
CyberSecurity for Autonomous Vehicles Against
Malware Attacks in Smart-Cities
Sana Aurangzeb (sanaaurangzeb@numl.edu.pk)

National University of Modern Languages
Muhammad Aleem (m.aleem@nu.edu.pk)

National University of Computer and Emerging Sciences
Muhammad Taimoor Khan (m.khan@gre.ac.uk)

University of Greenwich
Haris Anwar (harisanwar64@gmail.com)

National University of Computer and Emerging Sciences
Muhammad Shaoor Siddique (shaoorsiddique.mrf@gmail.com)

National University of Computer and Emerging Sciences

Research Article

Keywords:

DOI: https://doi.org/

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

https://doi.org/
mailto:sanaaurangzeb@numl.edu.pk
mailto:m.aleem@nu.edu.pk
mailto:m.khan@gre.ac.uk
mailto:harisanwar64@gmail.com
mailto:shaoorsiddique.mrf@gmail.com
https://doi.org/
https://creativecommons.org/licenses/by/4.0/

1

CyberSecurity for Autonomous Vehicles Against
Malware Attacks in Smart-Cities

Sana Aurangzeb, Muhammad Aleem, Muhammad Taimoor Khan*, Haris Anwar, Muhammad Shaoor Siddique

sanaaurangzeb@numl.edu.pk,m.aleem@nu.edu.pk *m.khan@gre.ac.uk, harisanwar64@gmail.com,

shaoorsiddique.mrf@gmail.com

Abstract—Smart autonomous vehicles (AVs) are networks of
cyber physical systems (CPS) in which they wirelessly commu-
nicate with other CPS sub-systems (e.g., smart -vehicles and
smart-devices) to efficiently and securely plan safe travel. Due
to unreliable wireless communication among them, such vehicles
are an easy target of malware attacks that may compromise
vehicles’ autonomy, increase inter-vehicle communication latency,
and drain vehicles’ power. Such compromises may result in traffic
congestion, threaten the safety of passengers, and can result in
financial loss. Therefore, real-time detection of such attacks is
key to the safe smart transportation and Intelligent Transport
Systems (ITS). Current approaches either employ static analysis
or dynamic analysis techniques to detect such attacks. However,
these approaches may not detect malware in real-time because of
zero-day attacks and huge computational resources. Therefore,
we introduce a hybrid approach that combines the strength of
both analyses to efficiently detect malware for the privacy of
smart-cities.

Index Terms—Malware detection; security; smart cities; au-
tonomous systems;

I. INTRODUCTION

RECENTLY autonomous vehicular systems (AVs) have

seen a gigantic growth in a wide variety of aspects with

the development of smart cities to build the Intelligent Trans-

port Systems (ITS). For instance, the dramatic use of embed-

ded systems and wireless communication (e.g., 4G LTE and

5G) in modern internet of vehicles which ultimately improve

users safety and comfort. However, growing interest in the

development of connected autonomous vehicles (CAVs) and

ITS has introduced new security challenges and vulnerabilities

in AVs that has a great impact on the smart environments for

smart-cities. However, classical computer security solutions

are not applicable in automotive industry standards for in-

vehicle, vehicle-to-vehicle (V2V) communication and vehicle

to everything (V2X) communications mainly because of real-

time performance requirements, constrained computational

resources, and differences among heterogeneous networks and

their configurations [1].
Various recent reports have sketched attempts where cyber-

criminals have successfully demonstrated practical but remote

S. Aurangzeb is with the Department of Computer Science, National
University of Modern Languages Islamabad, Pakistan e-mail: (sanaau-
rangzeb@numl.edu.pk).

M. Aleem and M.A. Islam are with the National University of Computer
and Emerging Sciences, Islamabad, Pakistan .

Corresponding Author: M. T. Khan (Member, IEEE) is with the School
of Computing and Mathematical Sciences, University of Greenwich, London,
UK e-mail: m.khan@gre.ac.uk

attacks to key functions of automotive vehicles (as depicted

in Figure 1) either through V2V or V2X that include discon-

necting the engine and the brakes [2]–[5].

CryptoLocker, WannaCry, and Petya attacks are prominent

one of the most widely used attacks against sensitive IT

systems [6]. Previously, ransomware attack infected either

personal computers, public or private organizations, health

sectors, Internet of Things, smartphones and smart industrial

systems. Now, ransomware attack is targeting smart-vehicles

and smart cities that could result in the loss of human lives

and financial instability. Moreover, there have been attempts

where researchers have shown that malware is one of the

keys and emerging security threats that can be launched by

exploiting the wireless communication system of AVs [7], [8].

For instance, by exploiting known vulnerabilities in the design

and implementation of onboard communication systems, em-

bedded software, and application software [9]–[11] as sketched

in Table I. Moreover, a report in [2], [12], [13] has shown that

an AVs is not just a simple machine by hijacking the steering

and brakes of a Ford Escape and a Toyota Prius. However,

on the other hand, it is of utmost critical to understand that

AVs are now a network of computers that can be hacked

by practicing classical cyber threat mechanisms. For instance,

during the year 2015, approx. 1.5 million vehicles were subject

to a recall by Daimler Chrysler mainly because cybercriminals

could remotely take the control of a jeep’s digital system over

the Internet [3]. In another report [4], a team of cybercriminals

remotely hijacked a Tesla Model S from a distance of approx.

a dozen miles. In a more recent attempt [5], authors have

identified 14 vulnerabilities in the infotainment system in

several of BMW’s series. Moreover, another Tesla S and Tesla

X was targeted by cybercriminals in November 2019 via the

Wi-Fi attack vector [6]. All of the above-mentioned incidents

show that the security of AVs is integral to their core functions

in order to make smart transportation secure, therefore, it must

be handled to protect the vehicles enabling them to operate

safely.

The key to the afore-mentioned success of remote attacks

on AVs is information sharing by the vehicles over a wireless

medium which increases the susceptibility of the vehicles to

different security and malware attacks. Consequently, data

exchange including input and output data as well as protecting

Electronic Control Unit (ECUs) inside the AVs are among the

most significant security issues for the intelligent vehicles [8],

[17]. Specifically, the most damaging cyber threats, are emerg-

ing as the vehicles connect to the Internet, provide onboard

2

TABLE I
VARIOUS ATTACKS TO CAVS

Attack Target Attack Description

Vehicle’s actual behavioral disruption Locking the in-vehicle radio so that the users cannot turn it on [14]
Driver distraction Misusing vehicle features to distract the driver by arbitrarily turning on the in-vehicle

audio and tuning its volume [12], [14]
Locking vehicle Locking vehicle features resulting in jackware [15]
Externally connected devices Modifying files on the vehicle and on users brought-in devices connected to the vehicle

[12]
Computational resources of the vehicle Consuming computational resources (such as memory space and CPU cycles) to disrupt

vehicle actual operations [13]
Sensitive and private data Stealing private and sensitive data [16]
Passengers safety Threatening passengers lives by disabling vehicle safety functions
CAVs Using the compromised vehicle to send misleading, false, and bogus data to CAVs

Fig. 1. Typical V2V, V2X Cyber Threat Scenario in Smart Autonomous
Vehicles

Wi-Fi hotspot services, communicate with other vehicles and

ITS infrastructures, and support advanced applications such

as over-the-air (OTA) ECU firmware update [7]. As discussed

above, many modern attacks do not require physical access to a

vehicle instead can now be carried out remotely over wireless

by exploiting communication vulnerabilities among vehicles

and other connected network services. This allows attackers to

compromise more vehicles with relative ease whereas later a

compromised vehicle can also be used to attack other vehicles.

Considering the performance requirements of AVs, it is

important to detect a malware in real-time to timely protect

any physical and financial damage and loss of human lives.

Current approaches to detect such malware either employ

static analysis or dynamic analysis techniques. The former

techniques are good at detecting active malware, i.e., the mal-

ware that is directly targeting some unauthorized resource or

feature of the vehicle, however, such techniques fail to detect

any passive malware that exploits some system vulnerability

through monitoring run-time data of the vehicle. The latter

techniques are more robust and rigorous as they can detect

any variant of malware through observing run-time behavior

of systems [18] but such approaches typically require more

computational resources which is not the case in autonomous

vehicles. Alternatively, some approaches attempted to install

vehicle gateways that allow only authorised communication

to the vehicles and introduced vehicle Intrusion Detection

Systems (IDSs) to detect abnormal behaviors in the Controller

Area Network (CAN) [19]. However, it is difficult for a gate-

way or IDS to block these actions in advance, as most malware

and adware are behavior-based. Therefore, to detect unknown

malware threats, it is vital to introduce a methodology that can

detect suspicious behaviors and analyze anomalous indicators

rigorously (i.e., negligible false alarms) and efficiently (i.e., in

real-time).

The rest of the paper is structured as follows: Section II

provides background of autonomous vehicles, while Sec-

tion III sketches state of the art about rigorous malware de-

tection techniques. Section IV explains our malware detection

methodology, while Section V presents experimental setup,

experiment results and critical discussion. Finally, we conclude

in Section VI.

II. BACKGROUND

Modern smart Autonomous vehicles (AVs) will strikingly

change the worldwide transport industry and smart environ-

ments. AVs where improving the standard of smart living

and road safety also require to wirelessly communicate with

other vehicles and devices to efficiently and securely plan safe

travel. The number of traffic accidents are reducing day by day.

In Addition, people with disabilities can significantly taking

advantage from smart cities and ITS technology preventing

injuries and deaths in combat [20]. However, due to unreliable

wireless communication among them, such vehicles are an

easy target of malware attacks that may compromise vehicles’

autonomy, increase inter-vehicle communication latency, and

drain vehicles’ power. Such compromises may result in traffic

congestion, threaten the safety of passengers, and can result in

financial loss. Therefore, real-time detection of such attacks is

key to the safe smart transportation and ITS. With the increas-

ing trend of Internet of Things (IoT), ITS aims to improve the

efficiency and safety of AV networks [21]. ITS in societies that

are converting into smart cities becomes more vulnerable to

cyber-threat and cyber-terrorism [22]. Different types of ITS

are vulnerable to attacks. The success of remote attacks on

autonomous vehicles is information sharing by the vehicles

over a wireless medium which increases the susceptibility

of the vehicles to different security and malicious attacks.

Consequently, data exchange including input and output data

as well as protecting ECUs inside the AVs are among the most

significant security issues for the intelligent vehicles. ECUs

are the embedded system that monitors electrical systems or

subsystems in a conventional vehicle for instance the energy

conversion, the air conditioner, vehicle speed and the warnings

on the instrument panel [23].

An AV is not just a massive car with four wheel but is made

up of networked embedded computers that are responsible

3

for performing different tasks in a smart and timely manner.

Therefore, an AV is a diverse and complex environment that

comprises of several types of Operating System (OS) installed

among different vehicles as shown in Figure 2. Although ECU

act as a brain for AVs and is considered as minicomputers yet

they vary in size, purpose and the OS they run. Thus, we

can divide ECUs into two categories: managed by realtime

operating systems (RTOS) and general purpose operating

system (GPOS). Other than that, Robotic operating system

(ROS) is also used. ROS is not an operating system but is an

open-source robotics framework having collection of software

for robot software development. Tesla, a leading automotive

car vehicle is a new energy innovation owns a self-developed

OS [24] is now testing Windows OS [25] and Tesla patent

seems to be working on windows operating system [26]

Fig. 2. Types of Operating Systems (OS) used in Smart Autonomous Vehicles

III. RELATED WORK

Numerous static and dynamic analysis techniques have been

presented by the scholarly community to detect and classify

malware. Both of the techniques, static and dynamic have their

own benefits and limitations. This section depicts state-of-the-

art techniques that pertain to malware analysis.

In [27] authors have proposed the analysis of malware on

X86-based IoT devices in an autonomous driving approach

features based on static analysis and using machine learning

to solve problems of resource overhead for dynamic analysis.

Paper [28], authors have used Bayesian Network (BN) model

to analyse cyber risk in AVs by introducing the variables and

causal relationships derived from the Common Vulnerability

Scoring Scheme (CVSS). The model is then applied on

the GPS system of the connected AVs without cyptographic

authentication.

Beside other malware attacks, ransomware attacks are

emerging and their analysis are used widely by the scholarly

community now-a-days. In [29], the authors presented a case

study of CryptoLuck Ransomware to highlight the importance

of behavioral-based Ransomware detection. In [30], authors

statically analyzed process monitoring on file events, processor

usage, and I/O rates. In [31], authors suggested that static

detection technique as used by [32], can help in evading

anti-virus (AV). In [33], authors performed ransomware be-

havioral analysis on windows platform of 14 strains of ran-

somware. They observed the individual behavioral pattern of

ransomware. In [34], authors presented an automated detection

and analysis of ransomware to monitor dynamic behavior by

generating API calls and control flow graph (CFG). Authors

in [35], developed a dynamic analysis system (UNVEIL),

designed specifically for the detection of ransomware by

automatically generating an artificial user environment.

There are several other research efforts which follow Ma-

chine Learning (ML) based approaches to detect malware

exploiting the dynamic or runtime features of executing ap-

plications. Another proposed study of dynamic analysis using

machine learning through monitoring file system activity of

windows platform was conducted by [31]. They used classifi-

cation technique by considering a wide range of features such

as Windows API calls, Registry Key Operations, File Sys-

tem Operations, file operations performed per File Extension,

Directory Operations, Dropped Files, and Strings to classify

malware.

Other than static, dynamic and ML approaches, Hardware

performance counters (represent the true execution behaviors

of the application) are typically being employed nowadays to

measure the performance of the under investigation software

[36]. However, none of the existing dynamic and ML malware

detection techniques use hardware performance counter for

malware classification specifically in autonomous vehicles. Al-

though, however, [37] employs a dynamic approach to classify

malware based on their hardware performance counters and

[38] have used hardware performance counter for ransomware

classification on Windows platform.

It has been observed from the literature work that most of

the techniques [31] can either only observe System/API calls

[33], [34], [39], file operations [35], processor usage [30],

or registry activities [40]. Some of the studies are based on

static analysis [29] whereas other proposed techniques mainly

focus on dynamic analysis for classification. A lot of solutions

have been developed against malware and ransomware as well

as ransomware classification among families that significantly

improve the user’s security. A few researches [41]–[44] have

shown that there is a lack of behavioral analysis that use

hybrid technique to classify malware in AVs using API Calls,

File operations, Registry keys, and Hardware performance

counter based features (i.e., processor usage, cache-misses,

memory usage, page faults, instructions, branches, etc.). So

far, hardware-based features have been analyzed on malware

and non-malware apps, but have not been considered for

AVs. There exists no such work that considers all these

important aspects in a single methodology. We believe that

collective consideration of all of the above-stated aspects

can significantly improve malware detection rates in AVs.

Therefore, this study encompasses efficient malware detection

mechanisms in terms of a hybrid approach that utilizes static

as well as dynamic analysis focuses on the use of hardware

performance counters to analyze the runtime behavior to detect

malware. Moreover, this work shows how accurately hardware

performance counters are able to classify malware in AVs.

IV. METHODOLOGY

Autonomous vehicles (AVs) have become a core constituent

of the smart transportation system [45]. The computation

power of AVs is gradually increasing and a large amount of in-

formation exchange is required with smart components of the

4

transportation system. Information exchange with malicious

counterparts in the smart systems could produce catastrophic

results such as a change of drive-plan, sudden halt, and ignore

obstacles on the roads. Generally, malware exploits different

vulnerabilities of the computer system (i.e., hardware platform,

operating system, and application software). However, consid-

ering the drastic implications of the malicious activity in AVs,

we should formulate a holistic approach considering handling

precision, vehicle efficiency, and digital security.

With the static-analysis, malware detection can take place

efficiently by merely matching the known application features

such as signatures (before application execution) requiring

few computational resources. Therefore, static analysis pro-

vides early detection to mitigate malicious activities during

autonomous vehicle operation. However, the static analysis

does not encompass the zero-day attacks and obfuscated

(hidden or purposefully crafted features such as like packed or

compressed programs or indirect addressing [46]) malicious

applications. To address these issues, a dynamic analysis

based mechanism can be employed that exploits the run-

time behavior (including system hardware, operating systems

interactions, etc.) of the executing applications to classify and

detect malicious behavior. However, the proficient detection

capabilities of the dynamic analysis come along with the

high-resource consumption (CPU, memory, energy-cost, etc.).

Additionally, in the AV context, it would be too risky to rely

directly on the dynamic analysis because of potentially high

false-positive detection as compared to static analysis.

Therefore, this study encompasses efficient malware detec-

tion mechanisms in terms of a hybrid approach that utilizes

static as well as dynamic analysis. Traditionally, the proposed

models can be built using basic hybrid mechanisms, i.e., (i)

a single hybrid approach where distinctive aspects related to

both pre-/in-execution of the applications are obtained for

analysis and detection. For the obligatory requirements such

as efficient and thorough detection of malware with reduced

false-positive rate, the hybrid-approach is appropriate and

recommended.

The proposed security modules for AVs i.e., the hybrid

mechanisms Combined Hybrid Analyzer (CHA) is shown in

Figure 3. CHA adheres to a factual technical concept of using

a hybridization concept for bringing together heterogeneous

parameters (in terms of the execution requirements i.e., pre-/in-

execution based parameter extraction). As discussed above, the

utilization of this model has certain operational consequences

that hinder its practical use.

Let’s discuss the architecture of these models in detail.

The proposed CHA model considers input applications and

data to employ both pre-/in-execution feature extraction si-

multaneously. The specific features extracted can be divided

into two categories, i.e., static-analysis based features (which

can be extracted without application execution), and dynamic

features are extracted during the execution of the application

within an operating system. The static features include em-

bedded command-strings and the usage of operating system

manipulating libraries. The dynamic features (extracted during

the execution) are the activity logs related to system-wide

low-level configuration manipulations, invoking system call

Fig. 3. Combined Hybrid Analyzer (CHA)

interface to gain privileged access, and manipulation of the

operating system resources, file-system related activities, and

hardware execution profiles (i.e., low-level hardware perfor-

mance counters). These features are then combined in feature

vectors to be used for both training and validation purposes.

The Machine-Learning (ML) model training and validation

strategies along with feature selection mechanisms are dis-

cussed in Section IV-B, IV-C and IV-D. The machine learning

model i.e., J48, Naive Bayes (NB), and Random Forest (RF)

are used to classifying the applications into malware and non-

malware classes. The reason of using these machine learning

classifiers are that their results depict are better and efficient in

terms of time and computational complexity. For IoT related

malware detection algorithms complexity should be lesser as

IoTs have battery consumption problems.

For the initial investigation and proof of the concept, we

have used a dataset of executable applications MS windows

platform. We have chosen Windows based dataset for several

reasons, for instance, most of the major initiatives in automo-

tive vehicle industry use Windows based services (see Table II)

for their live communication, which is certainly a key source

of threat to such services and eventually to the vehicles [47],

[48]. Furthermore, as reported in [49], Microsoft services and

platforms are helping automakers to create smart connected

car solutions that seamlessly address their customers’ unique

needs, competitively differentiate their products and generate

new and sustainable revenue streams. The Microsoft services

do not only offer the right tools, but also allows them to keep

their data, has a secure and compliant cloud platform, and

operates at a truly global scale (given that most automotive

brands operate in many countries). Importantly, 85% of For-

tune 500 companies already rely on Microsoft’s cloud for the

afore-mentioned reasons. In principle, using such platforms,

automakers and suppliers can benefit from the billions of dol-

lars that Microsoft has already invested in the cloud services.

For instance, Azure already offers more than 200 services

in 38 worldwide regions, with robust measures for security

and the global compliance and privacy regulations that are

required to support connected cars, letting automakers focus

on innovation rather than building out their own cloud-based

5

TABLE II
MICROSOFT WINDOWS BASED SERVICES FOR AUTOMOTIVE VEHICLES

Automotive Brand Goal Windows based Services

Porsche Holding Mobile-first and Virtual Workplace
Office 365
Teams
Microsoft’s Cloud Services

Brimborg Online Stream-based Services for Rentals Microsoft Dynamic 365

Mercedes-Benz Connected Cars Platform
Microsoft’s Cloud-based containerized platform
Azure Monitor

Moovit
Real-time in-city and out-city transits
Mobility-as-a-service

Azure Maps

Daimler

Detroit Connect platform
Virtual Technician
Remote Updates
Remote Analytics

Azure
Microsoft’s cloud computing service

infrastructure. Consequently, Microsoft aspires to empower

automakers in their goals for fully autonomous driving, with

elegant machine learning and artificial intelligence capabilities,

as well as advanced mapping services. For instance, more

recently Microsoft has partnered with TomTom, HERE and

Esri, to create more intelligent location-based services across

Microsoft [50].

Furthermore, pseudo-code for the proposed security mod-

ules for AVs i.e., the hybrid mechanisms CHA is shown in

Algorithm 1. Table III represents the notations used in pseudo-

code for CHA.

TABLE III
ABBREVIATIONS USED IN PSEUDO-CODE FOR CHA

i application
f1 feature set 1 against static analysis
f2 feature set 2 against dynamic analysis
m machine learning algorithms (RF, J48, Naı̈ve Bayes)

Algorithm 1: Pseudo-code for CHA

input : Applications as i

output: Classification as malware or non−malware

1 Process:

2 Extract i in Cuckoo Sandbox

3 Analyze i for static analysis

4 Get list of static (f)1
5 Analyze i further for dynamic analysis

6 Get list of dynamic (f)2
7 Set (f)1 and (f)2 for analyzer m

8 m predicted result of the i

9 Get output from predictive modeling

10 if Yes then

11 label as malware;

12 end

13 else

14 label as non−malware;

15 end

A. Dataset

As discussed in the previous section, we have used a

dataset of 1000 malware applications of different families (e.g.,

crypto, petya, locker) downloaded from Virusshare.com repos-

itory [51]. Similarly, 1000 non-malware applications (freely

available apps) are included resulting in a dataset of 2000

applications. We use a three-step ML-based mechanism: (i)

feature extraction, (ii) feature selection, and (ii) application

classification

B. Feature Extraction

The choice of a good feature set is the initial phase of

any data mining approach. A few of the extracted features

are inspired by previous work [31], [38], however, more

features have also been added in this research i.e., hardware

performance counters [37], [38], DLLs [52], and strings [16],

[31], [53]. We have extracted a total of 1713 features and

10985 features during static and dynamic analysis, respec-

tively. Cuckoo Sandbox is selected in a Linux platform for

automated dynamic analysis of Windows executable malware.

It automatically runs and analyzes files and collect comprehen-

sive analysis results that outline what the malware does while

running inside an isolated operating system. All processes

and file changes are tracked and logged. Generated logs

and behavioral analysis reports are recorded by Cuckoo. For

validation, we have used the K-fold (k=10) cross-validation

mechanism and compare the malware detection accuracy of

different classifiers to make sure that the dataset is used

uniformly without any biasness. This results in unbiased

training and testing cycles producing the results on which

we could conclude with confidence. For each cycle of the

training/testing, a 20% testing and 80% training partition was

employed. A list of features extracted are shown in Tables V

and VI as sketched in Appendix A.

C. Feature Selection

The reduced number of features increases ML model per-

formance with minor or negligible effects on classification

decisions. Moreover, feature selection minimizes the over-

fitting factors and the time required for training/testing in-

creases the accuracy to generate simple interpreted models.

For this, we employ the information gain criterion [54]. A

specific method called infogainAttributeEval from Weka is

applied for attribute selection. The value of information gain

determines how important a given attribute of the feature

6

vectors is by assigning weights to emphasise the effectiveness

of the features. Therefore, the top 25 features out of 1713

selected after applying the feature selection infogain algorithm

for static analysis, and top 47 features out of 10985 were

selected for dynamic analysis. Figure 4 depicts the top 10

static features formulated using the Info-gain method where

X-Axis shows the rank of the feature.

Fig. 4. Top-10 ranked static features

D. Model Selection and Training

Considering the nature of the employed dataset (i.e., cate-

gorical and mixed data), this study has been conducted using

the three well-known ML classifiers: Naive Bayes (NB) [55],

Random Forest (RF) [56], [57], and Decision Tree (J48) [58],

[59] which are more suitable for categorical and mixed data.

The area under the ROC Curve [60] is a common mechanism

to calculate the performance of a certain ML classifier. A

higher value (i.e., near to 1) reflects the better classification

capability of the ML classifier. Figure 5a shows the ROC

Curve for the CHA. As depicted in Figure 5a, the RF stands

prominent as compared to other ML classifiers that have

attained area under the ROC curve up to 0.9816 for both

classes (i.e., malware and non-malware). This indicates that

the RF is the best performing classification model as compared

to the other two models.

V. EXPERIMENTAL SETUP, RESULTS AND DISCUSSION

We have performed experiments on a stand-alone machine

having specifications shown in Table IV.

TABLE IV
SYSTEM CONFIGURATION

CPU Intel core 2 duo 2.13GHz

System Type 32 bit
OS Ubuntu 14.04 LTS
Data Mining Tool WEKA 3.8
Platform Windows XP and Windows 7
RAM 3GB
Sandbox Cuckoo sandbox
Virtual Machine VMWare

For performance evaluation of selected classifiers, we em-

ployed the following metrics.

Accuracy: We have used accuracy to evaluate the results.

The accuracy is the fraction of the total number of correctly

classified applications as malware or non-malware. Where TP,

TN, FP, and FN stands for True Positive, True Negative, False

Positive, and False Negative respectively.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision: Precision denotes the proportion of the predicted

correctly classified applications to the total of all applications

that are correctly real positives.

Precision =
TP

TP + FP
(2)

Recall: is the fraction of the actual apps that are correctly

classifies to the total number of the apps that are classified

correctly or incorrectly.

Recall =
TP

TP + FN
(3)

F-Measure: F-measure is the harmonic mean of precision and

recall. F measure represents the value that tells how much the

model is capable of making fine distinctions.

FMeasure = 2×
Precision ∗Recall

Precision+Recall
(4)

For evaluation, accuracy-related results are reported which can

be defined as the fraction of the total number of correctly

classified applications as malware or non-malware [61]. Figure

6 shows the accuracy results for the proposed model CHA for

all three ML classifiers. It is evident from the results that the

CHA have shown excellent accuracy indicating that a good-

percentage of known malware can be identified using time-

/cost-efficient and safer mechanism as compared to risking

autonomous vehicle operations with dynamic analysis for all

the potential applications.

Based on the values of the True Positive and True Negative,

we have calculated precision, recall, and F-measure for CHA

approach. The results of the precision and recall of classifi-

cation using all the three classifiers of the CHA approach are

explained in Figure 6. Results depict that RF generated 32.7%

and 5.5% improvement in precision as compared to NB and

J48. The values of precision for RF, NB, and J48 are 0.96,

0.723, and 0.91, respectively. RF attained the highest values

of precision and recall.

VI. CONCLUSION

With the advancement in technology and use of smart con-

nected vehicles, we can find examples where cybercriminals

have already proven their intent by exploiting several vul-

nerabilities in the smart transportation systems of automotive

ecosystem. we expect to see dramatic increase of cyber attacks

against them. The vulnerabilities in the software of AVs may

prove far more dangerous than malware that may appear in

personal computers and mobile devices. Malicious applica-

tions harm the lives of drivers, passengers as people who are

not using AVs. In this paper, we performed a comprehensive

7

(a) Combined Hierarchy Analyzer (CHA)

Fig. 5. ROC curve for CHA

Fig. 6. Precision, Recall and F-measure of CHA

analysis of cybersecurity threat of malware targeting smart

transportation systems of connected and autonomous vehicles

by proposing hybrid model CHA. The experimentation dis-

cussed in the article provides a proof of concept for securing

AV systems in general and automotive CPS in particular, that

is adaptive, lightweight, and promises accurate results.

For the future work, we plan to develop future of intelli-

gent transportation system in smart cities that can efficiently

detect high priority attacks based on IDS and evaluate their

effectiveness using simulations.

REFERENCES

[1] M. Cheah, S. A. Shaikh, J. Bryans, and P. Wooderson, “Building an au-
tomotive security assurance case using systematic security evaluations,”
Computers & Security, vol. 77, pp. 360–379, 2018.

[2] Q. Luo and J. Liu, “Wireless telematics systems in emerging intelligent
and connected vehicles: Threats and solutions,” IEEE Wireless Commu-

nications, vol. 25, no. 6, pp. 113–119, 2018.
[3] B. Canis, “Issues in autonomous vehicle testing and deployment,”

Congressional Research Service, Tech. Rep., 2019.
[4] O. Solon, “Team of hackers take remote control of tesla model s from

12 miles away,” The Guardian, vol. 20, 2016.
[5] C. Miller and C. Valasek, “Remote exploitation of an unaltered passenger

vehicle,” Black Hat USA, vol. 2015, no. S 91, 2015.
[6] S. Malik and W. Sun, “Analysis and simulation of cyber attacks against

connected and autonomous vehicles,” in 2020 International Conference

on Connected and Autonomous Driving (MetroCAD). IEEE, 2020, pp.
62–70.

[7] V. K. Kukkala, S. Pasricha, and T. Bradley, “Sedan: Security-aware
design of time-critical automotive networks,” IEEE Transactions on

Vehicular Technology, vol. 69, no. 8, pp. 9017–9030, 2020.

APPENDIX

LIST OF EXTRACTED FEATURES

In this section we provide two tables that sketch the list of extracted features used in our malware analysis/experiment.
TABLE V

LIST OF EXTRACTED FEATURES (1)

Features Parameters Classes Description

Windows
API Calls

API:VirtualProtectEx
API:GetVolumeNameForVolumeMountPointW
API:HttpOpenRequestA
API:HttpSendRequestA
API:timeGetTime
API:DeleteUrlCacheEntryW
API:GetDiskFreeSpaceExW
API:MessageBoxTimeoutA
API:CreateDirectoryW
API:InternetConnectW
API:listen
API:RegDeleteValueW
API:gethostbyname
API:CryptDecodeObjectEx
API:GetCursorPos
API:GetFileSize
API:FindWindowA
API:socket
API:LdrGetProcedureAddress
API:CryptGenKey
API: anomaly
API:NtQueryDirectoryFile
API:InternetCloseHandle
API:WSASend
API:GetFileType
API:SearchPathW
API:RegQueryValueExW
API:SendNotifyMessageA
API:RegOpenKeyExA
API:CryptHashData
API:GetSystemMetrics
API:GetDiskFreeSpaceW
API:NtClose
API:FindWindowW
. . .

Memory usage
System services
HTTP information
Internet handle
Process Handling
disk R/W information
System configuration settings
Registry Key information and security
Sending messages to windows
File Path/File size information
Socket Connection information
Anomaly Detector API
Cryptography API: Next Generation
Folder Paths
Thread execution
Certificate store, e.g.,
file-based or memory-based stores
Addresses of exported functions
Virtual addresses
Pointer resources
System time information

To analyze the traces
of invocations of native functions

File opera-
tions

FILES:DELETED:C:\WINDOWS\
FILES:DELETED:C:\∼\Temp\is-B4RA1.tmp\
FILES:DELETED:C:\WINDOWS\system32\
FILES:OPENED:C:\WINDOWS\AppPatch\
FILES:OPENED:C:\SwSetup\SP63752\
FILES:READ:C:\∼\Start Menu\
FILES:READ:?\PIPE\
FILES:READ:C:\∼\Application Data\
FILES:WRITTEN:C:\Program Files\∼\plugins\
FILES:WRITTEN:C:\∼\Application Data\
FILES:WRITTEN:C:\
. . .

File Read Operations
File Write Operations
File Delete Operations

To analyze read, write, open
and delete operations

TABLE VI
LIST OF EXTRACTED FEATURES (2)

Features Parameters Classes Description

Registry
Operations

REG:DELETED:HKEY CLASSES ROOT\
REG:DELETED:HKEY CURRENT USER\∼\–
O&O DiskImage Professional\
REG:DELETED:HKEY LOCAL MACHINE\SOFTWARE\–
Classes\.tar\
REG:OPENED:HKEY LOCAL MACHINE\∼ Installations\
REG:OPENED:HKEY CURRENT USER\∼\Disketch\
REG:OPENED:HKEY LOCAL MACHINE\∼\–
Products\669F5A8189FAB114E826BA92DFB67647\
REG:READ:HKEY LOCAL MACHINE\∼\Abiosdsk\
REG:READ:HKEY LOCAL MACHINE\∼\–
Installed Components\-
{630b1da0-b465-11d1-9948-00c04f98bbc9}\
REG:READ:HKEY LOCAL MACHINE\∼\ql1080\
REG:WRITTEN:HKEY LOCAL MACHINE\∼\–
CLSID\{4C6EEFFD-CFF7-4D35-A8F5-52BAA2CC07FF}\
REG:WRITTEN:HKEY LOCAL MACHINE\∼\Boot file system\
REG:WRITTEN:HKEY LOCAL MACHINE\∼\–
{B3D7DD5D-510B-477C-9521-2BCBCC91762C}\ProxyStubClsid\
REG:WRITTEN:HKEY LOCAL MACHINE\∼\–
{58DA8D8F-9D6A-101B-AFC0-4210102A8DA7}\ProgID\
REG:WRITTEN:HKEY LOCAL MACHINE\∼\–
shellex\PropertySheetHandlers\–
{B41DB860-8EE4-11D2-9906-E49FADC173CA}\
. . .

Registry Read Operations
Registry Write Operations
Registry Delete Operations

To analyze read,
write, open
and delete operations

Embedded
Strings

STR:setp32se.dll
STR:SRP-3DES-EDE-CBC-SHA
STR:No action was taken as BitLocker Drive Encryption is in raw access mode
STR:Warning: Deleting a key that isn’t empty: ”%s\%s”
STR:Click Uninstall to remove TrueCrypt from this system.
STR:2http://crt.comodoca.com/COMODORSACodeSigningCA.crt0$
STR:CRYPTO: PrivateKey: Failed to import key
. . .

Crypto functions
Imported libraries
Network Information
Strings

To analyze files
having ASCII and
Unicode strings
in binary data
for quick
overview of
malware capacity
and ability

Dynamic
Link
Libraries

Kernel32.dll
Advapi32.dll
mscoree.dll
ADVAPI32.dll
WSock32.dll
. . .

Network communication
Operating system or
execution environment

To analyze
required library
functions

Hardware
Perfor-
mance
Counters

Clock cycles
Cache hits
Cache misses
Branch instructions
Branch misses
Retired instructions
CPUs utilized
Task clock
Context switching
CPU migrations
Page faults
. . .

To analyze
the true execution
behaviours of
applications

10

[8] A. Skatkov, A. Bryukhovetskiy, D. Moiseev, and V. Shevchenko, “De-
tecting vulnerabilities of information resources of unmanned vehicles
method based on dynamic evaluation of markov sequences properties,”
in Journal of Physics: Conference Series, vol. 1515, no. 2. IOP
Publishing, 2020, p. 022033.

[9] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
S. Savage, K. Koscher, A. Czeskis, F. Roesner, T. Kohno et al.,
“Comprehensive experimental analyses of automotive attack surfaces.”
in USENIX Security Symposium, vol. 4. San Francisco, 2011, pp. 447–
462.

[10] M. Hamad and V. Prevelakis, “Savta: A hybrid vehicular threat model:
Overview and case study,” Information, vol. 11, no. 5, p. 273, 2020.

[11] M. Dunn, “Toyota’s killer firmware: Bad design and its consequences,”
EDN Network, vol. 28, 2013.

[12] S. Ornes, “How to hack a self-driving car,” Physics World, vol. 33, no. 8,
p. 37, 2020.

[13] M. Dibaei, X. Zheng, K. Jiang, R. Abbas, S. Liu, Y. Zhang, Y. Xiang,
and S. Yu, “Attacks and defences on intelligent connected vehicles: A
survey,” Digital Communications and Networks, 2020.

[14] H. Olufowobi and G. Bloom, “Connected cars: Automotive cyberse-
curity and privacy for smart cities,” in Smart cities cybersecurity and

privacy. Elsevier, 2019, pp. 227–240.
[15] S. Cobb, “Rot: Ransomware of things,” 2017.
[16] Z. Zhang, P. Qi, and W. Wang, “Dynamic malware analysis with

feature engineering and feature learning,” in Proceedings of the AAAI

Conference on Artificial Intelligence, vol. 34, no. 01, 2020, pp. 1210–
1217.

[17] C. David and S. Fry, “Automotive security best practices,” Recommenda-

tions for security and privacy in the era of the next-generation car. On-

line available: https://www. mcafee. com/enterprise/enus/assets/white-

papers/wp-automotive-security. pdf, 2016.
[18] M. T. Khan, D. Serpanos, and H. Shrobe, “Armet: Behavior-based secure

and resilient industrial control systems,” Proceedings of the IEEE, vol.
106, no. 1, pp. 129–143, 2017.

[19] T. Hoppe, S. Kiltz, and J. Dittmann, “Applying intrusion detection
to automotive it-early insights and remaining challenges,” Journal of

Information Assurance and Security (JIAS), vol. 4, no. 6, pp. 226–235,
2009.

[20] Y. Wiseman, “Autonomous vehicles,” in Encyclopedia of Information

Science and Technology, Fifth Edition. IGI Global, 2021, pp. 1–11.
[21] F. Zhou, Q. Yang, T. Zhong, D. Chen, and N. Zhang, “Variational graph

neural networks for road traffic prediction in intelligent transportation
systems,” IEEE Transactions on Industrial Informatics, 2020.

[22] B. Han, B. Wu, Q. Nguyen, R. Camargo, and I. Arancibia, “The
threat of cyber-terrorism & security in intelligent transportation systems
architecture.”

[23] K. Ç. Bayindir, M. A. Gözüküçük, and A. Teke, “A comprehensive
overview of hybrid electric vehicle: Powertrain configurations, power-
train control techniques and electronic control units,” Energy conversion

and Management, vol. 52, no. 2, pp. 1305–1313, 2011.
[24] P. Liu, L. Dong, X. Shao, M. Lin, Y. Gu, and X. Hou, “Research on

the development trend of vehicle operating system in china,” in The 2nd

International Conference on Computing and Data Science, 2021, pp.
1–6.

[25] Z. Gittins and M. Soltys, “Malware persistence mechanisms,” Procedia

Computer Science, vol. 176, pp. 88–97, 2020.
[26] Patent shows new tesla windows operating sys-

tesm. https://www.greencarreports.com/news/1120662
patent-shows-new-tesla-windows-operating-system.

[27] W. Niu, X. Zhang, X. Du, T. Hu, X. Xie, and N. Guizani, “Detect-
ing malware on x86-based iot devices in autonomous driving,” IEEE

Wireless Communications, vol. 26, no. 4, pp. 80–87, 2019.
[28] B. Sheehan, F. Murphy, M. Mullins, and C. Ryan, “Connected and

autonomous vehicles: A cyber-risk classification framework,” Trans-

portation research part A: policy and practice, vol. 124, pp. 523–536,
2019.

[29] D. Nieuwenhuizen, “A behavioural-based approach to ransomware de-
tection,” Whitepaper. MWR Labs Whitepaper, 2017.

[30] S. Song, B. Kim, and S. Lee, “The effective ransomware prevention
technique using process monitoring on android platform,” Mobile Infor-

mation Systems, vol. 2016, 2016.
[31] D. Sgandurra, L. Muñoz-González, R. Mohsen, and E. C. Lupu, “Au-

tomated dynamic analysis of ransomware: Benefits, limitations and use
for detection,” arXiv preprint arXiv:1609.03020, 2016.

[32] U. Sternfeld, “Operation kofer: Mutating ransomware enters the fray,”
2015.

[33] N. Hampton, Z. Baig, and S. Zeadally, “Ransomware behavioural
analysis on windows platforms,” Journal of Information Security and

Applications, vol. 40, pp. 44–51, 2018.
[34] Z.-G. Chen, H.-S. Kang, S.-N. Yin, and S.-R. Kim, “Automatic ran-

somware detection and analysis based on dynamic api calls flow graph,”
in Proceedings of the International Conference on Research in Adaptive

and Convergent Systems. ACM, 2017, pp. 196–201.
[35] A. Kharraz, S. Arshad, C. Mulliner, W. K. Robertson, and E. Kirda,

“Unveil: A large-scale, automated approach to detecting ransomware.”
in USENIX Security Symposium, 2016, pp. 757–772.

[36] F. Beneventi, A. Bartolini, C. Cavazzoni, and L. Benini, “Continuous
learning of hpc infrastructure models using big data analytics and in-
memory processing tools,” in Proceedings of the Conference on Design,

Automation & Test in Europe. European Design and Automation
Association, 2017, pp. 1038–1043.

[37] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman, S. Sethu-
madhavan, and S. Stolfo, “On the feasibility of online malware detection
with performance counters,” in ACM SIGARCH Computer Architecture

News, vol. 41, no. 3. ACM, 2013, pp. 559–570.
[38] S. Aurangzeb, R. N. B. Rais, M. Aleem, M. A. Islam, and M. A. Iqbal,

“On the classification of microsoft-windows ransomware using hardware
profile,” PeerJ Computer Science, vol. 7, p. e361, 2021.

[39] D. Maiorca, F. Mercaldo, G. Giacinto, C. A. Visaggio, and F. Martinelli,
“R-packdroid: Api package-based characterization and detection of
mobile ransomware,” in Proceedings of the Symposium on Applied

Computing. ACM, 2017, pp. 1718–1723.
[40] P. Zavarsky, D. Lindskog et al., “Experimental analysis of ransomware

on windows and android platforms: Evolution and characterization,”
Procedia Computer Science, vol. 94, pp. 465–472, 2016.

[41] B. A. S. Al-rimy, M. A. Maarof, and S. Z. M. Shaid, “A 0-day
aware crypto-ransomware early behavioral detection framework,” in
International Conference of Reliable Information and Communication

Technology. Springer, 2017, pp. 758–766.
[42] N. Andronio, S. Zanero, and F. Maggi, “Heldroid: Dissecting and

detecting mobile ransomware,” in International Workshop on Recent

Advances in Intrusion Detection. Springer, 2015, pp. 382–404.
[43] Ö. Aslan and R. Samet, “Investigation of possibilities to detect malware

using existing tools,” in 14th ACS/IEEE International Conference on

Computer Systems and Applications AICCSA, 2017.
[44] G. Kaur, R. Dhir, and M. Singh, “Anatomy of ransomware malware:

detection, analysis and reporting,” International Journal of Security and

Networks, vol. 12, no. 3, pp. 188–197, 2017.
[45] A. Ferdowsi, U. Challita, and W. Saad, “Deep learning for reliable mo-

bile edge analytics in intelligent transportation systems: An overview,”
ieee vehicular technology magazine, vol. 14, no. 1, pp. 62–70, 2019.

[46] D. Ucci, L. Aniello, and R. Baldoni, “Survey of machine learning
techniques for malware analysis,” Computers & Security, vol. 81, pp.
123–147, 2019.

[47] R. Coppola and M. Morisio, “Connected car: Technologies, issues, future
trends,” ACM Computing Surveys, vol. 49, no. 3, Oct. 2016.

[48] Automotive Future. https://download.microsoft.com/download/
5/0/4/5040df6f-00f1-4e91-abef-082236e7be6e/PSFK Microsoft
FutureOfAutomotive.pdf.

[49] Microsoft Connected Vehicle Platform helps Automakers
Transform Cars. https://blogs.microsoft.com/blog/2017/01/05/
microsoft-connected-vehicle-platform-helps-automakers-transform-cars/.

[50] As Location Data Grows, Microsoft Partners
with Mapping Companies to Build next World
Graph. https://blogs.microsoft.com/blog/2016/12/14/
location-data-grows-microsoft-partners-mapping-companies-build-next-world-graph/
#sm.0001ido1tzj63f0dztc1xdwcoy8hd.

[51] Y. VirusShare, “Virusshare. com–because sharing is caring,” 2019.
[52] A. Arabo, R. Dijoux, T. Poulain, and G. Chevalier, “Detecting ran-

somware using process behavior analysis,” Procedia Computer Science,
vol. 168, pp. 289–296, 2020.

[53] J. Hwang, J. Kim, S. Lee, and K. Kim, “Two-stage ransomware detection
using dynamic analysis and machine learning techniques,” Wireless

Personal Communications, vol. 112, no. 4, pp. 2597–2609, 2020.
[54] C. E. Shannon, “A mathematical theory of communication, part ii,” Bell

Syst. Tech. J., vol. 27, pp. 623–656, 1948.
[55] K. S. Jones, Readings in information retrieval. Morgan Kaufmann,

1997.
[56] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.

5–32, 2001.
[57] A. Liaw, M. Wiener et al., “Classification and regression by randomfor-

est,” R news, vol. 2, no. 3, pp. 18–22, 2002.

https://www.greencarreports.com/news/1120662_patent-shows-new-tesla-windows-operating-system
https://www.greencarreports.com/news/1120662_patent-shows-new-tesla-windows-operating-system
https://download.microsoft.com/download/5/0/4/5040df6f-00f1-4e91-abef-082236e7be6e/PSFK_Microsoft_FutureOfAutomotive.pdf
https://download.microsoft.com/download/5/0/4/5040df6f-00f1-4e91-abef-082236e7be6e/PSFK_Microsoft_FutureOfAutomotive.pdf
https://download.microsoft.com/download/5/0/4/5040df6f-00f1-4e91-abef-082236e7be6e/PSFK_Microsoft_FutureOfAutomotive.pdf
https://blogs.microsoft.com/blog/2017/01/05/microsoft-connected-vehicle-platform-helps-automakers-transform-cars/
https://blogs.microsoft.com/blog/2017/01/05/microsoft-connected-vehicle-platform-helps-automakers-transform-cars/
https://blogs.microsoft.com/blog/2016/12/14/location-data-grows-microsoft-partners-mapping-companies-build -next-world-graph/#sm.0001ido1tzj63f0dztc1xdwcoy8hd
https://blogs.microsoft.com/blog/2016/12/14/location-data-grows-microsoft-partners-mapping-companies-build -next-world-graph/#sm.0001ido1tzj63f0dztc1xdwcoy8hd
https://blogs.microsoft.com/blog/2016/12/14/location-data-grows-microsoft-partners-mapping-companies-build -next-world-graph/#sm.0001ido1tzj63f0dztc1xdwcoy8hd

11

[58] R. Kohavi, “Scaling up the accuracy of naive-bayes classifiers: a
decision-tree hybrid.” in KDD, vol. 96. Citeseer, 1996, pp. 202–207.

[59] S. L. Salzberg, “C4. 5: Programs for machine learning by j. ross quinlan.
morgan kaufmann publishers, inc., 1993,” 1994.

[60] D. J. Hand and R. J. Till, “A simple generalisation of the area under the
roc curve for multiple class classification problems,” Machine learning,
vol. 45, no. 2, pp. 171–186, 2001.

[61] H. Sayadi, N. Patel, S. M. PD, A. Sasan, S. Rafatirad, and H. Homayoun,
“Ensemble learning for effective run-time hardware-based malware
detection: A comprehensive analysis and classification,” in 2018 55th

ACM/ESDA/IEEE Design Automation Conference (DAC). IEEE, 2018,
pp. 1–6.

	Introduction
	Background
	Related Work
	Methodology
	Dataset
	Feature Extraction
	Feature Selection
	Model Selection and Training

	Experimental Setup, Results and Discussion
	Conclusion
	References
	Appendix: List of Extracted Features

