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Characterization of AIE -CNPy-AD 

3: Yield: 85.4%. 1H NMR (400 MHz, CDCl3) ŭ 7.85 (d, J = 9.0 Hz, 2H), 7.55-7.46 (m, 4H), 7.38 

(s, 1H), 6.72 (d, J = 9.0 Hz, 2H), 3.07 (s, 6H). 

PyDPACN-N: Yield: 73.2%. 1H NMR (400 MHz, CDCl3) ŭ 8.70 (d, J = 5.9 Hz, 2H), 7.90 (d, J = 

8.9 Hz, 2H), 7.79 (d, J = 8.5 Hz, 2H), 7.72 (d, J = 8.5 Hz, 2H), 7.69 (d, J = 6.0 Hz, 2H), 7.51 (s, 

1H), 6.74 (d, J = 9.0 Hz, 2H), 3.09 (s, 6H). 

AIE-CNPy-AD: Yield: 26.0%. 1H NMR (400 MHz, DMSO-d6) ŭ 9.11 (d, J = 7.0 Hz, 2H), 8.57 (d, 

J = 7.0 Hz, 2H), 8.21 (d, J = 8.7 Hz, 2H), 8.07 (s, 1H), 7.95 (t, J = 9.0 Hz, 4H), 6.86 (d, J = 9.1 Hz, 

2H), 4.72 (t, J = 6.8 Hz, 2H), 3.05 (d, J = 5.5 Hz, 6H), 2.46 (t, J = 7.2 Hz, 2H), 2.31ï2.22 (m, 2H). 

13C NMR (100 MHz, DMSO-d6) ŭ 153.50, 152.12, 144.89, 144.61, 138.51, 132.34, 131.73, 

128.82, 125.74, 124.09, 120.53, 119.01, 111.63, 100.58, 58.67, 46.95, 40.10, 39.90, 39.69, 39.48, 

39.27, 39.06, 38.85, 27.26. HRMS (ESI-MS, m/z): [M-Br]+ calcd. for [C25H25N3O3SNa]+ 

470.1514; found 470.1512. 

 

 

 

 



Synthesis route and structure characterization spectra of AIE -CNPy-AD 

 

Fig. S1. Synthetic route to AIE-CNPy-AD. 

 

 

 

Fig. S2. The 1H NMR spectrum of AIE-CNPy-AD in DMSO-d6. 



 

Fig. S3. The 13C NMR spectrum of AIE-CNPy-AD in DMSO-d6. 

 

 

 

Fig. S4. The high-resolution mass spectrum (HRMS) of AIE-CNPy-AD. 

 

 

 

 



Absorption spectra of AIE-CNPy-AD 

 

Fig. S5. Absorption spectra of AIE-CNPy-AD in the DMSO/THF mixtures with different THF 

fractions at room temperature, c = 10ï5 M. 

 

pH stability of AIE -CNPy-AD 

 

Fig. S6. Emission spectra of AIE-CNPy-AD measured under different pH values, ɚex = 455 nm, c 

= 10 ɛM.  

 

 

 

 



Fluorescence responses of AIE -CNPy-AD, ThT and ICG to native and fibril lar 

HEWL  

 

Fig. S7. (A) Emission spectra of AIE-CNPy-AD in PBS buffer solution (pH = 7.4) by stepwise 

addition of native HEWL, ɚex = 455 nm, c = 5 ɛM. (B) Emission spectra of ThT in PBS buffer 

solution (pH = 7.4) by stepwise addition of native HEWL, ɚex = 420 nm, c = 5 ɛM. (C) Emission 

spectra of ICG in PBS buffer solution (pH = 7.4) by stepwise addition of fibrillar HEWL, ɚex = 

765 nm, c = 5 ɛM. 

 

Selectivity of AIE-CNPy-AD to Aɓ1 42 fibrils  

 

Fig. S8. Emission spectra of AIE-CNPy-AD with Aɓ1 42 fibril s and Aɓ1-42 monomer (30 ɛM) 

respectively, ɚex = 455 nm, c = 5 ɛM; Emission spectra of ThT (ɚex = 420 nm, c = 5 ɛM) and ThT 

with Aɓ1 42 fibril s (30 ɛM). 

 

 

 

 



Specificity of AIE -CNPy-AD to Aɓ fibril s 

 

Fig. S9. Emission spectra of AIE-CNPy-AD with various anayltes (30 ɛM), ɚex = 455 nm, c = 5 

ɛM. 

 

Affinity of AIE -CNPy-AD to Aɓ1 42 fibrils when competing with ThT  

 

Fig. S10. Emission spectra of probe AIE-CNPy-AD (ɚex = 455 nm, c = 5 ɛM) and ThT (ɚex = 420 

nm, c = 5 ɛM) when adding AIE-CNPy-AD stepwise into the ThT/Aɓ1 42 fibrils complex (c = 15 

ɛM, pH = 7.4). 

 

 

 

 



Saturation constraint curve of AIE -CNPy-AD with Aɓ1 42 fibrils   

 

Fig. S11. Plot of the difference in photoluminescence intensity as a function of the concentration 

of AIE-CNPy-AD in the presence of Aɓ1 42 fibrils (8 ɛM) in PBS buffer solution (pH = 7.4). 

 

The Kd binding curve was nonlinearly fitted by Origin 8.5.0. The value of Kd was 

determined by using the equation below, where X is the concentration of 

AIE-CNPy-AD and Y is the change in fluorescence intensity. 

)/(* dmax XKXBY +=  

Bmax is the maximum specific binding having the same unit as Y.  

Kd is the equilibrium binding constant. 

 

In -vitro fluorescent staining of paraffin slices of mice brain  



 

Fig. S12. Fluorescent staining of the brain slices of (A-C) 2.5-month-old 5*FAD transgenic AD 

mice and (D-F) 6-month-old APP/PS1 transgenic AD mice. The slices were sequentially 

co-stained with AIE-CNPy-AD, rabbit anti-mouse primary antibody (ab201060, diluted 1:200 

with PBS buffer) and Alexa Fluor® 488-labeled goat anti-rabbit secondary antibody (ab150077, 

1:1000), and Hoechst 33342. All images are merged images of three channels (blue channel: 

Hoechst 33342, green channel: Alexa Fluor® 488, red channel: AIE-CNPy-AD). 100× 

magnification. 

 

Fig. S13. Fluorescent staining of the brain slices of (A-C) 2.5-month-old wild-type mice and (D-F) 

6-month-old wild-type mice. All images are merged images of three channels. The slices were 

sequentially co-stained with AIE-CNPy-AD, rabbit anti-mouse primary antibody (ab201060, 

diluted 1:200 with PBS buffer) and Alexa Fluor® 488-labeled goat anti-rabbit secondary antibody 

(ab150077, 1:1000), and Hoechst 33342. All images are merged images of three channels (blue 

channel: Hoechst 33342, green channel: Alexa Fluor® 488, red channel: AIE-CNPy-AD). 100× 

magnification.  



Determination of oil -water partition coefficient (log P) of AIE-CNPy-AD  

Log P can be determined by shake-flask method. Water and octanol were mixed and 

fully shaken to equilibrant, and the resultant two layers were then separated. 

AIE-CNPy-AD was dissolved in 3 mL octanol phase which was previously saturated 

with water, followed by adding 3 mL water phase which was previously saturated 

with octanol. The mixture was shaken vigorously at room temperature for 1 hS1. The 

concentration of AIE-CNPy-AD was determined by UV-vis spectroscopy and the log 

P value was calculated using the following formulaS2. 
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Cytotoxicity evaluation of AIE -CNPy-AD 

 

Fig. S14. Cell viability after incubation of AIE-CNPy-AD at different concentrations with (A) 

SH-SY5Y cells, (B) Neuro-2a cells, (C) 4T1 cells, and (D) MCF-7 cells for 24 h by CCK-8 assay 

at 37 oC. 



In-vivo fluorescence imaging of APP/PS1 and wild-type mice 

 
Fig. S15. (A) The other set of fluorescence images of APP/PS1 mice of different ages 

(2-month-old, 3-month-old, 4-month-old, 6-month-old) taken before tail vein injection of 

AIE-CNPy-AD or at different time points post-injection of AIE-CNPy-AD (2.0 mg/kg). (B) The 

other set of fluorescence images of wild-type mice of different ages (2-month-old, 3-month-old, 

4-month-old, 6-month-old) before being injected with AIE-CNPy-AD and at different time points 

after tail vein injection of AIE-CNPy-AD (2.0 mg/kg). AIE-CNPy-AD: ɚex = 500 nm, ɚem = 620 

nm. 

 

Fig. S16. Fluorescence images of (A) APP/PS1 or (C) wild-type mice of different ages 

(2-month-old, 3-month-old, 4-month-old, 6-month-old) before or at different time points after via 

tail vein injection of ThS (2.0 mg/kg). The relative fluorescence signal [F(t)/F(pre)] in the brain 

regions of (B) APP/PS1 or (D) wild-type mice of different ages after via tail vein injection of ThS 

(2.0 mg/kg). ThS: ɚex = 430 nm, ɚem = 500 nm, where F(t) and F(pre) stand for the fluorescence 

signal in the brain regions after and before probe injection, respectively. 


