Predictive value of 4’-[methyl-11C]-thiothymidine PET volumetric parameters for local control in p16-negative oropharyngeal, hypopharyngeal, and supraglottic squamous cell carcinoma

Yohei Ouchi (ochi.yohei@kagawa-u.ac.jp)
Kagawa University Faculty of Medicine Graduate School of Medicine: Kagawa Daigaku Igakubu Daigakuin Igakukei Kenkyuka

Takehito Kishino
Kagawa University Faculty of Medicine Graduate School of Medicine: Kagawa Daigaku Igakubu Daigakuin Igakukei Kenkyuka

Takenori Miyashita
Kagawa University Faculty of Medicine Graduate School of Medicine: Kagawa Daigaku Igakubu Daigakuin Igakukei Kenkyuka

Terushige Mori
Kagawa University Faculty of Medicine Graduate School of Medicine: Kagawa Daigaku Igakubu Daigakuin Igakukei Kenkyuka

Katsuya Mitamura
Kagawa University Faculty of Medicine Graduate School of Medicine: Kagawa Daigaku Igakubu Daigakuin Igakukei Kenkyuka

Takashi Norikane
Kagawa University Faculty of Medicine Graduate School of Medicine: Kagawa Daigaku Igakubu Daigakuin Igakukei Kenkyuka

Yuka Nishiyama
Kagawa University Faculty of Medicine Graduate School of Medicine: Kagawa Daigaku Igakubu Daigakuin Igakukei Kenkyuka

Hiroshi Hoshikawa
Kagawa University Faculty of Medicine Graduate School of Medicine: Kagawa Daigaku Igakubu Daigakuin Igakukei Kenkyuka

Research Article

Keywords: [11C]4DST PET, Metabolic tumor volume, Head and neck carcinoma, Recurrence-free survival

Posted Date: November 28th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-2276710/v1
Abstract

Purpose: We investigated the potential of baseline 4′-[methyl-\(^{11}\text{C}\)]-thiothymidine (\(^{11}\text{C}\)4DST) PET for predicting loco-regional control with head and neck squamous cell carcinoma (HNSCC).

Methods: A retrospective analysis was performed using volumetric parameters, such as SUVmax, proliferative tumor volume (PTV), and total legion proliferation (TLP), of pretreatment \(^{11}\text{C}\)4DST PET for 91 patients with HNSCC with primary lesions in the oral cavity, hypopharynx, supraglottis, and oropharynx. As for the oropharynx, p16-negative cases were included. PTV and TLP were calculated for primary lesions and metastatic lymph nodes combined. We examined the association among the parameters and recurrence-free survival (RFS) and whether case selection focused on biological characteristics improved the accuracy of prognosis prediction.

Results: The area under the curve (AUCs) using PTV and TLP for the oropharyngeal/hypopharyngeal/supraglottis groups were high (0.91 and 0.87, respectively), whereas that of SUVmax was 0.66 (\(p < 0.01\)). On the other hand, the oral group had lower AUCs for PTV and TLP at 0.72 and 0.77. When all cases were examined, the AUC values using PTV and TLP were 0.84 and 0.83, respectively.

Conclusion: Baseline \(^{11}\text{C}\)4DST PET/CT volume-based parameters can provide important prognostic information with p16-negative oropharyngeal, hypopharyngeal, and supraglottic cancer patients.

Introduction

Head and neck cancers are responsible for more than 880000 cases and approximately 450000 deaths annually world-wide[1]. Estimates of the male-to-female ratio range from 2:1 to 4:1. Approximately 90% of all head and neck cancers are head and neck squamous cell carcinomas (HNSCCs). By incidence worldwide, HNSCC is the sixth leading cancer. Most HNSCCs are formed in the epithelial lining of the oral cavity, oropharynx, larynx, and hypopharynx[2].

Although they are the same squamous cell carcinoma, treatment strategies and prognosis differ depending on the localization of the tumor. Because lymphatic flow and anatomical function (swallowing, breathing, and effect on quality of life) of the oropharynx, hypopharynx, and supraglottic site are identical, their treatment strategies are similar[3]. The prognosis of oropharyngeal carcinoma differs depending on whether it is HPV-associated or not, and is classified according to p16 status, a surrogate marker for HPV (p16-positive oropharyngeal carcinoma is considered to have a good prognosis). Surgery is recommended for oral cancer, whereas radiotherapy and surgery are often the treatment of choice for pharyngeal and laryngeal cancer. In addition, the recommended extent of neck dissection for the treatment of cervical lymph node metastasis, which is associated with prognosis, is different for oral cavity cancer and pharyngeal/laryngeal cancer due to differences in lymphatic flow. Radiotherapy is often selected when both preservation of organ function and radical cure can be expected, whereas surgery is often chosen when the lesion is small and functional impairment is minimal[4] or radical cure with radiotherapy is difficult.
4′-[methyl-\(^{11}\)C]-thiothymidine (\(^{11}\)C\(^{4}\)DST) is a tracer for positron emission tomography (PET) developed by Toyohara et al.[5] that is resistant to thymidine phosphatase and is incorporated into DNA. Because of its characteristics, \(^{11}\)C\(^{4}\)DST PET has been suggested to be superior to 2-deoxy-2-\(^{18}\)F-fluorodeoxyglucose (\(^{18}\)F\(^{2}\)FDG) PET, which determines sites of cellular glucose metabolism, in determining cell proliferation and as an indicator for predicting therapeutic effects[6].

A histopathological study reported that overexpression of the nuclear proliferation marker Ki-67 was strongly associated with recurrence and independently predicted poor relapse-free survival (RFS, defined as the interval between the date of the initial medical examination and the date of detection of recurrent/metastatic disease clinically or by follow-up CT or other imaging modalities)[7]. However, the histopathology of cancer is heterogeneous; thus, it depends on the location of the sample. A PET study reported that \(^{11}\)C\(^{4}\)DST PET showed a higher correlation with cell proliferation, as evaluated by Ki-67 index, in non-small cell lung cancer (NSCLC) than \(^{18}\)F\(^{2}\)FDG PET; thus, this finding suggests that \(^{11}\)C\(^{4}\)DST PET/CT is a useful noninvasive modality for imaging DNA synthesis by NSCLC[8]. The present study aimed to evaluate the overall malignancy of cancerous tissue, including metastatic lesions, using pre-treatment \(^{11}\)C\(^{4}\)DST PET/CT and investigate RFS prediction accuracy of \(^{11}\)C\(^{4}\)DST PET/CT.

Our previous study reported that \(^{11}\)C\(^{4}\)DST PET may be more useful than \(^{18}\)F\(^{2}\)FDG PET for predicting clinical outcome of head and neck cancer, using volumetric parameters such as metabolic/proliferative tumor volume (M/PTV) and total lesion glycolysis/proliferation (TLG/P)[9]. It included all head and neck squamous cell carcinoma cases such as oropharyngeal, hypopharyngeal, laryngeal, oral, and maxillary carcinomas. We hypothesized that focusing on hypopharyngeal, supraglottic, and p16-negative oropharyngeal cancers, which are assumed to have similar biological characteristics, would be more useful for improving the accuracy of prognosis prediction than analyzing all head and neck cancers together; however, few reports have examined these cancers together by primary site.

The aim of the present study was to investigate the prediction accuracy of RFS in each primary site and narrowed primary sites (especially in oropharynx/hypopharynx/supraglottis) for volumetric parameters of pre-treatment \(^{11}\)C\(^{4}\)DST PET.

Material And Methods

Patients

We conducted a retrospective analysis of prospectively collected data. This retrospective cohort study evaluated the prediction accuracy of RFS using SUVmax, PTV, and TLP of \(^{11}\)C\(^{4}\)DST PET in patients with newly diagnosed HNSCC. We included patients who received initial treatment at Kagawa University Hospital between May 2011 and March 2020. Other inclusion criteria were: 1) histologically proven squamous cell carcinoma without distant metastasis, 2) head and neck cancer with primary sites in the oral cavity, oropharynx, hypopharynx, or supraglottis, 3) no prior treatment for head and neck cancer, 4) stage III/IV disease (classified by UICC 7th edition), and 5) \(^{11}\)C\(^{4}\)DST PET performed prior to treatment. For cancers of the oropharynx, the exclusion criterion was patients confirmed to be p16-positive at the time of diagnosis.
Image analysis

PTV was defined as the volume of hypermetabolic tissue with SUV greater than 2.5 within the primary tumor region and metastatic lymph nodes (PTV 2.5). TLP was calculated for $[^{11}C]4$DST PET as follows: (PTV) x (SUVmax).

Regional lymph node metastases not confirmed pathologically were diagnosed by enhanced CT or $[^{11}C]4$DST PET/CT. Criteria for detecting regional lymph node metastases by CT were as follows: 1) lymphadenopathy with a minimum diameter of 10 mm or more, 2) lymph nodes with necrosis, and 3) the appearance of crushed lymph nodes. The criterion for detection of lymph node metastasis by $[^{11}C]4$DST PET was visual confirmation. Higher $[^{11}C]4$DST PET uptake in ipsilateral lymph nodes than in surrounding tissue was considered positive. High $[^{11}C]4$DST PET uptake without positive findings on enhanced CT compared to the contralateral neck was considered negative.

Relapse was defined as exhibiting recurrence or disease progression histologically or by follow-up CT or other imaging modalities. Relapse-free was defined as having no local recurrence or distant metastasis.

Treatment and follow-up

Radiotherapy (RT) was administered at the primary tumor site and the neck once daily using 4 MV photons, at paired bilaterally opposed fields in the upper neck, and an anterior port at the lower neck. As a radical treatment, patients were irradiated with a total dose of 66–70 Gy in 2 Gy fractions once daily. After 40 Gy had been administered, the clinical target volume was reduced to encompass only the primary tumor and the involved cervical lymph nodes.

In surgical treatment (ST) cases, the primary lesion was resected with the goal of preserving function after resection as much as possible, while maintaining a radical cure. The necessity of neck dissection and the extent of dissection were determined according to the presence or absence of cervical lymph node metastasis and the extension of the primary lesion. When reconstructive surgery was required, we collaborated with plastic and gastrointestinal surgeons as necessary.

After completion of treatment, patients were followed up every 1–2 months for the first 2 years, and then every 3 months thereafter. In cases of cancer of the pharynx and larynx, pharyngolaryngoscopy was performed at each visit. In addition, CT or MRI imaging studies were performed every 3 months in the first year, and then every 4–6 months after the second year.

Radiotracer synthesis and PET/CT imaging

All imaging was performed using a Biograph mCT 64-slice PET/CT scanner (Siemens Medical Solutions USA Inc., Knoxville, TN, USA) with an axial field of view of 21.6 cm.
[11C]4DST was produced using an automated synthesizer equipped with an HM-18 cyclotron (QUPID; Sumitomo Heavy Industries Ltd., Tokyo, Japan) as synthesized by the method described in Toyohara et al. [5]. [11C]4DST emission data were acquired from mid-cranial to proximal thigh (2 minutes per bed position) at 15 minutes after intravenous injection of 4DST (7.4 MBq/kg). Unenhanced low-dose CT of the same region was performed for attenuation correction and image fusion; PET data were reconstructed with an ordered subset expectation maximization algorithm incorporating a Gaussian filtered point spread function (PSF) and time-of-flight model correction (two iterations, 21 subsets). Quantification was based on PSF-reconstructed data. [11C]4DST PET/CT was taken within 3 weeks prior to treatment initiation.

Statistical analysis

The area under curves (AUCs) for predicting RFS for each parameter (SUVmax, PTV, and TLP) were calculated for the oral cavity, oropharynx, hypopharynx, oropharynx/hypopharynx/supraglottis, and all cases. The cutoff values were also calculated. Statistical differences between relapse cases and relapse-free cases were calculated using Mann-Whitney \(U \) test. Subsequently, univariate analyses in predicting RFS were performed in the lesion of oropharynx/hypopharynx/supraglottis cases. Statistical differences between relapse and relapse-free cases were calculated using Fisher’s exact test.

Survival was estimated by the Kaplan-Meier method and analyzed using log-rank test for SUVmax, PTV, and TLP for oropharynx/hypopharynx/supraglottis cases. To evaluate the survival impact of these parameters, we estimated the hazard ratio (HR) and 95% confidence interval (95% CI) using multivariate Cox proportional hazards models. Confounding variables considered in the multivariate analyses were age (< 65 vs. \(\geq 65 \) years), treatment modality (RT vs. ST), and clinical T stage (T2/3 vs. T4). Stratification was performed by dichotomized confounding variables. All tests were 2-sided, and \(P \)-values < 0.05 were considered significant for Mann-Whitney \(U \) test, univariate analyses using Fisher’s exact test, and log-rank test. In the Cox proportional hazards models, \(P \)-values < 0.0167 were considered significant according to the Bonferroni method, as the three variables (SUVmax, PTV, and TLP) were evaluated equally. All statistical analyses were performed using EZR (https://www.jichi.ac.jp/saitama-sct/SaitamaHP.files/statmed.html)[10].

Results

The present study included 259 consecutive untreated patients with primary head and neck carcinoma who underwent [11C]4DST PET examination at our institution. From these patients, 91 patients met the eligibility criteria and participated in this study. Age, sex, primary tumor site, TNM stage, and treatment are summarized in Table 1. Representative [11C]4DST PET images of recurrent and non-recurrent cases are shown in Figure 1.

Of these, 64 patients had no recurrence and 27 had recurrence. The median observation period of relapse-free cases was 60.5 months (range 22-104 months), and that for relapse cases was 7.0 months (range 3-25 months). Focally increased [11C]4DST uptake was observed in all primary lesions.

In the RT cases, four patients received radiotherapy alone, and 39 patients received concurrent chemoradiotherapy. The details of chemotherapy agents and administration routes are: intravenous cisplatin
(CDDP; 100 mg/m²) (N = 21), nedaplatin (CDGP; 80 mg/m²) and S-1 (100 mg/day for 14 days) (N = 13),
cisplatin (CDDP; 70 mg/m²) and 5-fluorouracil (1000 mg/m² continuous infusion for 5 days) (N = 3), in-
tra-arterial cisplatin (100 mg/m²) twice during RT (N = 1), six courses of cetuximab (initial doses were 400
mg/m² and subsequent doses were 250 mg/m²) (N = 1).

In ST cases, the primary lesions were resected as follows. Total laryngopharyngoesophagectomy (N = 4),
partial hypopharyngectomy (N = 1), total laryngectomy and partial hypopharyngectomy (N = 1), total
laryngectomy (N = 8), radical tonsillectomy (N = 7), partial oropharyngectomy (N = 3), partial glossectomy (N
= 2), hemiglossectomy (N = 7), subtotal glossectomy (N = 5), segmental mandibulotomy (N = 6), marginal
mandibulotomy (N = 1), partial maxillectomy (N = 2), and endoscopic laryngo-pharyngeal surgery (N = 1)
were performed. In some cases, resection methods were duplicated. Of these, bilateral neck dissection was
performed in 33 cases and unilateral dissection in 11 cases. In addition, 34 patients required reconstructive
surgery during primary lesion resection. The following types of flaps were used for reconstruction:
anterolateral femoral flap (N = 19), rectus abdominis musculocutaneous flap (N = 5), fibula flap (N = 4), free
jejunum autograft (N = 4), forearm flap (N = 1), and pectoralis major musculocutaneous flap (N = 1). Eleven
cases received post-operative radiotherapy because of close surgical margins for the primary site or extra-
nodal extension of cervical lymph node metastasis. Details of the post-operative treatment are as follows:
concurrent chemoradiotherapy (N = 9) (66-70 Gy irradiation in all cases, cisplatin = 8 cases, nedaplatin and S-
1 = 1 case), and radiotherapy alone (N = 2).

The AUCs for prediction of relapse using SUVmax, PTV, and TLP for the oral cavity, oropharynx, hypopharynx,
oropharynx/hypopharynx/supraglottis, and all cases are shown in Table 2. The AUCs of PTV and TLP were
higher than those of SUVmax except for the primary site of the oral cavity. In the oral cavity, the AUCs of
SUVmax, PTV, and TLP were relatively low (0.76, 0.72, and 0.77, respectively). The AUCs of PTV and TLP in
the oropharynx cases were high, indicating high accuracy. In the oropharynx/hypopharynx/supraglottis
cases, the AUCs calculated using PTV and TLP were 0.91 and 0.87, respectively, while that using SUVmax
was 0.66. There was a significant difference between PTV and TLP for predicting relapse (p < 0.01).
Comparing the oropharynx/hypopharynx/supraglottis cases with all cases, the AUCs calculated using PTV
and TLP for oropharynx/hypopharynx/supraglottis cases had better results than those for all patients (0.84
and 0.83, respectively).

Univariate analysis for predicting relapse was performed for the oropharynx/hypopharynx/supraglottis cases.
The cutoff values of SUVmax, PTV, and TLP were applied and calculated from ROC curves in Table 2. There
were 13 cases of recurrence, suggesting that T stage, SUVmax, PTV, and TLP may be significant prognostic
factors (Table 3).

Figure 2 shows the relapse-free survival curves of SUVmax, PTV, and TLP for
oropharynx/hypopharynx/supraglottis cases. There were significant differences in RFS for all three
parameters. After adjustment for age, T stage, and treatment modality, only PTV and TLP were significant
prognostic factors (Table 4).

Discussion
In this study, we evaluated correlations among $^{[11]}$C4DST PET parameters and relapse-free survival for each primary site in HNSCC. As we hypothesized, the AUC of PTV was extremely high even when the three sites (oropharynx/hypopharynx/supraglottis) were evaluated together. Cox regression hazard analysis showed PTV and TLP were independent predictive markers compared to other clinical factors.

Hanamoto et al.[11] reported a correlation between $^{[18]}$F2FDG PET parameters and treatment response for each primary site in HNSCC. In laryngo-hypopharyngeal cancer (LHC), AUC ranged from 0.71 to 0.90, indicating high accuracy of PET/CT parameters to discriminate between complete and partial responders. Moreover, AUCs of metabolic tumor volume (MTV) and total lesion glycosys (TLG) were significantly higher than those of SUVs. Multivariate analysis of MTV and TLG in LHC revealed that they were independent, significant predictors. Based on these results, we hypothesized that more accurate prognosis could be predicted in $^{[11]}$C4DST PET by focusing on sites with similar biological characteristics. We hypothesized that a group of tumors with similar biological characteristics, such as oropharyngeal, hypopharyngeal and supraglottic cancers, could be examined together to predict prognosis with a high degree of accuracy and the present findings support this hypothesis.

In the present study, the AUCs of PTV and TLP in supraglottic/hypopharyngeal cancer were 0.85 and 0.89, respectively. HPV-negative oropharyngeal AUCs of PTV and TLP were also high, indicating high accuracy. On the other hand, AUCs of PTV and TLP were higher than those of SUVmax except for the primary site of the oral cavity. It is possible that accuracy could be maintained by further narrowing down the sites. Future large-scale prospective studies are needed to evaluate each cancer.

In this study, the accumulation of primary and metastatic lymph nodes were combined to calculate each PET parameter using the methodology of Ito et al.[12] Many previous reports using $^{[11]}$C4DST/$^{[18]}$F2FDG and $^{[18]}$F2FDG have calculated PET parameters based on the primary tumor alone[6][11][13][14][15]. However, the presence or absence of regional lymph node metastasis is considered to have an impact on RFS; therefore, the findings of the present study, in which the aggregation of all lesions with similar biological characteristics was analyzed, are useful.

We have been investigating the usefulness of PET tracers as a cell proliferation imaging agent based on their ability to be incorporated into DNA. $^{[18]}$F2FLT TLP was an independent factor for loco-regional control, as were $^{[18]}$F2FLT SUVmax and PTV for overall survival[16]. However, $^{[18]}$F2FLT is not incorporated into DNA[17], because it lacks a 30-hydroxyl, unlike thymidine. $^{[11]}$C4DST has been developed as a cell proliferation imaging agent based on its ability to be incorporated into DNA[18][19]. Therefore, in the present study we used $^{[11]}$C4DST as a tracer of cell proliferation instead of FLT.

The usefulness of $^{[11]}$C4DST PET has been reported in several parts of carcinomas. Minamimoto et al.[8] reported that $^{[11]}$C4DST PET showed a higher correlation with cell proliferation as evaluated by Ki-67 index in NSCLC than did $^{[18]}$F2FDG PET, confirming $^{[11]}$C4DST PET/CT as a valuable noninvasive modality for imaging DNA synthesis by NSCLC. They also examined the value of $^{[18]}$F2FDG and $^{[11]}$C4DST PET/CT for evaluating response to platinum-based doublet chemotherapy in advanced NSCLC. Consequently, PTV of baseline $^{[11]}$C4DST PET/CT along with MTV of baseline $^{[18]}$F2FDG PET/CT represent promising predictors of
progression-free survival (PFS), and PTV of baseline [11C]4DST PET/CT along with MTV and TLG of baseline [18F]FDG PET/CT are possible predictors of overall survival (OS) in patients with advanced NSCLC[20]. Hotta et al.[6] reported the utility of [11C]4DST and [18F]FDG PET parameters in patients with esophageal cancer. They reported that higher [18F]FDG TLG, [11C]4DST SUVmax and TLP were associated with poor PFS in the Kaplan-Meier analyses. Moreover, only the [11C]4DST PET parameters showed significant HR in Cox regression hazard model.

In head and neck cancer, Ito et al.[12] reported that [11C]4DST TLP strongly correlated with [18F]FDG TLG. ROC analysis showed that TLG3.0 and TLP2.5 had the highest prognostic ability for local recurrence and metastasis. They concluded that [18F]FDG TLG3.0 had a slightly better prognostic capacity than [11C]4DST TLP2.5. Our previous study showed that [18F]FDG MTV, [11C]4DST PTV, and TLP were significant independent factors for RFS. Therefore, our findings suggest that [11C]4DST volumetric parameters are superior to those of [18F]FDG for providing important prognostic information[9]. However, these studies have several limitations. Notably, the study population had heterogeneous tumor etiologies and was too small to enable data analysis according to primary tumor site.

Ihara-Nishishita et al.[14] reported the relationship between texture indices of [11C]4DST PET and [18F]FDG PET in oropharyngeal squamous cell carcinoma. They concluded that texture indices of the primary lesion on [11C]4DST PET may have predictive value for p16 status for targeted patients. This analysis method can measure the uniformity of intra-tumor metabolism and it can be combined with proliferative parameters to improve prognostic accuracy further.

Generally, the oropharynx is a hypermetabolic region where FDG accumulates physiologically, creating a high background that may artificially elevate SUV. Lim et al.[22] examined 176 patients with oropharyngeal cancer and reported that elevated MTV and TLG were independent predictors of death after adjustment for tumor stage. However, adjustments were not made for HPV status and treatment modality, and the patients were treated with a diversity of regimens of chemo- and/or bioradiotherapy using an unreported range of intensities.

Regarding HPV status, a previous study of 201 oropharyngeal cancer patients, including 109 HPV-positive patients, revealed that HPV-negative tumors had a significantly higher SUVmax, SUVpeak, MTV, and TLG. In univariable analysis, all PET variables were significantly associated with local control, overall survival, and disease-free survival (DFS). In multivariable analysis, TLG was significantly associated with DFS in patients with HPV-positive oropharyngeal cancer[23]. Another study also reported that TLG was significantly associated with loco-regional RFS, whereas stage was the most significant prognostic factor for distant metastasis-free survival and overall survival [24].

Although there are scattered reports of PET parameters for HPV-positive oropharyngeal cancer, there are few reports on treatment outcomes and PET parameters for HPV-negative oropharyngeal cancer. Moan et al.[25] reported that the prognostic role of [18F]FDG PET in head and neck cancer depends on HPV status. Of the 166 patients included, 48 had loco-regional and 23 had a metastatic recurrence. Only in the subgroup of HPV-unrelated head and neck carcinoma (HPV-negative oropharyngeal cancer and non-oropharyngeal cancer; n =
73) could the multivariate model be improved by including MTV. However, the correlation between prognosis and PET parameters in HPV-negative oropharyngeal cancer is unclear because only 22% of oropharyngeal cancer cases were included in the HPV-negative head and neck carcinoma group.

Pathogenesis factors, lymph node metastasis rates, and prognosis of HPV-negative oropharyngeal cancer are thought to be similar to those of laryngeal (especially supraglottic) and hypopharyngeal carcinoma. Our results support this hypothesis, and the information obtained from the volumetric parameters of \([^{11}C]4DST \) PET suggest that at least these three heterogeneous populations could be analyzed as a homogeneous population.

This study had several limitations. This study's small number of cases (65 cases of three primary sites) makes data analysis difficult. Especially, recurrence occurred in only 13 cases in oropharynx/hypopharynx/supraglottis. Thus, the number of events was insufficient to accurately perform Cox proportional hazards regression. Further case accumulation and extension of the observation period are needed to strengthen the findings of this study.

Conclusions

Baseline \([^{11}C]4DST \) PET volumetric parameters can provide important information on local control in p16-negative oropharyngeal/hypopharyngeal/supraglottic cancer patients.

Declarations

Acknowledgements

Not applicable.

Funding

No funding was received.

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Author Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Hiroshi Hoshikawa, Takehito Kishino, and Yohei Ouchi. The first draft of the manuscript was written by Yohei Ouchi and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Availability of date and materials

The datasets generated during the study and/or analyzed are available from the corresponding author on reasonable request after approval by the Ethics Committee of our institution.
Ethics approval and consent to participate

The study protocol was approved by Kagawa University Ethical Committee (approval number: 2021-056). This study was conducted in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. Written informed consent was obtained from all individual participants included in the study. Data were entered into a password-protected database and analyzed by descriptive statistics. Data anonymity was guaranteed by the use of fully de-identified database records. Informed consent was waived due to its retrospective nature.

Consent for publication

Not applicable.

Author details

Department of Otolaryngology, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa, Japan.

References

Tables
<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>68</td>
</tr>
<tr>
<td>Range</td>
<td>46-85</td>
</tr>
<tr>
<td>Sex (n)</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>80</td>
</tr>
<tr>
<td>Female</td>
<td>11</td>
</tr>
<tr>
<td>Tumor site (n)</td>
<td></td>
</tr>
<tr>
<td>Oral cavity</td>
<td>26</td>
</tr>
<tr>
<td>Oropharynx</td>
<td>24</td>
</tr>
<tr>
<td>Hypopharynx</td>
<td>25</td>
</tr>
<tr>
<td>Supraglottic</td>
<td>16</td>
</tr>
<tr>
<td>T category (n)</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>29</td>
</tr>
<tr>
<td>T3</td>
<td>32</td>
</tr>
<tr>
<td>T4a</td>
<td>30</td>
</tr>
<tr>
<td>N category (n)</td>
<td></td>
</tr>
<tr>
<td>N0</td>
<td>22</td>
</tr>
<tr>
<td>N1</td>
<td>11</td>
</tr>
<tr>
<td>N2 (a:b:c)</td>
<td>57 (2:36:19)</td>
</tr>
<tr>
<td>N3</td>
<td>1</td>
</tr>
<tr>
<td>TNM stage (n)</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>22</td>
</tr>
<tr>
<td>IV</td>
<td>69</td>
</tr>
<tr>
<td>Primary treatment (n)</td>
<td></td>
</tr>
<tr>
<td>Surgical therapy</td>
<td></td>
</tr>
<tr>
<td>Surgery alone</td>
<td>37</td>
</tr>
<tr>
<td>Post-CRT</td>
<td>11</td>
</tr>
<tr>
<td>Radiotherapy</td>
<td></td>
</tr>
</tbody>
</table>
Table 2 $[^{11}C]4DST$ PET/CT parameters of relapse and relapse-free patients

<table>
<thead>
<tr>
<th>Site</th>
<th>Parameter</th>
<th>Relapse-free median (range)</th>
<th>Relapse median (range)</th>
<th>AUC</th>
<th>95% CI</th>
<th>p value</th>
<th>Cut-off value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oropharynx + supraglottis</td>
<td>SUVmax</td>
<td>7.41 (2.67-15.38)</td>
<td>8.27 (5.63-13.49)</td>
<td>0.66</td>
<td>0.51-0.81</td>
<td>0.085</td>
<td>7.15</td>
</tr>
<tr>
<td></td>
<td>PTV</td>
<td>11.44 (1.32-37.11)</td>
<td>39.54 (11.14-96.08)</td>
<td>0.91</td>
<td>0.82-1</td>
<td><0.001</td>
<td>21.11</td>
</tr>
<tr>
<td></td>
<td>TLP</td>
<td>44.23 (4.19-192.24)</td>
<td>149.22 (46.81-468.66)</td>
<td>0.87</td>
<td>0.78-0.97</td>
<td><0.001</td>
<td>71.40</td>
</tr>
<tr>
<td>Hypopharynx</td>
<td>SUVmax</td>
<td>6.79 (4.37-13.20)</td>
<td>7.72 (5.63-13.49)</td>
<td>0.64</td>
<td>0.35-0.93</td>
<td>0.50</td>
<td>7.29</td>
</tr>
<tr>
<td></td>
<td>PTV</td>
<td>6.76 (2.68-25.11)</td>
<td>35.84 (11.14-41.71)</td>
<td>0.91</td>
<td>0.76-1</td>
<td>0.005</td>
<td>21.11</td>
</tr>
<tr>
<td></td>
<td>TLP</td>
<td>28.72 (10.02-114.48)</td>
<td>149.22 (46.81-192.05)</td>
<td>0.85</td>
<td>0.76-1</td>
<td>0.007</td>
<td>46.81</td>
</tr>
<tr>
<td>Oral cavity</td>
<td>SUVmax</td>
<td>6.64 (4.0-8.78)</td>
<td>8.02 (6.62-14.36)</td>
<td>0.76</td>
<td>0.56-0.95</td>
<td>0.027</td>
<td>6.78</td>
</tr>
<tr>
<td></td>
<td>PTV</td>
<td>16.12 (1.57-50.17)</td>
<td>30.98 (7.74-107.28)</td>
<td>0.72</td>
<td>0.52-0.92</td>
<td>0.057</td>
<td>13.67</td>
</tr>
<tr>
<td></td>
<td>TLP</td>
<td>64.06 (4.46-178.8)</td>
<td>135.62 (29.4-429.74)</td>
<td>0.77</td>
<td>0.58-0.95</td>
<td>0.021</td>
<td>62.37</td>
</tr>
<tr>
<td>All</td>
<td>SUVmax</td>
<td>7.35 (2.67-15.38)</td>
<td>8.15 (5.63-14.36)</td>
<td>0.68</td>
<td>0.57-0.79</td>
<td>0.007</td>
<td>6.62</td>
</tr>
<tr>
<td></td>
<td>PTV</td>
<td>11.44 (1.32-50.17)</td>
<td>38.37 (7.74-107.28)</td>
<td>0.84</td>
<td>0.76-0.93</td>
<td><0.001</td>
<td>21.00</td>
</tr>
<tr>
<td></td>
<td>TLP</td>
<td>44.23 (4.19-192.24)</td>
<td>149.22 (29.40-468.66)</td>
<td>0.83</td>
<td>0.75-0.92</td>
<td><0.001</td>
<td>62.37</td>
</tr>
</tbody>
</table>

SUVmax, maximum standardized uptake value; PTV, proliferative tumor volume; TLP, total lesion proliferation; AUC, area under the curve; CI, confidence interval
Table 3 Univariate analysis for relapse in oropharyngeal, supraglottic, and hypopharyngeal cancer

<table>
<thead>
<tr>
<th>Factor</th>
<th>Level</th>
<th>N</th>
<th>%</th>
<th>Odds ratio</th>
<th>95% CI</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td><65 (N=30)</td>
<td>5</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥65 (N=35)</td>
<td>8</td>
<td>23</td>
<td>1.47</td>
<td>0.37-6.53</td>
<td>0.76</td>
</tr>
<tr>
<td>T stage</td>
<td>T2,3 (N=48)</td>
<td>6</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T4 (N=17)</td>
<td>7</td>
<td>41</td>
<td>4.75</td>
<td>1.10-21.59</td>
<td>0.03</td>
</tr>
<tr>
<td>Treatment</td>
<td>Surgery (N=25)</td>
<td>7</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CRT (N=40)</td>
<td>6</td>
<td>15</td>
<td>0.46</td>
<td>0.11-1.87</td>
<td>0.22</td>
</tr>
<tr>
<td>SUVmax</td>
<td><7.15 (N=25)</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥7.15 (N=40)</td>
<td>12</td>
<td>30</td>
<td>10.01</td>
<td>1.30-45.66</td>
<td>0.01</td>
</tr>
<tr>
<td>PTV</td>
<td><21.11 (N=42)</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥21.11 (N=23)</td>
<td>12</td>
<td>52</td>
<td>41.62</td>
<td>5.2-19.33</td>
<td><0.01</td>
</tr>
<tr>
<td>TLP</td>
<td><76.79 (N=39)</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥76.79 (N=26)</td>
<td>11</td>
<td>42</td>
<td>12.97</td>
<td>2.42-134.4</td>
<td><0.01</td>
</tr>
</tbody>
</table>

CRT, chemoradiotherapy
Table 4 Multivariate Cox regression analysis of RFS

<table>
<thead>
<tr>
<th>Variables</th>
<th>SUV model</th>
<th>PTV model</th>
<th>TLP model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Odds ratio (95% CI)</td>
<td>p value</td>
<td>Odds ratio (95% CI)</td>
</tr>
<tr>
<td>Age>65 years</td>
<td>1.45 (0.46-4.57)</td>
<td>0.53</td>
<td>3.57 (1.07-11.90)</td>
</tr>
<tr>
<td>RT or ST</td>
<td>0.85 (0.27-2.68)</td>
<td>0.77</td>
<td>1.21 (0.35-4.22)</td>
</tr>
<tr>
<td>T4</td>
<td>4.03 (1.27-12.79)</td>
<td>0.02</td>
<td>3.64 (0.99-13.32)</td>
</tr>
<tr>
<td>SUV 7.15</td>
<td>7.90 (1.02-61.31)</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>PTV21.11</td>
<td></td>
<td></td>
<td>34.69 (4.31-279.30)</td>
</tr>
<tr>
<td>TLP76.79</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CI, confidence interval; RT, radiotherapy; ST, surgical treatment

Figures
Figure 1

$[^{11}\text{C}]\text{4DST-PET}$ images of a patient with cT4aN2cM0 hypopharyngeal cancer. Pre-treatment $[^{11}\text{C}]\text{4DST-PET}$ images showed low-level increased metabolism in the primary site (A) and metastatic lymph nodes (B). $[^{11}\text{C}]\text{4DST-PET}$ parameters of all lesions are as follows: SUV max 9.45, PTV 4.86, and TLP 21.26. The patient is alive 52 months after receiving concomitant chemoradiotherapy (70Gy/35 Fr irradiation and cisplatin 75 mg/m2, 5-FU 1000 mg/m2, two cycles). Figure 1C and D are $[^{11}\text{C}]\text{4DST-PET}$ images of a patient with cT4aN2cM0 oropharyngeal (right side of frontal wall) cancer. Pre-treatment $[^{11}\text{C}]\text{4DST-PET}$ images showed
relatively high-level increased metabolism in the primary site (C). Metastatic lymph nodes (D) revealed mixed accumulation with high-level metabolism or no accumulation (suspected necrotic tissue). $[^{11}C]4DST$-PET parameters of all lesions are as follows: SUV max 8.36, PTV 54.42, and TLP 242.18. Three months after receiving concomitant chemoradiotherapy (70 Gy/35 Fr irradiation and 200 mg/m2 total dose of cisplatin), pleural metastasis and massive pleural effusion appeared. This patient died 7 months after definitive therapy.

Figure 2

Relapse-free survival curves of SUVmax, PTV, and TLP for oropharynx/hypopharynx/supraglottis cases