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Abstract

Background & Aim:
Non-alcoholic fatty liver disease (NAFLD) which is characterized by excessive fat deposition in the liver
that is not attributable to consumption of alcohol, highly prevalent in all countries. However, therapeutic
agents approved for the treatment of NAFLD are lacking. An ileal bile acid transporter inhibitor (IBATi)
which represents a new mode of treatment of chronic idiopathic constipation, leads to increased delivery
of bile acids to the colon. We investigated the effect of IBATi for NAFLD through modi�cation of the gut
microbiota in mice.

Results
When HFD mice were treated with IBATi, their body weight gain and serum LDL levels were signi�cantly
suppressed and NAFLD activity score was signi�cantly decreased. Treatment with IBATi ameliorated the
increase of ileal Fgf15 mRNA and the decrease hepatic Cyp7a1 mRNA in HFD mice. The microbial
compositions of the feces from these mice were analyzed using 16S rRNA sequencing. The decrease of
α-diversity in gut microbiota induced by HFD was recovered by the IBATi treatment. To establish a cause-
effect of the improvement e�cacy of IBATi for NAFLD, we recolonized antibiotic solution-treated mice
reared in SPF conditions by fecal microbiome transplantation (FMT) using stool from the HFD or HFD + 
IBATi mice. From FMT, the gut microbiota from HFD + IBATi mice prevented hepatic steatosis caused by
HFD.

Conclusions
IBATi improves hepatic steatosis by changing the gut microbiota dysbiosis in NAFLD model mice.

Background
During the past century, dramatic modi�cations in lifestyle have radically changed the health priorities in
most areas of the world, owing to a growing incidence of non-communicable diseases. The new epidemic
of chronic liver disease is related to the burden of non -alcoholic fatty liver disease (NAFLD) [1, 2]. NAFLD
is characterized by excessive fat deposition in the liver that is not attributable to consumption of alcohol;
the most common risk factors include obesity, insulin resistance, and the features of metabolic
syndrome. Community surveys, based on ultrasonography or proton NMR spectroscopy, have assessed
the prevalence of NAFLD across various geographical regions. NAFLD is highly prevalent in all
continents, but the highest rates are reported from South America (31%) and the Middle East (32%),
followed by Asia (27%), the USA (24%) and Europe (23%), whereas NAFLD is less common in Africa (14%)
[1]. Most liver-related outcomes occur once cirrhosis has developed, with the exception of hepatocellular
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carcinoma (HCC) that can develop even in the absence of cirrhosis, and NASH is rapidly increasing as an
etiology of liver cirrhosis [3].

The �rst-line treatment for NAFLD is lifestyle modi�cation to achieve weight reduction, particularly
through diet and exercise. However, weight reduction is very di�cult to achieve and maintain and
therapeutic agents approved for the treatment of NAFLD are lacking[4]. The ileal bile acid transporter
(IBAT), also called apical sodium-dependent bile acid transporter (ASBT), is a key element in the
enterohepatic circulation of bile acids (BAs) and treatment with a locally-acting IBAT inhibitor (IBATi)
leads to increased delivery of BAs to the colon and represents a new mode of treatment of chronic
idiopathic constipation[5]. It has been reported recently that the inhibition of ileal bile acid uptake protects
against non-alcoholic fatty liver disease in mice [6]. However, the effect of IBATi against NAFLD through
the gut microbiota is not unclear.

There is an anatomical link between the intestine and liver via the hepatic portal system. Based on this
connection between the intestine and liver, also termed the gut-liver axis, gut microbiota and their
metabolic products may in�uence liver pathology and this axis plays a pivotal role in the pathogenesis of
NAFLD [7, 8]. The human gut microbiota contains over 100 fold more genes than its host and has been
also suggested to be an important environmental factor involved in the pathogenesis of NAFLD[9].
However, there is no report of how IBATi affects the gut microbiota in NAFLD.

The composition of the gut microbiota is partially modulated by extracellular metabolites that are derived
from the host and modi�ed by microbes. Of these, bile acids (BAs) constitute a highly abundant pool of
host-derived and microbial-modi�ed metabolites that are major regulators of the gut microbiota. BAs are
synthesized from cholesterol in the liver, are secreted into bile as the major solute, and function to
facilitate lipid absorption in the intestine. About 95% of intestinal BAs are reabsorbed in the ileum by the
IBAT and conveyed through the portal vein to the liver, where they are taken up by hepatocytes to be
resecreted into the bile. BAs are antibacterial and constitute strong selective forces on the intestinal
microbiota. Even within a single bacterial species, there can be differential sensitivity to speci�c BAs.
Dietary fat content can regulate the time and amount of secreted bile and thus shape the microbiota [10].
In this study, we investigated the effect of IBATi for NAFLD through modi�cation of the gut microbiota.

Materials And Methods

Mice
All animal experiments were carried out in compliance with ICLAS guideline and Japanese regulations.
The local institutional animal ethics board of Osaka Medical college approved all mouse experiments
(approval number: 2019 − 138). Five week-old male C57BL/6 mice were purchased from Japan SLC, Inc.
All mouse experiments were performed at the animal facility in Osaka Medical college, where the animals
were housed in speci�c pathogen-free conditions. The mice were divided into four groups of 6 and fed
either a control diet (CE-2; CLEA Japan) or an HFD (HFD32; CLEA Japan), for 12 weeks. For the IBATi and
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HFD + IBATi groups, the mice were treated with Elobixibat (EA Pharma Co. Ltd, Japan) (2.5 µmol/kg:
corresponding to the clinically optimal dose for patients) by oral gavage in 0.2 ml of PBS daily, using
animal feeding needles.

For some experiments, 6 week-old C57BL/6 mice were fed an HFD for 12 weeks and treated with oral
IBATi from 6 to 12 weeks (IBATi-Tx group). For the control group, the equivalent mice were subjected to
the same oral dose of PBS.

Metagenomic analysis of mouse feces.
Fresh feces were collected, placed into tubes, and kept at -80℃ until further use. Bacterial genomic DNA
was extracted from fecal samples, as previously described [11]. Brie�y, whole bacterial DNA was
extracted from the feces using a PureLinkTM Micobiome DNA Puri�cation Kit (ThermoFisher Scienti�c K.
K. Tokyo, Japan).

Fecal Microbiota Transplantation
Elobixibat has only 2% bioavailability and is excreted from the body 48 hours after oral administration.
When absorbed, elobixibat is protein bound (> 99%) in plasma, with a half-life of less than 4 hours [12]
[13]. For fecal microbiota transplantation (FMT), feces were collected from the 12 week-HFD group or
HFD + IBATi group of mice, 48 hours after the last oral administration of elobixibat, and stored at -80℃.
Six week-old male C57/B6 mice were fed an HFD for 8 weeks. At 9 weeks of age, these mice were treated
with an antibiotic solution (ATB) containing ampicillin (1 mg/ml), streptomycin ( 5 mg/ml) and colistin
(1 mg/ml), added to their sterile drinking water. Solutions and bottles were changed 3 times per week. To
investigate the e�cacy of FMT, these 10 week-old “avatar mice” received ATB before FMT, and ATB
treatment was discontinued 48 h before the �rst FMT[14]. FMT was performed by thawing fecal materials
and 500 µL of fecal suspension (50 mg/mouse) was then transferred by oral gavage, using animal
needles, into each ATB pre-treated recipient three times every two days, for one week.

Library Preparation And Dna Sequencing
Preparation of the library for DNA sequencing was conducted as previously described [15] using ion-
proton technology (ThermoFisher Scienti�c K. K. Tokyo, Japan). An Ion 16S™ Metagenomics Kit was
used to amplify hypervariable regions from the polybacterial samples, according to the manufacturer’s
protocol. Library preparation was performed from 50 ng pooled amplicons for each sample using an Ion
Plus Fragment Library Kit. The StepOnePlus™ Real-time PCR system was used to perform the quantitative
polymerase chain reaction ampli�cation.

Sequence Data Analysis
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Sequence data analysis was performed using QIIME v1.9.0, as previously described [15]. Statistical
differences (p < 0.05) in the relative abundance of bacterial phyla and genera between groups were
evaluated using Student’s paired t test. The Shannon phylogenetic diversity indices were calculated using
the R “phyloseq” package and statistically analyzed using a Kruskal-Wallis test followed by the Steel-
Dwass post hoc test. The β-diversity was estimated using the Bray Curtis distances between the samples
and visualized by principal coordinate analysis (PCoA); it was statistically examined using permutational
analysis of variance (PERMANOVA). The �nal �gures were generated using QIIME v1.9.0.

Histological Analysis
The liver tissue samples were �xed in 20% formalin and embedded in para�n. Sections (4 µm thick) were
cut and stained with hematoxylin-eosin (HE). Histological features and the fat area in liver tissue sections
were determined using a BZ-X 710 �uorescence microscope (Keyence, Osaka, japan). Blinded histologic
assessment of slides was performed by an experimented hepatopathologist. Hepatic steatosis was
evaluated by NAFLD activity score (NAS) [16] and hepatic �brosis was evaluated by �brosis stage[17].

Serum Biochemical Analysis
Serum was obtained from each mouse. Concentrations of aspartate amino-transferase (AST), alanine
amino-transferase (ALT), Total Bile Acid (TBA), total cholesterol (Tcho), low-density lipoprotein (LDL) and
triacyl glyceride (TG) in serum were measured by ELISA. ELISA kits were purchased from Elabscience
(TX., U.S.A.) and MyBiosource, Inc. (CA., U.S.A.).

Real-time Pcr
Liver and terminal ileum samples were obtained from each group of mice. Hepatic mRNA expression
(cholesterol 7-a-monoxygenase (Cyp7a1), cholesterol 8-a-monoxygenase (Cyp8a1) and farnesoid X
receptor (Fxr)) and ileal mRNA expression (Fxr and �broblast growth factor 15 (Fgf15)) were measured by
real-time PCR using a RNeasy kit (Qiagen K. K, Tokyo, Japan) and CYBR Green real-time PCR master mix
(ThermoFisher Scienti�c K. K. Tokyo, Japan).

Statistical analysis
All data are presented as mean SEM. Body weight gain curves were analyzed with an ANOVA, followed by
Tukey’s multiple comparison tests. The Pearson’s rank correlation coe�cient was used to analyze the
correlation of gut microbiota. These statistical analyses were performed using statistical software (JMP
institute, Inc., Cary, NC). All results were considered statistically signi�cant at p < 0.05

Results
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IBATi inhibited of body weight increases and hepatic
steatosis in HFD mice
Six-week-old mice were fed for 18 weeks with either the control or HFD diet. Body weight and food
consumption were monitored weekly throughout the experiments. During the experiment, the average
food intake of mice in the HFD groups did not differ from the normal and HFD with IBATi treatment
groups. As shown in Fig. 1A and B, body weights were signi�cantly higher in the HFD group than the
normal group after 3 weeks of treatment (i.e. at 9 weeks of age). This difference was maintained through
to the end of the study. When HFD mice were treated with IBATi, their body weight gain was signi�cantly
suppressed during the 6–24 weeks period. The liver weight/body weight ratios were signi�cantly higher in
the HFD group than the normal group, and this increase was inhibited by treatment with IBATi (Fig. 1C).
Livers were obtained from each group of 18 week-old mice and liver sections were stained with
Hematoxylin and Eosin. Although the liver sections of the normal and IBATi groups were free of lipid
droplets, increased accumulation of lipid droplets was observed in the HFD group, leading to hepatic
steatosis, this increase being suppressed in the HFD + IBATi group (Fig. 1D and 1E). The hepatic crown-
like structure that is one of the unique histological features of NAFLD was found only in the liver sections
of the HFD group and not the other groups (Fig. 1F). Blinded histologic assessment of slides by an
experienced hepatopathologist revealed that the NAFLD activity score (NAS) increased signi�cantly from
0.33 ± 0.58 in the normal group of mice to 7.67 ± 0.58 in the HFD group and this score was lower in the
HFD + IBATi group (1.67 ± 1.55) at 18 week of treatment (Fig. 1G). However, in this study, �brosis was not
seen in the liver sections of any group of mice at the end of the experiments (Fig. 1H). From these results,
IBATi prevented the body and liver weight gain and improved hepatic steatosis in HFD mice.

Sera obtained from each group of 18 week-old mice were assayed using ELISA. In the HFD group of mice,
serum AST and ALT concentrations were higher than the normal and IBATi groups of mice. When HFD
mice were treated with IBATi, these increases were not prevented. Biochemical lipid measurements
con�rmed high levels of Tcho, LDL and TG in the sera of the HFD group, compared to the normal and
IBATi groups. However, the serum levels of Tcho and TG in the HFD + IBATi group did not differ from the
HFD group. The serum LDL levels were only signi�cantly lower in the HFD + IBATi group. Serum levels of
TBA in the HFD group did not differ from the HFD + IBATi group (Fig. 2A). Previous reports have revealed
that hepatic Cyp7a1 mRNA expression, which promotes hepatic steatosis and serum LDL elevation, is
reduced, and Fgf15 expression in the terminal ileum is increased, in NAFLD model mice[6] [18]. We
analyzed the hepatic and ileal mRNA expression of each group of mice. Although, Cyp7a1 expression in
the livers of the HFD group was decreased, treatment with IBATi increased its expression up to 3-fold in
the livers of the HFD mice. Cyp8a1 and Fxr mRNA expression in the livers did not differ among the groups
of mice. In the terminal ileum, Fgf15 mRNA expression was elevated in the HFD group and this elevation
was reduced when the mice were treated with IBATi (Fig. 2B and 2C). These results indicate ileal Fgf15
mRNA expression was increased, and hepatic Cyp7a1 mRNA expression was suppressed in the HFD
group of mice. Treatment with IBATi ameliorated the increase of ileal Fgf15 mRNA in HFD mice.



Page 7/22

Furthermore, the elevation of hepatic Cyp7a1 mRNA improved the hepatic steatosis and elevation of
serum LDL.

Effects Of Ibati On Hfd-induced Gut Microbiota Dysbiosis
Given that the intestinal bile acid composition was likely to have altered the intestinal bacterial
population, whole shotgun genome metagenomic sequencing was used to characterize the effect of
IBATi on the gut microbiota dysbiosis induced by HFD. In total, 166 OTUs were detected from Ion reporter
high quality sequence reads. Initially, we compared α-diversity among the normal, HFD, IBATi and HFD + 
IBATi groups, using different indices for the observed species and the Shannon index. The Shannon index
was signi�cantly lower in the HFD group than the normal and IBATi groups and this decrease having
been prevented by IBATi treatment (Fig. 3B).

Subsequently, the overall structures of the microbiota of the normal, HFD and HFD + IBATi groups were
calculated using β-diversity induces for unweighted Bray Curtis distances. PCoA revealed that there were
signi�cant structural differences of the microbiota of the normal, HFD and HFD + IBATi groups in terms of
the unweighted Bray Curtis distances (PERMANOVA, p = 0.001) (Fig. 3C). Further analysis reveals this to
be encoded by the genomes of the bacteria, an HFD was associated with a higher proportion of
Streptococcaceae (Fig. 3A and 3D). From these results, the diversity of gut microbiota induced by HFD in
mice was recovered, and the dysbiosis of the microbiota, induced in the mice by an HFD, were changed by
the IBATi treatment.

Effect Of Fmt On Na�d In Mice
To establish a cause-effect of the improvement e�cacy of IBATi for NAFLD, we recolonized ATB-treated
mice reared in SPF conditions by FMT using stool from the HFD or HFD + IBATi groups of mice. Such
“avatar mice” were prepared by oral gavage with feces harvested from the HFD or HFD + IBATi groups of
18 week-old mice. After FMT, both groups of C57BL/6 avatar mice were fed an HFD diet for 4 weeks. The
body weights of both groups of mice increased in the same way and the liver weight / body weight ratios
of the mice from each group did not differ at end of the experiment (Fig. 4A, 4B and 4C). Fatty changes
were observed in the macroscopic photographs of the livers of avatar mice who received FMT from HFD
mice. This change was not detected in the livers of avatar mice who received FMT from HFD-IBATi mice
(Fig. 4D). In the histological liver sections, lipid droplets were observed in avatar mice with FMT from HFD
mice, but not in avatar mice with FMT from HFD-IBATi mice (Fig. 4E). The NAS of the livers from avatar
mice with FMT from HFD mice (5.67 ± 2.08) was higher than that from the equivalent mice with FMT
from HFD-IBATi mice (2.67 ± 0.58) (Fig. 4F). As in Fig. 1H, �brosis was not seen in the liver sections of
either group of mice (Fig. 4G). When comparing gut microbiota in both groups of mice, the α-diversity of
avatar mice with FMT from HFD mice was reduced as same level as HFD mice, but this diversity of
avatar mice with FMT from HFD-IBATi mice was kept even if these mice fed HFD. And there was a
signi�cantly different in β-diversity between the two groups (PERMANOVA, p = 0.007) (Supplemental
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Fig. 1). From these results, the gut microbiota from HFD + IBATi mice prevented hepatic steatosis caused
by an HFD.

Therapeutic Effect Of Ibati Against Na�d In Hfd Mice
Next, we tested the therapeutic effect of IBATi in HFD mice. Six week-old mice were fed an HFD diet for 12
weeks and, from 6 to 12 weeks, the mice received IBATi treatment (IBATi-Tx group). As a control group in
this experiment, equivalent mice were injected with the same dose of PBS. The increase in body weight in
the control group of mice was not seen in the IBATi-Tx group, their weights remaining stable with IBATi
treatment (Fig. 5A and 5B). Liver weight / body weight ratios in the control group were increased but
those in the IBATi-Tx group decreased after the IBATi treatment (Fig. 5C). Fatty changes seen in the
macroscopic photographs of the livers and lipid droplets of the liver sections from the control group were
prevented in the IBATi-Tx group (Fig. 5D and 5E). The NAS of the livers from the IBATi-Tx group (1.66 ± 
0.57) was improved and �brosis was not detected in either group (Fig. 5F and 5G). Lower serum LDL
levels were seen in the IBATi-Tx group. Other biological parameters in the sera did not differ between the
groups (Fig. 6). Thus, the therapeutic effect of IBATi against hepatic steatosis was reproduced in HFD
diet mice.

Discussion
BAs are synthesized in hepatocytes via cytochrome P450 (CYP)-mediated oxidation of cholesterol to the
primary bile acid through “classical” and “alternative” pathways, in which CYP7A1 is the major enzyme,
and secreted into the small intestine, where they facilitate the absorption of dietary lipids. The majority of
BAs are reabsorbed from the intestine, returned to the liver via the portal venous circulation, and
resecreted into the bile. The enterohepatic circulation of BAs is an extremely e�cient process; less than
10% of intestinal BAs escape reabsorption and are eliminated in the feces[19]. IBAT is essential for
e�cient intestinal absorption of BAs and the mechanisms of alternative absorption of BAs are unable to
compensate for loss of IBAT function[20]. In enterocytes in the ileum, activation of FXR by BAs
reabsorbed by IBAT releases FGF15 (the mouse ortholog of human FGF19) into the portal circulation.
FGF15 binds its receptor �broblast growth factor receptor 4 (FGFR4), and inhibits CYP7A1, thus
repressing bile acid synthesis in hepatocytes[7]. Here, we identi�ed an important role of IBATi as regulator
of hepatic lipid metabolism through the gut microbiota, in addition to its role in bile acid metabolism. It
has been reported that the gut microbiota directly inhibits IBAT-dependent intestinal bile acid
reabsorption[21]. Especially, enteropathogenic Escherichia coli (EPEC) directly inhibit IBAT and EPEC-
induced inhibition of IBATi is dependent on intact bacterial effector molecules, via type three secretion,
into host cells[22]. However, EPEC was not detected in the feces of the HFD group of mice in this study.
This mechanism by which gut microbiota regulate ASBT remains largely unknown and there may be
other bacteria with similar capabilities. This area of investigation, which is in its infancy, may merit more
research.
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In the ileum, IBAT mediates most of the uptake of BAs from the gut lumen across the apical brush border
membranes of the enterocytes, whereas the organic solute transporter α/β (OST α/β) plays a central role
in mediating intestinal basolateral bile acid export. In order to inhibit bile acid reabsorption, either ASBT or
OST may be controlled. Both Asbt-null and Ostα-null mice exhibit impaired ileal bile acid absorption,
decreased return of BAs to the liver and a decreased bile acid pool size [23, 24]. However, hepatic Cyp7a1
mRNA expression and bile acid synthesis are paradoxically suppressed in Ostα-null mice, secondary to
elevated ileal FGF15 production [25]. Blocking intestinal absorption of BAs at the enterocyte apical brush
border membrane by IBATi suppresses ileal Fgf15 mRNA expression, induces hepatic bile acid synthesis
and reduces plasma cholesterol levels. However, the broad substrate speci�city of OST α/β raises the
concern that dietary constituents, dietary supplements, or drugs could act as OST α/β inhibitors to slow
bile acid export, activate FXR to induce intestinal FGF15 expression, and raise plasma cholesterol
levels[20]. Because these reports are signi�cant with regard to the mechanism of action of bile acid
sequestrants, we investigated the effect against NAFLD of IBATi alone.

Alterations in the gut microbiota have been associated with an HFD in this study but little is known about
the host factors that induce this alteration to the microbial population. HFD-induced BA secretion was
�rst proposed in 2011 by Islam et al.[26] as a driving force in shaping the obesity-associated gut
microbial composition. Cholic acid is the most abundant bile acid in biliary secretions in humans and
HFD enhances bile acid secretion to facilitate lipid digestion. The most important secondary bile acid is
deoxycholic acid, which arises from cholic acid. The conversion to secondary bile acids is mediated by a
7α-dehydroxylation reaction catalyzed by some species of Clostridium; nearly 100% of CA is converted
into DCA in the large intestine. An important feature of bile acids is their strong antimicrobial activity[27].
Physiological concentrations of CA and DCA in the intestine disturb the integrity of membranes as a
result of their detergent effect, leading to the leakage of ions and cellular components and, eventually, to
cell death. DCA is one of the most potent antimicrobial bile acids, with ten times the bactericidal activity
of CA. Thus, bile acids seem to exert a strong selective pressure on the gut microbiota and only microbial
populations able to tolerate physiological concentrations of bile acids can survive in the gut. This seems
especially evident when administering an HFD, causing an increased intestinal �ow of bile acids[26].

There is growing concern that environmental factors, especially an HFD, have altered the genetic
composition and metabolic activity of the human microbiota[28], predominantly through changes in the
relative abundance of two dominant bacterial divisions, Firmicutes and Bacteroidetes. At the level of
family, dramatic overgrowth of Streptococcaceae and Enterobacteriaceae has been seen in obese
subjects[29]. In this study, Streptococcaceae were also increased in the gut microbiota of HFD mice and
the proportion of these species decreased to the same level as normal mice after FMT from the IBATi
group of mice. Due to the critical role of the gut microbiota in NAFLD development, the promotion of
changes in microbiotal composition to resemble a healthier pro�le may be desirable in clinical practice,
so we should focus on the modulatory capacity against dysbiosis and gut-liver axis activation. The
administration of live bacteria with potential health bene�ts for the host, when provided in adequate
amounts, namely probiotics, is a promising strategy to manage obesity-associated disorders. Bacteria
belonging to the Lactobacillus, Streptococcus, and Bi�dobacterium genera are the probiotics used most
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frequently, because of the growing body of literature supporting their health- promoting effects and
because all of these genera integrate the normal human gut microenvironment[30]. In this study, IBATi
promoted changes in the gut microbiota and impeded hepatic lipid accumulation. However, the protective
effect of probiotics in NAFLD is not yet fully understood, although it has been proposed that the
production of antibacterial substances, enhancement of epithelial barrier function, and regulation of the
immune system and subsequent intestinal in�ammation may be implicated[9].

Conclusions
NAFLD is highly prevalent in all counties, but therapeutic agents approved for the treatment of NAFLD are
lacking. When HFD mice were treated with IBATi, their body weight gain and serum LDL levels were
signi�cantly suppressed and NAS was signi�cantly decreased. The decrease of α-diversity in gut
microbiota induced by HFD was recovered by the IBATi. IBATi ameliorated the increase of ileal Fgf15
mRNA and the decrease hepatic Cyp7a1 mRNA in HFD mice. From FMT, the gut microbiota from HFD + 
IBATi mice prevented hepatic steatosis caused by HFD. From these results, IBATi improves hepatic
steatosis by changing the gut microbiota dysbiosis in NAFLD model mice.
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Figure 1

Inhibitory effect of IBATi on the HFD-induced NAFLD (A) Time course of mouse body weights. The HFD +
IBATi group of mice was fed an HFD and treated with IBATi (2.5�mol/kg) (Open circles: n = 6 ). The HFD
group of mice was fed an HFD without any treatment (�lled circles: n = 6). The IBATi group of mice was
fed a normal diet and treated with IBATi (2.5�mol/kg) (�lled squares: n = 6 ). The normal group of mice
was fed a normal diet without any treatment (open squares: n = 6 ). (B) Macroscopic photographs from
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each group of mice. (C) Time course of mouse liver weight / body weight ratios. (D) Representative
macroscopic photographs of livers from 18 week-old mice. (E) Hematoxylin & eosin (HE)-stained liver
sections. (F) The hepatic crown structure in the liver was detected only in liver sections from the HFD
group. Photographs are of HE staining of liver sections from representatives of each group (scale bar =
500 �m). (G) NAFLD activity scores (NAS) of liver sections were evaluated. (H) Fibrosis stages were
evaluated. Signi�cant differences from the normal group are denoted *(p < 0.05) and the those with the
HFD group are denoted †(p < 0.05).
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Figure 2

Biochemical parameters of the mice (A) Biochemical parameters of serum from each group of 18 week-
old mice were assayed using ELISA. (B) Hepatic mRNA and (C) ileal mRNA expression from each group
of 18 week-old mice were measured by RT-PCR. Signi�cant differences from the normal group are
denoted *(p < 0.05) and the those with the HFD group are denoted †(p < 0.05).

Figure 3
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Effects of IBATi administration on gut microbiota The microbial compositions of the feces were analyzed
using Ion reporter-based 16S rRNA sequencing. Values are expressed as the means and SEM of three or
four mice in each group. (A) The microbial composition at the family level. (B) The Shannon index (OUT
evenness estimation). (C) PCoA plot of unweighted Bray Curtis data. The overall structures of the
microbiota of the normal, HFD and HFD+IBATi groups were calculated using �-diversity induces for
unweighted Bray Curtis distances. (D) Percentages of Streptococcaceae. Signi�cant differences
compared to the normal group are denoted *(p < 0.05), and the those with the HFD group are denoted †(p
< 0.05).
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Figure 4

Fecal microbiota transplantation (FMT) of stool samples from HFD-IBATi mice protected decontaminated
mice with an HFD diet from hepatic steatosis. FMT was performed in avatar mice 48 hours after ATB. Six
week-old avatar mice were fed an HFD diet for 8 weeks. These avatar mice were treated by ATB at 9
weeks of age. FMT was performed in avatar mice 48 hours after ATB. These mice were prepared by oral
gavage of feces harvested from the HFD or HFD+IBATi groups of 18 week-old mice every two days for a
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week. After FMT, both groups of avatar mice were fed an HFD diet for 4 weeks (avatar mice with FMT
from HFD groups of mice, open circles: n = 6; avatar mice with HFD+IBATi mice, closed circles: n = 6 ) (A)
Time course of mouse body weights. (B) Macroscopic photographs from each group of avatar mice. (C)
Liver weight / body weight ratios of both groups. (D) Representative macroscopic photographs of the
livers. (E) Hematoxylin & eosin (HE)-stained liver sections. Photographs are of HE staining of liver
sections from representatives of each group (scale bar = 500 �m). (F) NAS of liver sections were
evaluated. (G) Fibrosis stages were evaluated. Signi�cant differences compared between groups are
denoted *(p < 0.05).
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Figure 5

Therapeutic effects of IBATi on HFD induced NAFLD mice. C57/BL mice were fed an HFD diet for 12
weeks. To examine the therapeutic effects of IBATi, these mice were treated orally with IBATi from 6 to 12
weeks (IBATi-Tx group). For the control group, equivalent mice were subjected orally to the same dose of
PBS. Time course of mouse body weights (A) and representative macroscopic photographs from each
group of mice (B), liver weight / body weight ratios (C) and representative macroscopic photographs of
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the livers (D) (IBATi-Tx group, open circles: n = 6; control group, closed circles: n = 6). (E) Hematoxylin &
eosin (HE)-stained liver sections. Photographs are of HE staining of liver sections from representatives of
each group (scale bar = 500 �m). (F) NAFLD activity scores (NAS) of liver sections were evaluated. (G)
Fibrosis stages were evaluated. Signi�cant differences compared between groups are denoted *(p <
0.05).

Figure 6
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Biochemical parameters of the mice of IBATi-TX mice Biochemical parameters of sera from each group
of control mice and IBATi-Tx mice were assayed using ELISA. (B) Hepatic mRNA and (C) ileal mRNA
expression from each group of mice were measured by rt-PCR. Signi�cant differences compared to the
control group are denoted *(p < 0.05).
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