femoral head [2, 10]. Furthermore, impaction injuries or incarcerated fragments could occur either during the injury incident or after the relocation of the hip joint [27, 28].

In a study by Pascarella et al. [27], the authors reported a retained intraarticular loose fragment in 45 patients out of a total of 127 patients presented with hip dislocation; the majority of the retained fragments occurred after a posterior dislocation reduction (43 out of 45 cases), the authors reported that they used two technique for removing these incarcerated fragments, either by traction through a pin inserted in the greater trochanter or dislocating the hip after manual traction applied by an assistant.

Regarding Impaction injuries associated with acetabular fractures, these could be either a dome impaction or a marginal impaction, both injuries if missed could lead to hip joint instability (especially if associated with posterior wall injuries) and fasten the development of post-traumatic hip osteoarthritis, so proper detection during preoperative planning and anatomical reduction of these injuries is paramount for obtaining optimum outcomes [29–31]. The incidence of marginal impaction injuries in association
with posterior wall fracture could reach up to 30% [32]; furthermore, detached fragments could be incarcerated inside the hip joint and needs retrieval [29]. Several management options were described to treat such injuries, including surgical hip dislocation, posterior wall osteotomy, and hip arthroscopy; however, the previously mentioned options are considered technically demanding [33–35].

In a study by Shaath et al. [23], the authors reported their results of managing 172 acetabular fractures treated through a Kocher Langenbeck approach in a prone position over five years without using a specific traction table of the tools used to assist fracture manipulation, and reduction was the universal femoral distractor, they reported no malreduction more than 2mm in any of the cases as measured on postoperative CT scan. The authors reported that the universal femoral distractor was used in some cases; however, they did not report exactly the indications for its use or in how many cases they used it; furthermore, they reported that in their series, they dealt with a posterior wall or posterior wall associated patterns of fractures, however, they did not report on the presence of impaction injuries or incarcerated fragments. In the current series, we decided preoperatively, as a part of preoperative planning, to use the femoral distractor after detecting either marginal impaction injuries or intraarticular incarcerated fragments. We could also achieve anatomical fracture reduction in most cases.

We believe that using the large femoral distractor in selected acetabular cases has some advantages: First, the surgery can be performed on an ordinary fracture operative table (which is available in most institutions) without the need for a special traction table, which, if used could lead to some complications such as pudendal nerve palsy, erectile dysfunction, and perineal soft tissue injury [36, 37]. Second, draping and preparation of the whole limb are unnecessary as the distractor applies the traction through the surgical field; therefore, this technique is helpful if the patient has a concomitant ipsilateral lower extremity injury. Third, the distractor works by applying controlled and constant traction over the hip joint, which cannot be maintained if an assistant applying manual traction become fatigued. Fourth, the distractor gives adequate exposure of the hip joint upon surgical manipulation, and it will not obstruct the view of the hip during intra-operative imaging [38]. Fifth, in specific injuries such as marginal impaction, enough and maintained distraction enables the surgeon to visualize and reduce the impacted fragment and bone grafting. Last, this technique does not need much learning curve and is practiced by most orthopedic trauma surgeons unlike other surgical approaches used for managing impaction injuries such as surgical hip dislocation, besides the availability of the distractor in most trauma surgery units [19, 39, 40].

This study has some limitations; first, the small sample size could be attributed to the high selectivity of the included patients and those excluded due to inadequate documents. Second, the retrospective and non-comparative nature of the study could not enable us to compare other techniques used for managing such fractures. Third, we did not report the amount of distraction performed in each case; however, this issue was extensively reported in hip arthroscopy literature 36,37. Lastly, we should have reported on functional outcomes or the long-term sequel of managing these cases.

Conclusion
By using the AO large femoral distractor to create a controlled hip joint distraction during acetabular fracture surgery, incarcerated fragments can be easily removed under direct visualization without further re-dislocating the joint; furthermore, the elevation of marginally impacted fragments are easily facilitated with this technique.

Declarations

Ethics Approval and consent to participate: All procedures in the current study were performed in accordance with the Declaration of Helsinki. This article does not contain any experimental studies with human participants or animals performed by any of the authors, and the ethical committee of our institution approved it: Faculty of Medicine, Assiut University, Egypt (IRB no.: 17200019) (Telephone, Fax: +20882332278, ethics-committee12@yahoo.com, IRB-Asyut@aun.Edu.eg, http://afm.edu.eg). Informed consent was obtained from all individual participants included in the study. Patients signed informed consent regarding publishing their data and photographs, and the Study setting was at the Trauma unit, Orthopaedic department, Assiut University Hospital, Assiut, Egypt.

Consent for publication: Patients signed informed consent regarding publishing their data and photographs.

Availability of data and materials: All the data related to the study are mentioned in the manuscript; however, the raw data are available with the corresponding author and will be provided upon a written request.

Competing interests: The authors declare that they have no conflict of interest.

Funding: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Authors' contributions: M.B. and O.F. carried out the Study conception and design. O.F., B.I., and A.F. performed the surgeries, E.A. and B.G. carried out data acquisition, assessment, and measurements. A.K., B.I., M.M. and A.F. carried out analysis and interpretation of data, drafted the manuscript, and designed the figures, M.B. and O.F. did the critical revision. All authors discussed the results and commented on the manuscript. All authors read and approved the final manuscript. The first and the second authors contributed equally to the manuscript.

Acknowledgment: We like to acknowledge Meron Kemal for her artistic work of sketching demonstrative images, and we would like to thank Dr Hossam Neyaz who presented the data of this study as a free paper in the 42nd SICOT congress.

References

30. Ibrahim B, Badran M, Khalifa AA, Abubeih H, Farouk O (2022) Padrão incomum de impacto marginal osteocondral em fraturas acetabulares. Um relatório de dois casos (Unusual Pattern of

Figures
Figure 1

AO large femoral distractor description and clinical application. A, Configuration of the assembled distractor with the 330 mm threaded spindle (white arrow) and 5mm Schanz pins in situ (red arrow). Distraction is intended caudally with the barrel of distraction placed distal (black arrow). B, a sketched picture of the pelvis showing the placement of the distractor across the joint in a prone position with the proximal pin on the supraacetabular dense bone and the distal pin being distal to the trochanteric area. C, Clinical image shows the distractor in situ assembly. D, The amount of hip joint distraction (yellow arrow), which helps elevation and reduction of the impacted articular surface (held in the forceps) as well as checking the quality of reduction and achieving congruent hip joint

Figure 2

Male patient, 38 years old, presented with a posterior wall fracture of the left acetabulum. A, preoperative plain radiographs and CT scans showing the intraarticular incarcerated posterior wall fragment (white arrow) and a loose intraarticular fragment (red arrow). B, an intraoperative image showing the femoral distractor assisted hip joint distraction, which helped retrieve the posterior wall incarcerated fragment. C,
post-operative plain radiographs and CT scans showing fracture anatomical reduction and clearance of the hip joint space.

Figure 3

Male patient, 31 years old, presented with a posterior wall fracture of the right acetabulum associated with marginal impaction. A, preoperative plain radiographs and CT scans showing fracture of the
posterior wall, marginal impaction injury (black arrow), and retained intraarticular loose fragment (red arrow). B, post-operative plain radiographs and CT scans showing fracture anatomical reduction and clearance of the hip joint space.

Figure 4

Male patient, 26 years old, presented with a Transverse fracture of the right acetabulum associated with a posterior wall fracture associated with incarcerated intraarticular fragment. A, preoperative plain radiograph and CT scans. B, intraoperative application of the femoral distractor and the amount of hip joint distraction is shown (yellow arrow). C, post-operative plain radiographs and CT scans showing fracture anatomical reduction and clearance of the hip joint space.