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Abstract. In order to solve the problem that it is difficult to quantitatively evaluate the interactivity between attributes 
in the identification process of 2-order additive fuzzy measure, this work uses the hesitant fuzzy linguistic term set 
(HFLTS) to describe and deal with the interactivity between attributes. Firstly, the interactivity between attributes is 
defined by the supermodular game theory, and a linguistic term set is then established to characterize the interactivity 
between attributes. Secondly, under the linguistic term set, according to the above definition, the experts employ the 
linguistic expressions generated by the context-free grammar to evaluate the interactivity between attributes, and the 
opinions of all experts are then aggregated by using the defined hesitant fuzzy linguistic weighted power average 
operator (HFLWPA). Thirdly, based on the standard Euclidean distance formula of the hesitant fuzzy linguistic 
elements (HFLEs), the hesitant fuzzy linguistic interaction degree (HFLID) between attributes is defined and 
calculated by constructing a piecewise function. Finally, a 2-order additive fuzzy measure identification method based 
on HFLID is further proposed. Based on the proposed method, using the Choquet fuzzy integral as nonlinear 
integration operator, a multi-attribute decision making (MADM) process is presented. Taking the credit assessment of 
the big data listed companies in China as an application example, the feasibility and effectiveness of the proposed 
method is verified by the analysis results of application example.  

Keywords: interactivity between attributes; hesitant fuzzy linguistic term set; 2-order additive fuzzy measure; Choquet 
fuzzy integral; multi-attribute decision making; credit assessment. 
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1   Introduction 

In the process of multi-attribute decision making (MADM), due to the influence of the interaction among attributes, such 

as complementarity and repeatability, the classical weighted arithmetic mean method is often invalid [1]. 



Aiming at this problem, in order to flexibly describe and deal with any interaction among attributes, Sugeno [2] proposed 

the concept of fuzzy measure and fuzzy integral. Since then, the research on fuzzy measures had become increasingly 

rich, and gradually formed the theory of fuzzy measures [3, 4]. However, in the practical application process, when there 

are n attributes, the general fuzzy measure usually needs to determine 2n2 parameters [4, 5]. This complexity greatly 

limits its practical application ability. Thereafter, in order to face with the complexity of discrete fuzzy measures, 

Grabisch [6] proposed the concept of k-order additive fuzzy measure, including usual additive measures and fuzzy 

measures. Every discrete fuzzy measure is a k-order additive fuzzy measure for a unique k. The k-order additive fuzzy 

measures cover all fuzzy measures with any complexity from classical additive measure (k=1) to general fuzzy measure 

(k=n). Among them, the 2-order additive fuzzy measure not only merely needs to determine ( 1) / 2n n   parameters, but 

also merely involves the relative importance of attributes and the interaction between attributes, which well solves the 

contradiction between complexity and performance ability, so it has been widely used [7]. 

However, due to the difficulty to explain and understand the interaction between attributes [8] and the uncertainty of 

decision-makers' cognition, the decision-makers often can't give accurate quantitative evaluation on the interactivity 

between attributes, which is often fuzzy and hesitant. The existing 2-order additive fuzzy measure identification methods 

mainly use the subjective methods [9-15] and the objective methods [7, 16-17] to describe and deal with the interactivity 

between attributes. Compared with the objective methods, the subjective methods are more explanatory, so they have 

been applied more widely. However, the existing subjective methods still cannot reflect the fuzziness and hesitation of 

decision-makers in evaluation on the interactivity between attributes. 

In [18], Rodríguez et al. introduced the concept of a hesitant fuzzy linguistic term set (HFLTS) to provide a linguistic 

and computational basis to increase the flexibility and richness of linguistic elicitation based on the fuzzy linguistic 

approach and the use of context-free grammar to support the elicitation of linguistic information by experts in hesitant 

situations under qualitative settings. Hesitant fuzzy linguistic information is based on the linguistic expressions given by 

people, so it is closer to people's thinking and cognition, and can flexibly and comprehensively reflect the real 

preferences of decision-makers [19]. HFLTS provides a new and powerful tool to characterize experts' qualitative 

decision information, so it has been successfully applied in the field of uncertain MADM [20-23]. 

Based on this observation, in view of the problem that it is difficult to quantitatively evaluate the interactivity between 

attributes, the present work uses the HFLTS to describe and deal with the interactivity between attributes. As a result, a 2-

order additive fuzzy measure identification method based on hesitant fuzzy linguistic interaction degree (HFLID) is 

proposed. Based on the proposed method, using the Choquet fuzzy integral as nonlinear integration operator [24, 25], a 

MADM process is further presented. 

This paper is structured as follows: Section 2 introduces the preparatory knowledge employed in this work. Section 3 

proposes the 2-order additive fuzzy measure identification method based on HFLID. Section 4 presents the MADM 

process based on the proposed method. Section 5 describes the application example analysis results. Section 6 discusses 

the results obtained and Section 7 concludes this paper. 



2   Preparatory knowledge 

This section introduces the related definitions of HFLTS, 2-order additive fuzzy measure and Choquet fuzzy integral 

reported in the literatures. This is the basis of Section 3 and Section 4.  

2.1   Related definitions of HFLTS  

Definition 1 [26]: Let linguistic variable ix X  ( 1,2, ,i N  ) be fixed and  , , 1,0,1, ,S s         be a 

linguistic term set. Let SH  be a hesitant fuzzy linguistic term set (HFLTS) on X, its mathematical expression is 

 , ( )S i S i iH x h x x X     

where ( )S ih x  is a set of some values in the linguistic term set S and can be expressed as 

 ( ) ( ) ( ) , 1, 2, ,
l lS i i ih x s x s x S l L      with L being the number of linguistic terms in ( )S ih x . ( )S ih x  denotes the 

possible degrees of linguistic variable ix  to the linguistic term set S. For convenience, ( )S ih x  is called the hesitant 

fuzzy linguistic element (HFLE) and SH  is the set of all HFLEs. 

Definition 2 [18, 19]: Let HG  be a context-free grammar, and  , , 1,0,1, ,S s         be a linguistic term 

set. The elements of ( , , , )H N TG V V I P  are defined as follows: 

NV = primary term, composite term, unary relation, binary relation, conjunction; TV = “less than”, “more than”, “at 

least”, “at most”, “between”, “and”, “ s  ”,  , “ 1s ”, “ 0s ”, “ 1s ”,  , “ s ”; NI V ; P =  I  refers to the primary 

term or composite term; the primary term refers to “ s  ”,  , “ 1s ”, “ 0s ”, “ 1s ”,  , “ s ”; the composite term refers to 

unary relation + primary term, or binary relation + primary term + conjunction + primary term; the unary relation refers 

to “less than” or “more than” or “at least” or “at most”; the binary relation refers to “between”; the conjunction refers to 

“and”. 

Definition 3 [18, 19]: Let 
HGE  be a function that transforms linguistic expressions ll , which are obtained by HG , 

into HFLTS SH , where  , , 1,0,1, ,S s         is the linguistic term set that is used by HG : 

:
HG SE ll H . 

The linguistic expressions ll  that are generated by HG  will be transformed into HFLTS SH  in different ways 

according to their meaning: 

1)  ( )
HG t t tE s s s S  ;  

2)  (at most ) ,  and 
HG m t t t mE s s s S s s   ; 

3)  (less than ) , and 
HG m t t t mE s s s S s s   ;  

4)  (at least ) , and 
HG m t t t mE s s s S s s   ; 

5)  (more than ) , and 
HG m t t t mE s s s S s s   ; 

6)  (between  and ) , and 
HG m n t t m t nE s s s s S s s s    . 



Definition 4 [27]: Let  , , 1,0,1, ,S s         be a set of linguistic terms,  , 1,2, ,
l lSh s s S l L      

is a HFLE defined on S, then the mean value of Sh  is defined as 

1

1( )
L

S l
l

h
L

 


   

and the variance of Sh  is defined as 
2

1

1( ) ( ( ))
L

S l S
l

h h
L

  


   

Then, the binary relationship between  , 1,2, ,i i
l l

i
Sh s s S l L

 
     and  , 1,2, ,j j

l l

j
Sh s s S l L

 
     is defined as 

follows:  

1) If ( ) ( )i j
S Sh h  , then i j

S Sh h ;  

2) If ( ) ( )i j
S Sh h  , when ( ) ( )i j

S Sh h  , then i j
S Sh h ; when ( ) ( )i j

S Sh h  , then i j
S Sh h ; when ( ) ( )i j

S Sh h  , 

then i j
S Sh h . 

For convenience of calculation, referring to [28], the Sh  with fewer elements can be expanded by adding 

element (1 )
l l l

s s s        until meeting the need of calculation. Where 
l

s
  and 

l
s
  is the largest and smallest 

element in Sh  respectively, and [0,1]   is the adjustment parameter. Without loss of generality, 0.5   is usually 

taken. 

Definition 5 [29]: Let  , , 1,0,1, ,S s         be a set of linguistic terms,  , 1,2, ,i i
l l

i
Sh s s S l L

 
     

and  , 1,2, ,j j
l l

j
Sh s s S l L

 
     are two HFLEs defined on S, if 

2

1

1( , )
2

i jL
i j l l
S S

l
d h h

L
 



 
  

 
                                   (1) 

then ( , )i j
S Sd h h  is called the standard Euclidean distance between i

Sh  and j
Sh . 

Definition 6 [29]: Let  , , 1,0,1, ,S s         be a set of linguistic terms, 1 2, , , n
S S Sh h h  are n HFLEs 

defined on S. Let HFLPA : n  , if  

1 2
1

1

1 ( )
HFLPA( , , , )

(1 ( ))

i
n n iS

S S S i Sn i
Si

T h
h h h h

T h





 


                           (2) 

then HFLPA is called the hesitant fuzzy linguistic power average operator. Where 
1,

( ) sup( , )ni i j
S S Sj j i

T h h h
 

 , the 

support function sup( , )i j
S Sh h  represents the support degree of i

Sh  and j
Sh , it satisfies the following three conditions:  

1) sup( , ) [0,1]i j
S Sh h  ;  

2) sup( , ) sup( , )i j j i
S S S Sh h h h ;  

3) If ( , ) ( , )i j s t
S S S Sd h h d h h , then sup( , ) sup( , )i j s t

S S S Sh h h h . 

2.2   Related definitions of 2-order additive fuzzy measure and Choquet fuzzy integral  

Definition 7 [2]: Let  1 2, , , nX x x x   be a set of attributes, let  1,2, ,X n    be a set of subscripts of attributes. 



( )P X  is the power set of X, if the set function : ( ) [0,1]g P X   satisfies the following two conditions:  

1) ( ) 0g   , ( ) 1g X  ;  

2) If ( )K P X , ( )T P X , K T , then ( ) ( )g K g T ; then g is called a fuzzy measure on ( )P X . 

Grabisch [6] proposed the k-order additive fuzzy measure based on pseudo-Boolean function and Möbius 

transformation. On this basis, the 2-order additive fuzzy measure is then defined as 
      

 ,

( ) ,i ij
i K i j K

g K m m K X
  

                                   (3) 

where im  is the Möbius transformation coefficient of ix  ( 1,2, ,i n  ), which is an overall importance; ijm  is the 

Möbius transformation coefficient of  ,i jx x  ( , 1, 2, ,i j n  ; i j ), which represents the extent of interaction 

between ix  and jx . 

Definition 8 [13]: Let  1 2, , , nX x x x   be a set of attributes,  1 2, , , nW w w w   is the weight set of X, the 

Möbius transformation coefficients of ix  and  ,i jx x  are respectively 

, , 1, 2, , ;
i

i

ij i j
ij

wm P i j n i j
w wm P



   
 

                              (4) 

where 
 ,

i ij i j
i X i j X

P w w w
  

    is the sum of the importance of all ix  and  ,i jx x , ij  is the interaction degree 

between ix  and jx , [ 1,1]ij   . 

Definition 9 [30]: Let f be a nonnegative function defined on X, F is a -algebra composed of subsets of X (when X is 

finite, F is the power set ( )P X  of X), g is a fuzzy measure defined on F, then the Choquet fuzzy integral of function f 

on set X for fuzzy measure g is defined as  

0
( ) ( )c fdg g F d 


   

where  ( ) ,F x f x x X    , [0, ]   ; 
0

( )g F d 


  is the Riemann integral. 

When X is a finite set, the elements in X are rearranged as  (1) (2) ( ), , , nx x x , which makes 

(1) (2) ( )( ) ( ) ( )nf x f x f x   . Let =( )H c fdg , then the Choquet fuzzy integral has the following simplified formula: 

( ) ( 1) ( )
1

( ) ( ) ( ) ( )
n

i i i
i

H c fdg f x f x g X


                               (5) 

where  ( ) ( ) ( 1) ( ), , ,i i i nX x x x  , ( ) (1), (2), , ( )i n  ; (0)( ) 0f x  . 

3   The proposed method 

This section uses the HFLTS to describe and deal with the interactivity between attributes, and then proposes a 2-order 

additive fuzzy measure identification method based on HFLID. In addition, the correctness of the proposed method is 

proved theoretically. 

Let 1 2( , , , )mA A A A   be a finite set of alternatives, and 1 2( , , , )nC C C C   be a set of attributes to compare the 

alternatives, let  1,2, ,C n    be a set of subscripts of attributes. The weight vector of attributes is 

1 2( , , , )C nW w w w  , where [0,1]iw  , and 
1

1n
ii

w


 . Let 1 2( , , , )tD D D D   be a set of experts, the weight vector 



of experts is 1 2( , , , )D tW w w w  , where [0,1]pw  , and 
1

1t
pp

w


 . Using the HFLTS, the identification process of 

2-order additive fuzzy measure is as follows: 

Step 1: Establish a linguistic term set S to characterize the interactivity between Ci and Cj (i≠j). 

According to the supermodular game theory [31], the interactivity between attributes is defined as follows: 

Definition 10: Let any two attributes Ci and Cj (i≠j) in attribute set C have partial order relation, the supremum 

i jC C  and the infimum i jC C  are in C, then C is called a sub-lattice [31]. Let f be a real-valued function defined on 

the sub-lattice C, nC R . For ,i jC C C  , when ( ) ( ) ( ) ( )i j i j i jf C C f C C f C f C     , f is a supermodular 

function [31], then it is said that there is complementarity between Ci and Cj (i≠j); when 

( ) ( ) ( ) ( )i j i j i jf C C f C C f C f C     , f is a submodular function [31], then it is said that there is repeatability 

between Ci and Cj (i≠j); particularly, when ( ) ( ) ( ) ( )i j i j i jf C C f C C f C f C     , then it is said that there is 

independence between Ci and Cj (i≠j). 

According to Definition 10, a linguistic term set  , , 1,0,1, ,S s         is established to characterize the 

interactivity between Ci and Cj (i≠j). Where 1 2, , ,s s s  are the linguistic terms describing complementarity, the larger 

  is, the stronger the complementarity is; - - +1 -1, , ,s s s    are the linguistic terms describing repeatability, the smaller 

  is, the stronger the repeatability is; 0s  is then a linguistic term describing independence, at this point, =0 . 

Step 2: Calculate the individual evaluation result of the expert pD  ( 1,2, ,p t  ) on the interactivity between Ci and 

Cj (i≠j). 

Under the linguistic term set S, according to Definition 10, every expert employs the linguistic expressions ll  

generated by the context-free grammar HG  (see Definition 2) to evaluate the interactivity between Ci and Cj (i≠j) ( 2
nC  

pairs in total). Through the transformation function :
H

ij
G SE ll H  (see Definition 3), the linguistic expressions ll  are 

further transformed into the HLFTS ij
SH . 

Let ( )ij p
SH  be the HFLTS of the expert pD ( 1,2, , )p t  ,  ( ) ( )

( ) , 1,2, ,ij p ij p
l l

ij p
Sh s s S l L

 
     is the HFLE in 

( )ij p
SH  ( 2

nC  pairs in total), thus, the individual evaluation result ( )ij p
Sh  of the expert pD  ( 1,2, ,p t  ) on the 

interactivity between Ci and Cj (i≠j) is then given. 

Step 3: Calculate the group evaluation result of t experts on the interactivity between Ci and Cj (i≠j). 

Based on Definition 6, considering the weights of experts, the hesitant fuzzy linguistic weighted power average 

operator (HFLWPA) is defined as follows: 
Definition 11: Let  , , 1,0,1, ,S s         be a set of linguistic terms, (1) (2) ( ), , ,ij ij ij t

S S Sh h h  are t HFLEs 

defined on S. The weight vector of t HFLEs is 1 2( , , , )tw w w , where [0,1]pw  , and 
1

1t
pp

w


 . Let 

HFLWPA : t  , if  
( )

(1) (2) ( ) ( )
1 ( )

1

(1 ( ))
HFLWPA( , , , )

(1 ( ))

ij p
p Sij ij ij t t ij p

S S S p St ij p
p Sp

w T h
h h h h

w T h





 


                    (6) 

then HFLWPA is called the hesitant fuzzy linguistic weighted power average operator (when 1/pw t , HFLWPA 

degenerates to HFLPA [29]). Where ( ) ( ) ( )
1,

( ) sup( , )tij p ij p ij q
S S Sq q p

T h h h
 

 , the support function ( ) ( )sup( , )ij p ij q
S Sh h  



represents the support degree of ( )ij p
Sh  and ( )ij q

Sh , it satisfies the following three conditions:  

1) ( ) ( )sup( , ) [0,1]ij p ij q
S Sh h  ;  

2) ( ) ( ) ( ) ( )sup( , ) sup( , )ij p ij q ij q ij p
S S S Sh h h h ;  

3) If ( ) ( ) ( ) ( )( , ) ( , )ij p ij q ij r ij s
S S S Sd h h d h h , then ( ) ( ) ( ) ( )sup( , ) sup( , )ij p ij q ij r ij s

S S S Sh h h h . 

In [32], Yager defined different support functions, and different support functions lead to different degrees of support. 

In this paper, we take the support function as follows: ( ) ( ) ( ) ( )sup( , ) 1 ( , )ij p ij q ij p ij q
S S S Sh h d h h  , where ( ) ( )( , )ij p ij q

S Sd h h  is the 

standard Euclidean distance between ( )ij p
Sh  and ( )ij q

Sh . 
According to Definition 4, after expanding those ( )ij p

Sh  ( 1,2, ,p t  ) with fewer elements, using the HFLWPA to 

aggregate the individual evaluation results of t experts, the group evaluation result of t experts on the interactivity 

between Ci and Cj (i≠j) is then obtained as  , 1,2, ,ij ij
l l

ij
Sh s s S l L

 
    . 

Step 4: Determine the HFLID ( )ijH   between Ci and Cj (i≠j). 

According to the established linguistic term set S (see step 1), constructing a piecewise function based on Definition 5, 

the hesitant fuzzy linguistic interaction degree (HFLID) between attributes is defined as follows: 
Definition 12: Let  , , 1,0,1, ,S s         be a linguistic term set characterizing the interactivity between 

Ci and Cj (i≠j),  , 1,2, ,ij ij
l l

ij
Sh s s S l L

 
     is the group evaluation result of t experts on the interactivity between Ci 

and Cj (i≠j). Let  0,1, ,S s       be a subset of S ( S S  ), when ij
l

s S


 , ij ij
S S

h h  ; let 
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l

s S

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S S
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0 0S
h s s S

  , obviously, 0 0 0
S S S
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where ( )ijH   is called the hesitant fuzzy linguistic interaction degree (HFLID) between Ci and Cj (i≠j), obviously, 

( ) [ 1,1]ijH    . If there is complementarity between Ci and Cj (i≠j), then ( ) 0ijH   , and the larger ( )ijH   is, the 

stronger complementarity is. If there is repeatability between Ci and Cj (i≠j), then ( ) 0ijH   , and the smaller ( )ijH   is, 

the stronger repeatability is. If Ci and Cj (i≠j) are independent of each other, then ( ) 0ijH   . 

Therefore, according to Definition 12, the HFLID ( )ijH   between Ci and Cj (i≠j) can be determined. 

Step 5: Calculate the Möbius transformation coefficients mi and mij of attributes. 

According to the attribute weight iw  and the HFLID ( )ijH   between Ci and Cj (i≠j), using Eq. (4), the Möbius 

transformation coefficients mi and mij of attributes can be calculated as 



, , 1,2, , ;
( )

i
i

ij i j
ij

wm P i j n i j
H w wm P



 
 

 

                           (8) 

where 
 ,

( )i ij i j
i C i j C

P w H w w
  

     is the sum of the importance of all iC  and  ,i jC C  (i≠j). 

Step 6: Identify the 2-order additive fuzzy measure Kg . 

According to the Möbius transformation coefficients mi and mij of attributes, using Eq. (3), the 2-order additive fuzzy 

measure Kg  can be identified as  
                     

 ,

( ) ,K i ij
i K i j K

g g K m m K C
  

                                 (9) 

Theorem 1: The fuzzy measure identified by steps 1 to 6 is a 2-order additive fuzzy measure. 

To prove that the fuzzy measure identified by steps 1 to 6 is a 2-order additive fuzzy measure, it is only necessary to 

prove that the determined Möbius transformation coefficients satisfy the following constrained conditions [6]: 
1) ( ) 0m   ;  

2) 0im  , i C  ;  

3) 
 ,

1i ij
i C i j C

m m
  

   ;  

4) 
 \

0i ij
j K i

m m


  , K C  . 

Proof: 

1) ( ) 0m   , obviously holds. 

2) Because ( ) ( )ij jiH H   , and 
1

1n
ii

w


 , P can be further written as 

1 1, 1 1,

1 11 ( ) 1 ( )
2 2

n n n n

ij i j i ij j
i j i j i j i j

P H w w w H w 
     

 
     

 
      

Since ( ) [ 1,1]ijH    , and  0,1jw  , we have 
( )j ij j jw H w w   , i j  

Sum the two sides of the above inequality to j, we obtain 

1,
(1 ) ( ) 1

n

i ij j i
j i j

w H w w
 

       

Multiply both sides of the above inequality by iw , we can get 
2 2

1,
( ) ( )

n

i i i ij j i i
j i j

w w w H w w w
 

       

Sum the two sides of the above inequality to i, the following inequality can be given 

2 2

1 1 1, 1
(1 ) ( ) 1

n n n n

i i ij j i
i i j i j i

w w H w w
    

 
     

 
     

Therefore, we have 

2 2

1 1 1, 1
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i i ij j i
i i j i j i

w w H w w
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 
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That is to say 
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1( ) ( ) 1ij i ji
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( )
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H w ww w
m m H w

P P P



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Since ( ) [ 1,1]ijH    , and  0,1jw  , we have 
 \

(1 ) ( ) 1i ij j i
j K i

w H w w


      . Thus, the following inequality 

can be given 

 
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Hence, we get 
 \

0i ij
j K i

m m


  , K C  . Q.E.D. 

4   A MADM process based on the proposed method 

Using the Choquet fuzzy integral as nonlinear integration operator, this section presents a MADM process based on the 

proposed method. 

Step 1: Construct the normalized decision matrix. 

According to the types of attributes (including positive type, negative type and neutral type), the decision matrix is 

normalized, and the normalized decision matrix is then constructed as  

11 12 1

21 22 2

1 1

n

n

m m mn m n

x x x
x x x

X

x x x
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 
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 
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where jix  is the normalized attribute value of alternative jA  ( 1, 2, ,j m  ) under attribute iC  ( 1,2, ,i n  ). 

Step 2: Identify the 2-order additive fuzzy measure Kg . 

Given the weight vector DW  of experts, the HFLID ( )ijH   between Ci and Cj (i≠j) can be determined by step 1 to 

step 4 in Section 3. Given the weight vector CW  of attributes, the 2-order additive fuzzy measure Kg  can be further 

identified by step 5 and step 6 in Section 3. 

Step 3: Calculate the Choquet fuzzy integral values and the ranking of alternatives. 

Reordering the normalized attribute value jix  ( 1,2, ,i n  ) of the alternative jA  ( 1, 2, ,j m  ) from small to 

large, the ( )j ix  can be then obtained. Substituting the ( )j ix  and the 2-order additive fuzzy measure Kg  into Eq. (5), 

the Choquet fuzzy integral value jH  of the alternative jA  can be calculated. Simultaneously, the ranking of 

alternatives can be given, where the larger jH  is, the better the alternative jA  is. 



5   Application Example 

This section takes the credit assessment of the big data listed companies in China as an application example to illustrate 

the feasibility and effectiveness of the proposed method (see Section 3). 

5.1   Credit assessment index system and sample data  

Considering the characteristics of big data enterprises [33], and following the principles of selecting indicators, such as 

scientificalness, objectivity, systematization, functionality, dynamics, relative independence, feasibility (or operability), 

comparability and so on, a credit assessment index system for big data enterprises was constructed, as shown in Table 1. 

Table 1. Credit assessment index system for big data enterprises. 

Primary Indicators Secondary Indicators 

Debt Paying Ability C1 Current Ratio C11; Quick Ratio C12; Asset-liability Ratio C13 

Operational Capability C2 
Turnover Rate of Accounts Receivable C21; Turnover Rate of Total Assets C22; Inventory 

Turnover C23 

Profitability C3 Profit Margin of Main Business C31; Return on Equity C32; Return on Total Assets C33 

Growth Capability C4 Net Profit Growth Rate C41; Growth Rate of Main Business C42 

Technological Innovation Capability 
C5 

Development Expenditure C51; Growth Rate of Intangible Assets C52; Number of Invention 
Patent Applications Announced C53 

Industry Growth C6 Network Attention of Industry C61; Industry Average Net Profit Growth Rate C62 

We selected the big data listed companies in the Growth Enterprise Market (GEM) in China – Wangsu Science & 

Technology Co., Ltd. (300017), Beijing Lanxum Technology Co., Ltd. (300010), and Wuhan Tianyu Information 

Industry Co., Ltd. (300205) to form a set of alternatives, denoted by A=A1, A2, A3. Where the alternative A1 and A2 

belong to the software service industry, and the alternative A3 belongs to the electronic components industry. The sample 

data were the section data of 2016, and the original data were shown in Table 2. Where the original data of the Number of 

Invention Patent Applications Announced were from Tian Yan Cha website, the original data of the Network Attention of 

Industry were from Baidu Index website, and the rest of the original data were from East Money website.  

Table 2. Original data. 

Secondary Indicators (Unit) A1 A2 A3 
C11 (---) 3 6.73 1.67 2.48 
C12 (---) 3 6.49 1.38 1.76 
C13 (%) 2 15.08 28.52 33.54 

C21 (time) 1 5.48 2.81 3.40 
C22 (time) 1 0.73 0.37 0.97 
C23 (time) 1 17.32 2.78 2.88 
C31 (%) 1 28.07 15.94 0.28 
C32 (%) 1 17.08 5.21 1.79 
C33 (%) 1 20.52 5.83 0.27 
C41 (%) 1 50.52 130.25 12.38 



C42 (%) 1 51.67 84.10 9.71 
C51 (10 thousand yuan) 1 5605 9868 0 

C52 (%) 1 60.57 51.24 -6.73 
C53 (piece) 1 83 0 24 
C61 (time) 1 159 4 159 4 457 4 
C62 (%) 1 30.77 30.77 33.42 

1 The index belongs to positive type. 2 The index belongs to negative type. 3 The index belongs to neutral type. 4 The Network 
Attention of Industry is the overall daily average of Baidu Search Index with the industry name as the key word. 

5.2   Process and results of credit assessment  

Step 1: Construct the normalized decision matrix. 

Using the algorithm given in [34], based on Table 2, the weight vector CW  of attributes was calculated as 

(0.1702,0.1708,0.1810,0.1208,0.2261,0.1312)CW  . 

Combined with the algorithm given in [35], based on Table 2, the normalized decision matrix X  was further 

constructed as 
0.4709 0.8976 0.9151 0.8192 0.8949 0.7789
0.8662 0.6048 0.6148 0.9500 0.7786 0.7789
0.8147 0.7671 0.1140 0.6054 0.2868 0.9156

X
 
   
  

 . 

Step 2: Determine the HFLID ( )ijH   between Ci and Cj (i≠j). 

According to step 1 in Section 3, a linguistic term set S was established to characterize the interactivity between Ci and 

Cj (i≠j), where S={ 4s = repeatability is extremely strong, 3s = repeatability is very strong, 2s = repeatability is strong, 

1s = repeatability is relatively strong, 0s = independence, 1s = complementarity is relatively strong, 2s = 

complementarity is strong, 3s = complementarity is very strong, 4s = complementarity is extremely strong }. 

In this paper, three experts were invited to analyze the six attributes in pairs respectively. According to step 2 in 

Section 3, under the linguistic term set S, according to Definition 10, every expert employed the linguistic expressions 

ll  generated by the context-free grammar HG  to evaluate the interactivity between Ci and Cj (i≠j) ( 2
6C  pairs in total). 

Through the transformation function :
H

ij
G SE ll H , the linguistic expressions ll  were further transformed into the 

HLFTS ij
SH . Thus, the individual evaluation results ( )ij p

Sh  ( 1,2,3)p   of three experts on the interactivity between Ci 

and Cj (i≠j) were then given, as shown in Table 3. 

Adopting the cycle mutual evaluation method [36], the weight vector of experts was calculated as 

(0.3976,0.3012,0.3012)DW   (see Appendix A for full calculation principle and process). 

According to step 3 in Section 3, after expanding those ( )ij p
Sh  ( 1,2,3)p   with fewer elements, using the HFLWPA 

to aggregate the individual evaluation results of three experts, the group evaluation result of three experts on the 

interactivity between Ci and Cj (i≠j) was then obtained (see Table 3). According to step 4 in Section 3, with Eq. (7), the 

HFLID ( )ijH   between Ci and Cj (i≠j) was calculated, as shown in Table 3.  

Taking 12( )H   as an example, its calculation process was as follows: 

1) Using Eq. (1), the standard Euclidean distance among ( )ij p
Sh  ( 1,2,3)p   was calculated as 



12(1) 12(2)( , ) 0S Sd h h  , 12(1) 12(3)( , ) 0.0807S Sd h h  , 12(2) 12(3)( , ) 0.0807S Sd h h  . 

According to Definition 11, their corresponding support degree was also obtained as 
12(1) 12(2)sup( , ) 1S Sh h  , 12(1) 12(3)sup( , ) 0.9193S Sh h  , 12(2) 12(3)sup( , ) 0.9193S Sh h  . 

Thus, we can get 
12(1)( ) 1.9193ST h  , 12(2)( ) 1.9193ST h  , 12(3)( ) 1.8386ST h  . 

2) Using Eq. (6), the group evaluation result of three experts on the interactivity between C1 and C2 was calculated as  

 12
1 1.1471 1.2941, ,Sh s s s . 

3) With Eq. (7), the HFLID 12( )H   between C1 and C2 was then calculated as 
2 2 2

12 0
12

1 1 1.1471 1.2941( ) ( , ) 0.2883
3 4 4 4S S

H d h h  

                       
 . 

Table 3. Hesitant fuzzy linguistic interaction degrees between attributes. 

Attributes Ci 
and Cj (i≠j) 

Individual Evaluation Results of Interactivity Group Evaluation Results 
of Interactivity 

Hesitant Fuzzy 
Linguistic Interaction 

Degrees Expert 1 Expert 2 Expert 3 

{C1, C2} {s1} {s1} {s1, s2} {s1, s1.1471, s1.2941} 0.2883 
{C1, C3} {s2, s3, s4} {s2} {s2} {s2, s2.3860, s2.7721} 0.6017 
{C1, C4} {s1, s2} {s1} {s1} {s1, s1.1966, s1.3933} 0.3018 
{C1, C5} {s1} {s1} {s1, s2} {s1, s1.1471, s1.2941} 0.2883 
{C1, C6} {s1} {s0, s1} {s0, s1} {s0.3933, s0.6966, s1} 0.1848 
{C2, C3} {s2, s3} {s2, s3} {s2} {s2, s2.3529, s2.7059} 0.5926 
{C2, C4} {s1, s2} {s1, s2} {s0, s1} {s0.7093, s1.2093, s1.7093} 0.3191 
{C2, C5} {s1} {s1, s2} {s1, s2} {s1, s1.3034, s1.6067} 0.3317 
{C2, C6} {s1} {s0, s1} {s0, s1} {s0.3933, s0.6966, s1} 0.1848 
{C3, C4} {s2, s3} {s2} {s2} {s2, s2.1966, s2.3933} 0.5506 
{C3, C5} {s1, s2} {s2} {s1, s2} {s1.2941, s1.6471, s2} 0.4180 
{C3, C6} {s1, s2} {s1} {s2} {s1.2981, s1.5000, s1.7019} 0.3773 
{C4, C5} {s1, s2} {s1, s2} {s2} {s1.2941, s1.6471, s2} 0.4180 
{C4, C6} {s-2} {s-2, s-3} {s-2} {s-2, s-2.1471, s-2.2941} -0.5376 
{C5, C6} {s1} {s0, s1} {s1} {s0.7059, s0.8529, s1} 0.2153 

Step 3: Calculate the Möbius transformation coefficients mi and mij of attributes. 

Based on the weight vector CW  of attributes and Table 3, using Eq. (8), the Möbius transformation coefficients mi and 

mij of attributes were calculated, as shown in Table 4, where 1.1378P  . Taking 12m  as an example, we had  

12 (0.2883 0.1702 0.1708) /1.1378 0.0074m     . 

Table 4. Calculation results of Möbius transformation coefficients. 

Möbius 
Transformation 

Coefficients 

Coefficient 
Values 

Möbius 
Transformation 

Coefficients 

Coefficient 
Values 

Möbius 
Transformation 

Coefficients 

Coefficient 
Values 

m1 0.1496 m13 0.0163 m26 0.0037 
m2 0.1501 m14 0.0055 m34 0.0106 
m3 0.1591 m15 0.0098 m35 0.0150 
m4 0.1062 m16 0.0036 m36 0.0079 
m5 0.1987 m23 0.0161 m45 0.0100 
m6 0.1153 m24 0.0058 m46 -0.0075 
m12 0.0074 m25 0.0113 m56 0.0056 



Step 4: Identify the 2-order additive fuzzy measure Kg . 

Based on Table 4, using Eq. (9), the 2-order additive fuzzy measure Kg  was calculated, as shown in Table 5. Taking 

 1,2g  as an example, we had  

 1,2 0.1496 0.1501 0.0074 0.3071g     . 

Table 5. Calculation results of 2-order additive fuzzy measures. 

K gK K gK K gK K gK 
{ø} 0.0000 {3, 4} 0.2758 {2, 3, 4} 0.4478 {1, 3, 4, 5} 0.6807 
{1} 0.1496 {3, 5} 0.3728 {2, 3, 5} 0.5503 {1, 3, 4, 6} 0.5665 
{2} 0.1501 {3, 6} 0.2823 {2, 3, 6} 0.4522 {1, 3, 5, 6} 0.6809 
{3} 0.1591 {4, 5} 0.3149 {2, 4, 5} 0.4821 {1, 4, 5, 6} 0.5968 
{4} 0.1062 {4, 6} 0.2140 {2, 4, 6} 0.3736 {2, 3, 4, 5} 0.6829 
{5} 0.1987 {5, 6} 0.3196 {2, 5, 6} 0.4847 {2, 3, 4, 6} 0.5672 
{6} 0.1153 {1, 2, 3} 0.4985 {3, 4, 5} 0.4996 {2, 3, 5, 6} 0.6828 

{1, 2} 0.3071 {1, 2, 4} 0.4245 {3, 4, 6} 0.3915 {2, 4, 5, 6} 0.5992 
{1, 3} 0.3250 {1, 2, 5} 0.5268 {3, 5, 6} 0.5016 {3, 4, 5, 6} 0.6209 
{1, 4} 0.2612 {1, 2, 6} 0.4297 {4, 5, 6} 0.4284 {1, 2, 3, 4, 5} 0.8713 
{1, 5} 0.3581 {1, 3, 4} 0.4472 {1, 2, 3, 4} 0.6265 {1, 2, 3, 4, 6} 0.7496 
{1, 6} 0.2685 {1, 3, 5} 0.5485 {1, 2, 3, 5} 0.7333 {1, 2, 3, 5, 6} 0.8694 
{2, 3} 0.3253 {1, 3, 6} 0.4518 {1, 2, 3, 6} 0.6291 {1, 2, 4, 5, 6} 0.7750 
{2, 4} 0.2621 {1, 4, 5} 0.4797 {1, 2, 4, 5} 0.6542 {1, 3, 4, 5, 6} 0.8056 
{2, 5} 0.3601 {1, 4, 6} 0.3727 {1, 2, 4, 6} 0.5396 {2, 3, 4, 5, 6} 0.8079 
{2, 6} 0.2691 {1, 5, 6} 0.4826 {1, 2, 5, 6} 0.6551 {1, 2, 3, 4, 5, 6} 1.0000 

Step 5: Calculate the Choquet fuzzy integral values and the ranking of alternatives. 

Take the alternative A1 as an example. 

According to step 3 in Section 4, reordering the normalized attribute value 1ix  ( 1, 2, ,6i   ) of alternative A1 from 

small to large, we can get 11 16 14 15 12 13x x x x x x          , which can be denoted by 

1(1) 1(2) 1(3) 1(4) 1(5) 1(6)x x x x x x          . 

Substituting the 1( )ix  and the 2-order additive fuzzy measure Kg  into Eq. (5), the Choquet fuzzy integral value of the 

alternative A1 was calculated as 

1 (0.4709 0.0000) 1.0000 (0.7789 0.4709) 0.8079 (0.8192 0.7789) 0.6829H           
(0.8949 0.8192) 0.5503 (0.8976 0.8949) 0.3253 (0.9151 0.8976) 0.1591 0.7926          . 

Similarly, we can also obtain 2 0.7643H   and 3 0.5138H  . 

Since 1 2 3H H H  , then the ranking of alternatives was 1 2 3A A A  . 

That is to say, the credit status of the alternative 1A  was relatively good, and the credit status of the alternative 3A  

was relatively poor. 

5.3   Comparative analysis  

For comparison, we invited the above three experts to use the scoring method [13] to determine the interaction degrees 

between attributes, the individual scoring interaction degrees were then obtained, as shown in Table 6. Given the weight 

vector (0.3976,0.3012,0.3012)DW   of experts, using the weighted arithmetic mean method to aggregate the opinions 

of three experts, the group scoring interaction degrees were further obtained, as shown in Table 6. 



Table 6. Scoring interaction degrees between attributes. 

Attributes Ci and Cj 
(i≠j) 

Individual Scoring Interaction Degrees Group Scoring Interaction 
Degrees Expert 1 Expert 2 Expert 3 

{C1, C2} 0.20 0.30 0.20 0.2301 
{C1, C3} 0.30 0.50 0.50 0.4205 
{C1, C4} 0.20 0.30 0.20 0.2301 
{C1, C5} 0.20 0.30 0.20 0.2301 
{C1, C6} 0.20 0.00 0.20 0.1398 
{C2, C3} 0.30 0.50 0.50 0.4205 
{C2, C4} 0.20 0.20 0.30 0.2301 
{C2, C5} 0.20 0.20 0.30 0.2301 
{C2, C6} 0.20 0.00 0.20 0.1398 
{C3, C4} 0.30 0.50 0.30 0.3602 
{C3, C5} 0.20 0.30 0.30 0.2602 
{C3, C6} 0.20 0.30 0.30 0.2602 
{C4, C5} 0.20 0.30 0.30 0.2602 
{C4, C6} -0.30 -0.50 -0.50 -0.4205 
{C5, C6} 0.20 0.00 0.20 0.1398 

In addition, we also invited the above three experts to use the diamond pairwise comparisons (DPC) method [9] to 

determine the interaction degrees between attributes, the individual DPC interaction degrees were then obtained, as 

shown in Table 7. Given the weight vector (0.3976,0.3012,0.3012)DW   of experts, using the weighted arithmetic 

mean method to aggregate the opinions of three experts, the group DPC interaction degrees were further obtained, as 

shown in Table 7. 

Table 7. DPC interaction degrees between attributes. 

Attributes Ci and Cj 
(i≠j) 

Individual DPC Interaction Degrees Group DPC Interaction 
Degrees Expert 1 Expert 2 Expert 3 

{C1, C2} 0.25 0.35 0.25 0.2801 
{C1, C3} 0.35 0.55 0.55 0.4705 
{C1, C4} 0.25 0.35 0.25 0.2801 
{C1, C5} 0.25 0.35 0.25 0.2801 
{C1, C6} 0.25 0.00 0.25 0.1747 
{C2, C3} 0.35 0.55 0.55 0.4705 
{C2, C4} 0.25 0.25 0.35 0.2801 
{C2, C5} 0.25 0.25 0.35 0.2801 
{C2, C6} 0.25 0.00 0.25 0.1747 
{C3, C4} 0.35 0.55 0.35 0.4102 
{C3, C5} 0.25 0.35 0.35 0.3102 
{C3, C6} 0.25 0.35 0.35 0.3102 
{C4, C5} 0.25 0.35 0.35 0.3102 
{C4, C6} -0.35 -0.55 -0.55 -0.4705 
{C5, C6} 0.25 0.00 0.25 0.1747 

Furthermore, we replaced the hesitant fuzzy linguistic interaction degrees (see Table 3) in step 2 of Section 5.2 with 

the group scoring interaction degrees (see Table 6). Ceteris paribus, the Choquet fuzzy integral values of alternatives 

were calculated as  

1 0.7946H   , 2 0.7686H   , 3 0.5244H   . 



Since 1 2 3H H H    , then the ranking of alternatives was 1 2 3A A A  . 

Similarly, we also replaced the hesitant fuzzy linguistic interaction degrees (see Table 3) in step 2 of Section 5.2 with 

the group DPC interaction degrees (see Table 7). Ceteris paribus, the Choquet fuzzy integral values of alternatives were 

calculated as 

1 0.7931H   , 2 0.7670H   , 3 0.5211H   . 

Since 1 2 3H H H    , then the ranking of alternatives was 1 2 3A A A  . 

We further investigated the discrimination of the MADM method based on the hesitant fuzzy linguistic interaction 

degrees (hereinafter referred to as Method 1) for alternatives, as well as the MADM method based on the group scoring 

interaction degrees (hereinafter referred to as Method 2) and the MADM method based on the group DPC interaction 

degrees (hereinafter referred to as Method 3). Adopting the algorithm of discrimination given in [37] (see Appendix B for 

full calculation principle), the discrimination of Method 1 for alternatives was calculated as 

0.7926 0.7643 0.7926 0.5138 0.7643 0.5138= 0.7153
0.7926 0.7926 0.7643

   
   . 

Similarly, the discrimination of Method 2 for alternatives was calculated as  

0.7946 0.7686 0.7946 0.5244 0.7686 0.5244= 0.6903
0.7946 0.7946 0.7686

       . 

Similarly, the discrimination of Method 3 for alternatives was calculated as  

0.7931 0.7670 0.7931 0.5211 0.7670 0.5211 0.6965
0.7931 0.7931 0.7670

        . 

In summary, although the ranking results of Method 2 and Method 3 are consistent with that of Method 1, the 

discrimination of Method 1 for alternatives is higher than that of both Method 2 and Method 3. Which means that the 

decision-making effect of Method 1 is better than that of both Method 2 and Method 3. 

6   Discussion 

From the results and analysis of the previous section, we observed that Method 1 was able to obtain the higher 

discrimination value than Method 2 and Method 3 (Method 1 was 0.7153, Method 2 was 0.6903, and Method 3 was 

0.6965), and the slightly lower Choquet fuzzy integral mean value than Method 2 and Method 3 (Method 1 was 0.6902, 

Method 2 was 0.6959, and Method 3 was 0.6938). 

Compared with Method 2 and Method 3, Method 1 can obtain the higher discrimination value. Since the variance of 

interaction degrees determined by Method 1 (its value was equal to 0.0673) was higher than that of both Method 2 (its 

value was equal to 0.0355) and Method 3 (its value was equal to 0.0449). According to Eq. (4), the variances of mi and 

mij increase with the increase of the variance of interaction degrees. From Eq. (3) and Eq. (5), we can further see that the 

variance of ( )g K  and the variance of H also increase correspondingly. Thus, according to the algorithm of 

discrimination [37], the discrimination value becomes larger. 

Compared with Method 2 and Method 3, Method 1 can obtain the slightly lower Choquet fuzzy integral mean value. 



Since the average value of interaction degrees determined by Method 1 (its value was equal to 0.3023) was higher than 

that of both Method 2 (its value was equal to 0.2087) and Method 3 (its value was equal to 0.2490). According to Eq. (4), 

when the average value of interaction degrees increases, the mean value of P increases, meanwhile, the mean value of mi 

decreases and the mean value of mij increases. However, because i ijm m , from Eq. (3), we can further see that the 

mean value of ( )g K  also decreases correspondingly. Thus, according to Eq. (5), the mean value of H becomes smaller. 

Both the variance and the average value of interaction degrees determined by Method 1 were higher than that of both 

Method 2 and Method 3, this was closely related to the fact that the experts employed the linguistic expressions 

generated by the context-free grammar to evaluate the interactivity between attributes in Method 1, which can flexibly 

and comprehensively reflect their real opinions in hesitant situations under qualitative settings. 

7   Conclusion 

In this paper, the proposed method defines the interactivity between attributes by using the supermodular game theory, so 

that the interaction between attributes is easier to explain and understand, which lays a solid foundation for experts to 

qualitatively evaluate the interactivity between attributes. The proposed method allows the experts to qualitatively 

describe the interactivity between attributes by using linguistic expressions generated by the context-free grammar, when 

they are hesitant among multiple possible linguistic information, which can flexibly and comprehensively reflect their 

real opinions. Furthermore, the proposed method uses the defined HFLWPA to aggregate the opinions of all experts, 

which not only considers the weights of experts, but also considers the mutual support degree of opinions of experts, 

thereby ensuring the rationality of decision-making. In particular, the proposed method uses the standard Euclidean 

distance formula of HFLEs to define and calculate the HFLID between attributes, so the transformation from qualitative 

description to quantitative characterization is finally realized. As a result, using the HFLTS, this work successfully solves 

the problem that it is difficult to quantitatively evaluate the interactivity between attributes in the identification process of 

2-order additive fuzzy measure. 

The proposed method applies the HFLTS to determine the interaction degree between attributes in a set of attributes. 

Its calculation principle is easy to understand, and calculation process is relatively simple, thereby improving the 

simplicity and operability of decision-making. In addition, the proposed method can not only be used to identify the 2-

order additive fuzzy measure, but also can be extended to identify the k-order additive fuzzy measure, which has high 

practical application value and broad application prospects. 

This work proposed a 2-order additive fuzzy measure identification method based on HFLID. Obviously, on the one 

hand, compared with the objective methods describing and dealing with the interactivity between attributes (as in [7], [16] 

and [17]), the proposed method has subjectivity. On the other hand, compared with the subjective methods describing 

and dealing with the interactivity between attributes (as in [9], [10], [11], [12], [13], [14] and [15]), the proposed method 

has fuzziness and hesitation. 



Future application example analysis will consider increasing the number of samples and experts, since increasing the 

number of samples can improve the persuasiveness of application example analysis results, and increasing the number of 

experts can improve the stability of interactivity evaluation. Furthermore, the established linguistic term set S contains 

only nine linguistic terms, which is relatively extensive. Therefore, it is necessary to add the linguistic terms in S in the 

future. In addition, Method 1 should be compared with other methods except Method 2 and Method 3, such as the 

proportional scaling method [11], multicriteria correlation preference information method [12], qualitative cross-impact 

analysis method [15], etc. 

According to the supermodular game theory, Definition 10 gives the definition of interactivity between attributes. 

However, this definition is still relatively general. The detailed theoretical analysis of the connotation of interactivity 

between attributes needs to be completed in the future. It should be noticed that the subjective methods describing and 

dealing with the interactivity between attributes have a strong explanatory power, but a poor objectivity, and the 

objective methods describing and dealing with the interactivity between attributes have a poor explanatory power, but a 

strong objectivity. Thus, combining the results of subjective methods and objective methods well be one of the main 

research directions in the future. 
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Appendix A 

In step 2 of Section 5.2, the weight vector of experts was calculated by using the cycle mutual evaluation method [36]. Its 

calculation principle is as follows: 

Suppose there are p experts, ijb  is the mutual evaluation weight given by expert i to expert j, then the mutual 

evaluation weight matrix is ( )ij p pB b  , where 0 1ijb  , and 
1

1p
ijj

b


 . Then the weight of expert j given by the 

group is 1
1

p
j iji

q p b


  . Therefore, the final weights of experts are determined through the cycle evaluation. Let t be 

the number of mutual evaluations, when t=1, the weight vector of experts is 1
1 2( , , , )pq q q q  ; when t>1, the weight 

vector of experts is 1t tq q B , until tq  converges to the stable value. 

In this paper, the mutual evaluation weight matrix was given by three experts, it was 
0.50 0.25 0.25
0.38 0.31 0.31
0.28 0.36 0.36

B
 
   
  

. 

When t=1, the weight vector of experts was 1 (0.3866,0.3067,0.3067)q  ; when t=5, the weight vector of experts 

converged to the stable value 5 (0.3976,0.3012,0.3012)q  . Therefore, the final weight vector of experts was 

(0.3976,0.3012,0.3012)DW  . 



Appendix B 

In Section 5.3, the discrimination of the MADM method for alternatives was calculated by using the algorithm of 

discrimination [37]. Its calculation principle is as follows: 

Suppose a decision model or algorithm evaluate the alternatives with decision coefficient α, the decision coefficient for 

alternative iA  is i , the decision coefficient for alternative jA  is j , and i j  , then the discrimination of the 

decision model or algorithm for alternatives iA  and jA  is defined as 

100%i j
ij

i

 





   

Obviously, the larger the discrimination ij  is, the better the decision-making effect of the decision model or 

algorithm for alternatives iA  and jA  is. 
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