Synthesis of Solketal from glycerol catalyzed by spherical γ-Al₂O₃ supported FeCl₃

Tiantian Zhang
Beijing Technology and Business University

Shan Liao
Beijing Technology and Business University

Xiulan Xin
Beijing Technology and Business University

Hongqin Liu
Beijing Technology and Business University

Yang Yu
Beijing Technology and Business University

Baocai Xu
Beijing Technology and Business University

Research Article

Keywords: Mesoporous structure, Glycerol acetalization, Solketal, FeCl₃/γ-Al₂O₃, Fuel additives

Posted Date: October 21st, 2022

DOI: https://doi.org/10.21203/rs.3.rs-2173222/v1

License: ☺ ❤ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

The porous spherical alumina (γ-Al₂O₃) as catalyst support was prepared by sol-gel method, and FeCl₃/γ-Al₂O₃ materials were prepared by impregnation method. The FeCl₃/γ-Al₂O₃ materials were used as catalyst in the Solketal production process by acetalization of acetone and glycerol, showing considerable catalytic performance. When the molar ratio of glycerol and acetone was 1:10, 0.2 mol% FeCl₃/γ-Al₂O₃ was used as the catalyst, and the reaction was carried out at 25°C for 30 min, the conversion of glycerol was 99.89%, the selectivity of Solketal was 98.36%, and the yield of Solketal reached 98.25%. The mechanism is due to the spherical γ-Al₂O₃ support has high thermal stability, large specific surface area, and rich pore structure, encouraging abundant active sites and high catalytic activity of FeCl₃ for the acetalization reaction. Thereafter, the experimental results prove that the prepared FeCl₃/γ-Al₂O₃ catalyst can be easily recovered and reused many times, indicating its great value for large-scale research and application in the future.

1. Introduction

With the massive consumption of fossil fuels and serious environmental pollution, exploring clean and renewable biomass fuel is of great importance for the future development of global economy [1–3]. Biodiesel is one of the most promising biomass fuel and has been commercialized for agricultural production, power generation machinery, public transportation, and shipping vessels [4]. However, a huge amount of the glycerol by-products is formed (ca. 10%) during the production process of biodiesel, resulting in a serious resource waste [5]. Recently, it was found that glycerol can be used as a raw material to synthesize biodiesel additives, showing a new and effective route to achieve the conversion and utilization of waste glycerol into high value-added chemical products [6, 7]. For example, 2,2-dimethyl-1,3-dioxolane-4-methanol (a solvent type branched chain oxygenated compound, also named as Solketal) can be obtained by acetalization of acetone and glycerol and directly used as solvent, low-temperature heat transfer fluid, surfactants or fuel additives [8–10]. In addition, a six membered ring product (6MR, 2,2-dimethyl-1,3-dioxane-5-ol) can also be produced (Scheme 1) [11].

Importantly, the preparation of Solketal by acetalization of acetone and glycerol is under the action of catalyst. Inorganic acids (e.g., HCl, H₂SO₄) are commonly used catalysts most early but show strong corrosiveness, poor thermal stability and non-recyclability [12–16]. Solid catalysts (e.g., zeolite [17], niobium oxide [11], zirconium oxide [4], supported heteropoly acid [18], sulfonated resin [19] and carbon-based acid catalyst [20, 21]) can overcome above disadvantages of liquid catalysts and are once thought to be promising substitutes for inorganic acids [13, 22]. Unfortunately, as a homogeneous catalyst, the solid catalysts exhibit severely acid site leaching and phase change. More seriously, the formed water during the acetalization process inactivates Lewis and Bronsted acid sites [5, 23]. The construction of heterogeneous acid catalysts and the design of catalyst supports have become a research hotspot in recent years [10, 24]. For example, Y-type zeolite-based catalysts have become one of the most commonly used catalysts due to their unique structure, acidity, low cost, and high thermal stability [25].
However, the hydrophobicity of the zeolite as the catalyst support severely limits its catalytic performance [26]. Besides the hydrophilia, the micro- and meso-pore structure of catalyst support is benefit to the heterogeneous catalyst for glycerol acetalization. Considering that the reactant molecules are generally transported to the active sites of the catalyst through the mesoporous channels and the diameter of the acetalization product is 0.43–0.51 nm [23], spherical porous γ-Al₂O₃ with large specific surface area and developed mesopores may be an rational choice for the catalyst support. Furthermore, the acetalization reaction of Solketal is an equilibrium reaction with a low equilibrium constant, and the removal of by-product H₂O can effectively improve the reaction degree [27]. Generally, desiccants (e.g., sodium sulfate, potassium carbonate or phosphorus pentoxide, etc.) can remove H₂O from Solketal but the practical process requires much time and effort [28]. Benefitting from the good water absorption ability, spherical γ-Al₂O₃ is conducive to the forward progress of the equilibrium reaction. The literature has described the continuous formation of ketals using heterogeneous catalysts [29], such as commercial macroporous acid resins of the Amberlyst family. Vicente et al. reported the applicability of mesosulfonate silica as a catalyst for the acetalization of glycerol [5]. Devaki Nandan et al. developed a simple, single-step, template-free, simultaneous carbonization and sulfonation method, using glucose as carbon source and template precursor, and discussed the applicability of the acidic sulfonated carbon–silica-meso composite material obtained in the synthesis of phenolic resin in industry [30]. However, up to now, there are few reports on the use of spherical γ-Al₂O₃ for this catalytic reaction.

On the other hand, Iron chloride is an inexpensive Lewis acid catalyst, which has recently been reported for green acetalization of glycerol with various carbonyl compounds. G. Arellano et al. found that even if a very small amount of iron (0.63 wt.%) was incorporated, the catalytic performance of the aluminosilicate catalyst for the acetalization glycerol was greatly improved [31]. Homogeneous iron salts are non-toxic, inexpensive and environmentally friendly, and have absolute single-point catalysis, showing great value of practical application [32]. S. Zaher et al. reported a new type of iron alginate as a cheap and environmentally friendly catalyst for the production of ketone from glycerol and acetone [33]. The low price, good affordability and high Lewis acidity of iron (III) salt make it a counter ion in heteropoly acid salt, which is widely used in this catalytic reaction [34–36]. Silva D. et al [37] also revealed the positive effect of homogeneous Fe(III) catalyst on the reaction. Overall, the unprecedented high activity, low load (up to 10 ppm), good ecotoxicological characteristics, and high activities of iron salt are expected to become convincing catalysts for the sustainable transformation of renewable by-products in nontoxic solvents [38–41]. Therefore, combining the advantages of spherical porous γ-Al₂O₃ as support and Iron chloride as catalyst may achieve comprehensive catalyst performance for the acetalization of acetone and glycerol.

Herein, we prepared γ-Al₂O₃ by sol-gel method using various ball washing solvents, further synthesized FeCl₃/γ-Al₂O₃ catalyst by the impregnation method using γ-Al₂O₃ as the support for the first time. Thereafter, Solketal is synthesized by solvent-free method using glycerol and acetone as raw materials and FeCl₃/γ-Al₂O₃ as catalyst. Through the optimization of reaction temperature, reaction time, molar ratio of reactants, catalyst amount and other parameters, the best glycerol conversion rate and selectivity
to Solketal were obtained. The results showed that the prepared solid acid catalyst had mild reaction conditions, high stability, high product yield, good selectivity, and low pollution, revealing the great potential of FeCl₃/γ-Al₂O₃ as the catalyst for the reaction between glycerol and acetone.

2. Experimental

2.1. Preparation of γ-Al₂O₃

For a standard synthesis, 30.63 g aluminum isopropoxide and 55.29 g distilled water were added into a three-necked flask to completely hydrolysis. Then, 11.76 mL dilute nitric acid (1 mol/L) was added and gel aged in a certain temperature for a certain time to obtain an aluminum sol with the certain viscosity. Spherical γ-Al₂O₃ precursor was prepared by oil-ammonia column shaping method and washed by water, methanol, ethanol, isopropanol, n-butanol, isoamyl alcohol, n-hexanol and n-octanol, respectively. After drying at room temperature (25 ± 1 °C) for 24 h further 110 °C for 8 h, and calcination followed at 600 °C for 4 h, the obtained spherical γ-Al₂O₃ were named γ-Al₂O₃·H₂O, γ-Al₂O₃·MT, γ-Al₂O₃·EA, γ-Al₂O₃·IPA, γ-Al₂O₃·NBA, γ-Al₂O₃·IAA, γ-Al₂O₃·HA, γ-Al₂O₃·CA, respectively.

2.2. Characterization Of γ-alo

The thermal behavior of precursor was investigated by thermal gravimetric analysis (TGA) and differential thermal (DTG) analysis (MS3000, Mettler Toledo, China). The Zeiss Sigma 300 microscope (Zeiss, Germany) was used for scanning electron microscopy (SEM) analysis to observe the macroporous structure. The acceleration voltage was 1 kV. The nitrogen isotherm adsorption measurements were performed on the fully automatic ratio scale and calibration analyzer (ASAP 2460, USA). The transmission electron microscope (TEM, JEM-2100, Japan) was used to characterize the microstructure and explore the microscopic composition of the sample. Bruker Axs X-ray diffractometer (XRD, Germany) was used to test the crystal structure of spherical Al₂O₃. The test range was 2θ at 10–80°. Cu Kα radiation was used as the X-ray source. The functional groups were characterized by Nicolet Avatar 370 Fourier transform infrared spectrometer (FTIR), and the test range was 400–4000 cm⁻¹. The sample was thoroughly mixed with dry KBr powder and pressed into a disc for measurements. The digital microscope was used to photograph the spherical γ-Al₂O₃, and the sphericity was calculated after the diameter measured.

The bulk density was obtained by the ratio of weight (M, g) and volume (V, cm³) using a cylinder mold.

The compressive strength was investigated by intelligent particle strength testing machine analysis (ZQJ-II, China).

2.3. Preparation Of FeCl/γ-alo
FeCl$_3$/γ-Al$_2$O$_3$ catalyst was prepared by impregnation method. Typically, certain amounts of FeCl$_3$ and spherical γ-Al$_2$O$_3$ were added in 10 mL H$_2$O (the mole percent of FeCl$_3$ in the catalyst is 0.1-1 mol%). After stirring at room temperature for 24 h, the impregnated spherical γ-Al$_2$O$_3$ was directly dried at 110°C for 3 h and calcined at 300°C for 2 h. Finally, the FeCl$_3$/γ-Al$_2$O$_3$ catalysts were obtained and named as FeCl$_3$/γ-Al$_2$O$_3$-H$_2$O, FeCl$_3$/γ-Al$_2$O$_3$-MT, FeCl$_3$/γ-Al$_2$O$_3$-EA, FeCl$_3$/γ-Al$_2$O$_3$-IPA, FeCl$_3$/γ-Al$_2$O$_3$-NBA, FeCl$_3$/γ-Al$_2$O$_3$-IAA, FeCl$_3$/γ-Al$_2$O$_3$-HA, FeCl$_3$/γ-Al$_2$O$_3$-CA, respectively.

2.4. Characterization Of FeCl/γ-alo

Energy dispersive spectrometer (EDS) analysis was performed using a Zeiss Sigma 300 microscope at an acceleration voltage of 10 kV (Zeiss, Germany). The microstructure was characterized by transmission electron microscope (TEM, JEM-2100, Japan).

2.5. Catalytic Activity Measurement

Glycerol acetalization was carried out in a round bottom flask equipped with a water-cooled condenser. Typically, 0.92 g glycerol and 5.81 g acetone (molar ratio is 1: 10) and 0.2 mol% FeCl$_3$/γ-Al$_2$O$_3$ catalyst were slowly added into the flask with magnetically stirring. It was reacted at 25°C for 30 min. Thereafter, 100 µL of the reaction mixture was removed to 1.5 mL gas phase bottle to be analyzed by GC-MS(Agilent-7890A-7000B) equipped with HP-5 capillary column (30 m × 0.32 mm × 0.25 µm). Meanwhile, FeCl$_3$/γ-Al$_2$O$_3$ catalyst was recovered from the reaction system by separation, washing and calcination at 300°C for 2 h to remove adsorbed H$_2$O and organic matter. The glycerol conversion and Solketal selectivity were gotten based on the following equations:

\[
\text{Conversion of glycerol (\%) = } \left(1 - \frac{\text{Area of unreacted glycerol}}{\text{Initial area of glycerol}}\right) \times 100\%
\]

\[
\text{Selectivity of Solketal (\%) = } \frac{\text{Area of Solketal}}{\text{Area of Solketal + Area of Acetal}} \times 100\%
\]

\[
\text{Yield of Solketal (\%) = Conversion of glycerol} \times \text{Selectivity of Solketal} \times 100\%
\]

3. Results And Discussion

3.1. Structural characterization of γ-Al$_2$O$_3$

We first characterized the thermal stability of the various γ-Al$_2$O$_3$ precursors obtained by different washed solvents to choose a rational calcination temperature. The precursors of γ-Al$_2$O$_3$-H$_2$O, γ-Al$_2$O$_3$-MT, γ-Al$_2$O$_3$-EA, γ-Al$_2$O$_3$-IPA, γ-Al$_2$O$_3$-NBA, γ-Al$_2$O$_3$-IAA, γ-Al$_2$O$_3$-HA, and γ-Al$_2$O$_3$-CA are named as A1O0H-H$_2$O, A1O0H-MT, A1O0H-EA, A1O0H-IPA, A1O0H-NBA, A1O0H-IAA, A1O0H-HA, and A1O0H-CA, respectively. And their TGA
and DTG curves are displayed in Fig. 1, all showing three distinct thermal decomposition steps. (1) The decomposition of free water begins at ca. 100°C with a mass loss of 10%; (2) the -OH and organic component decompose at 200–500°C and the content is ca. 20%; and (3) the mass loss of ca. 2% during 500–600°C is attributed to the crystal transformation. We realize from the almost constant mass of the samples above 600°C that is the optimal calcination temperature. The precursors all exhibit weight loses of 30%-40% during the calcination process (Table 1), which is in accordant with the TG results.

Table 1

<table>
<thead>
<tr>
<th></th>
<th>AIOOH-H₂O</th>
<th>AIOOH-MT</th>
<th>AIOOH-EA</th>
<th>AIOOH-IPA</th>
<th>AIOOH-NBA</th>
<th>AIOOH-IAA</th>
<th>AIOOH-HA</th>
<th>AIOOH-CA</th>
</tr>
</thead>
<tbody>
<tr>
<td>25–800°C</td>
<td>35.11</td>
<td>33.96</td>
<td>33.36</td>
<td>34.03</td>
<td>33.62</td>
<td>33.69</td>
<td>35.69</td>
<td>38.17</td>
</tr>
<tr>
<td>25–200°C</td>
<td>9.51</td>
<td>10.74</td>
<td>11.00</td>
<td>10.85</td>
<td>10.72</td>
<td>10.95</td>
<td>10.63</td>
<td>11.72</td>
</tr>
<tr>
<td>200–500°C</td>
<td>22.88</td>
<td>21.11</td>
<td>20.49</td>
<td>21.27</td>
<td>20.75</td>
<td>20.72</td>
<td>22.99</td>
<td>23.45</td>
</tr>
<tr>
<td>500–800°C</td>
<td>2.76</td>
<td>2.16</td>
<td>1.93</td>
<td>1.97</td>
<td>2.19</td>
<td>2.06</td>
<td>2.12</td>
<td>3.09</td>
</tr>
</tbody>
</table>

The XRD patterns (Fig. 2a) of the obtained spherical γ-Al₂O₃ samples after calcination all show three typical diffraction peaks located at (311), (400) and (440), revealing their γ-Al₂O₃ structure (JCPDS no.29–0063). Noticeably, inferred from the similar intensity of the peaks of all samples, the crystal structure of the spherical γ-Al₂O₃ is no related to the types of the washed solvent. According to the Scherrer formula \(D = \frac{(K \gamma)}{(B \cdot \cos \theta)} \), (K is the Scherrer constant, 0.89, D is the average thickness of the grain perpendicular to the crystal plane, B is the full width at half maximum of the diffraction peak, \(\theta \) is the diffraction angle, \(\gamma \) is the X-ray wavelength, 0.154056 nm), the grain size of the spherical γ-Al₂O₃ (440) crystal plane was about 4 nm.

The functional group structure of the spherical γ-Al₂O₃ was tested by FTIR (Fig. 2b). All samples show a wide absorption peak at 3700 – 3300 cm⁻¹, corresponding to -OH and H₂O. The small peak near 1660 cm⁻¹ and the broad band at 900 – 500 cm⁻¹ are caused by the bending vibration of H-O-H [42] and the stretching vibration of Al-O-Al in bulk phase, respectively. These peaks of the samples exhibit similar intensity, indicating that the washing solvent are not affect their composition and structure.

TEM (Fig. 3) images show that the samples are all composed with the nanorods and the regular and order microscopic particles are stacked to form regular meso- and macro-pores. N₂ adsorption–desorption experiments are conducted to get more information of the pore structure (Fig. 4a). The hysteresis loops of the samples at the relative pressure of 0.6–0.9 reveal their mesopore structure, which
are consistent with the concentrated pore size distribution at 2–20 nm (Fig. 4b). In addition, it can be seen from the SEM images (Fig. 5) that the samples all have large pore structure.

The detailed physical parameters are given in Table 2. The γ-Al₂O₃ all are spheres with a diameter of ca. 2 mm and exhibit larger specific surface area, developed mesopores, low bulk density, and high compressive strength, which may provide a tri-functions as catalysis support. (1) The sphere shape is suitable for serving as supports due to their uniform bulk structure and easy recovery operation, which can effectively solve the problem of solid powder catalyst cannot be recycled (such as FeCl₃). (2) The enriched pores may provide more active sites for the catalytic reaction, which is beneficial to the progress of the reaction. And (3) the high compressive strength is important for repeated utilization and resources saving.

Table 2

<table>
<thead>
<tr>
<th>Sample</th>
<th>Diameter (mm)</th>
<th>S BET[a] (m²/g)</th>
<th>PV[b] (cm³/g)</th>
<th>PS[c] (nm)</th>
<th>Bulk Density (g/mL)</th>
<th>CS[d] (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ-Al₂O₃-H₂O</td>
<td>1.93</td>
<td>248.75</td>
<td>0.44</td>
<td>5.66</td>
<td>0.84</td>
<td>141.4</td>
</tr>
<tr>
<td>γ-Al₂O₃-MT</td>
<td>1.98</td>
<td>250.89</td>
<td>0.41</td>
<td>5.45</td>
<td>0.89</td>
<td>126.4</td>
</tr>
<tr>
<td>γ-Al₂O₃-EA</td>
<td>2.01</td>
<td>258.86</td>
<td>0.44</td>
<td>5.43</td>
<td>0.85</td>
<td>173.4</td>
</tr>
<tr>
<td>γ-Al₂O₃-IPA</td>
<td>1.97</td>
<td>271.88</td>
<td>0.47</td>
<td>5.42</td>
<td>0.83</td>
<td>129.2</td>
</tr>
<tr>
<td>γ-Al₂O₃-NBA</td>
<td>2.02</td>
<td>259.70</td>
<td>0.51</td>
<td>6.35</td>
<td>0.88</td>
<td>103.7</td>
</tr>
<tr>
<td>γ-Al₂O₃-IAA</td>
<td>2.01</td>
<td>255.54</td>
<td>0.50</td>
<td>6.40</td>
<td>0.91</td>
<td>79.6</td>
</tr>
<tr>
<td>γ-Al₂O₃-HA</td>
<td>2.13</td>
<td>302.47</td>
<td>1.04</td>
<td>12.06</td>
<td>0.77</td>
<td>50.9</td>
</tr>
<tr>
<td>γ-Al₂O₃-CA</td>
<td>2.28</td>
<td>287.35</td>
<td>0.97</td>
<td>11.39</td>
<td>0.48</td>
<td>21.7</td>
</tr>
</tbody>
</table>

[a] BET specific surface area, [b] PV pore volume, [c] PS pore size, [d] CS Compressive Strength

3.2. Structural Characterization Of FeCl/γ-alo

To reveal the practical application potential of above 8 kinds of spherical γ-Al₂O₃ for catalyst support, we prepared various FeCl₃/γ-Al₂O₃ with FeCl₃ as catalyst. First, we characterized the samples by TEM and EDS to observe the FeCl₃ distribution in spherical γ-Al₂O₃ using FeCl₃/γ-Al₂O₃-IPA as an exemplification (Fig. 6). The obvious black spots are randomly distributed in the γ-Al₂O₃ matrix (Fig. 6a), indicating the
successful load of FeCl$_3$. The result can be further confirmed by the amounts of Fe element in the EDS image (Fig. 6b-d).

3.3. Catalytic Tests

3.3.1. Acetalization of glycerol with acetone

The catalytic performance of the eight FeCl$_3$/γ-Al$_2$O$_3$ catalysts with different spherical γ-Al$_2$O$_3$ as supports for the acetalization of glycerol and acetone is further measured. The measurement is carried out at 25°C for 30 min with a glycerol and acetone molar ratio of 1: 5 and 10 mol% FeCl$_3$/γ-Al$_2$O$_3$ catalyst (the mole percent of FeCl$_3$ in the catalyst is 10%). The specific catalytic data are shown in Table 3. It can be found that there was no catalytic performance without adding a catalyst or supporting FeCl$_3$. In addition, among all the samples, the FeCl$_3$/γ-Al$_2$O$_3$-IPA material obtained the highest glycerol conversion rate of 94.20%. The reason may be due to its large specific surface area provides sufficient active sites. What’s more, FeCl$_3$/γ-Al$_2$O$_3$-H$_2$O, FeCl$_3$/γ-Al$_2$O$_3$-EA, FeCl$_3$/γ-Al$_2$O$_3$-IPA and FeCl$_3$/γ-Al$_2$O$_3$-HA all show considerable Solketal selectivity of 100%. Above all, FeCl$_3$/γ-Al$_2$O$_3$-IPA show an optimal comprehensive performance that not only has the highest conversion rate of glycerol and the yield of Solketal, but also shows high compressive strength (Table 2). Therefore, we choose γ-Al$_2$O$_3$-IPA as the most promising catalyst for practical application.
Table 3
Glycerol conversions, Solketal yield and selectivity of the acetalization reaction of acetone and glycerol by various catalysts.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Glycerol Conversion (%)</th>
<th>Selectivity (%)</th>
<th>Solketal Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank test</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>γ-Al<sub>2</sub>O<sub>3</sub>-IPA</td>
<td>29.13</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>FeCl<sub>3</sub>/γ-Al<sub>2</sub>O<sub>3</sub>-H<sub>2</sub>O</td>
<td>80.36</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>FeCl<sub>3</sub>/γ-Al<sub>2</sub>O<sub>3</sub>-MT</td>
<td>81.37</td>
<td>97.8</td>
<td>2.2</td>
</tr>
<tr>
<td>FeCl<sub>3</sub>/γ-Al<sub>2</sub>O<sub>3</sub>-EA</td>
<td>90.89</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>FeCl<sub>3</sub>/γ-Al<sub>2</sub>O<sub>3</sub>-IPA</td>
<td>94.20</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>FeCl<sub>3</sub>/γ-Al<sub>2</sub>O<sub>3</sub>-NBA</td>
<td>91.03</td>
<td>99.25</td>
<td>0.75</td>
</tr>
<tr>
<td>FeCl<sub>3</sub>/γ-Al<sub>2</sub>O<sub>3</sub>-IAA</td>
<td>86.55</td>
<td>98.47</td>
<td>1.53</td>
</tr>
<tr>
<td>FeCl<sub>3</sub>/γ-Al<sub>2</sub>O<sub>3</sub>-HA</td>
<td>78.23</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>FeCl<sub>3</sub>/γ-Al<sub>2</sub>O<sub>3</sub>-CA</td>
<td>79.89</td>
<td>97.88</td>
<td>2.12</td>
</tr>
</tbody>
</table>

To investigate the optimal catalytic condition of FeCl₃/γ-Al₂O₃-IPA for the acetalization reaction, we performed single variable experiment as shown in Fig. 7. First, we find the catalytic reaction is almost independent of the reaction temperature (25–100 °C) because the glycerol conversions still are 100% and the Solketal selectivity are also higher than 98% (Fig. 7a). Thereafter, the effect of reaction time on the catalytic reaction is also studied. When the catalytic reaction is carried out for 30 min, the glycerol conversions reached the highest value of 99.89% with a considerable Solketal selectivity of 98.36% (Fig. 7b). The reason is due to the reverse reaction rate is greater than the forward reaction rate after 30 min. Therefore, we further set a certain reaction temperature (ambient temperature of 25 °C) and time (30 min) to explore the effect of glycerol and acetone molar ratio and the FeCl₃ load on the glycerol conversions, Solketal selectivity, and Solketal yield of the acetalization reaction.

Figure 7c shows that the increased molar ratio of glycerol and acetone generates an enhanced catalytic activity, thus the glycerol conversion gradually increased from 47.30% of 1: 1, to 100% of 1: 20 with an increased Solketal selectivity from 90.60–98.64%. Noticeably, when the molar ratio increase from 1: 10 to 1: 20, the glycerol conversion and Solketal selectivity only increase by 0.11% and 0.28%, respectively. Therefore, we choose 1: 10 as the optimal molar ratio thanks to the low cost. Finally, the effect of the amount of FeCl₃ load on the catalytic activity is carried out (Fig. 7d). The glycerol conversions maintain 100% with the increase of FeCl₃ load from 0.1 to 1 mol%. When the FeCl₃ load increased from 0.1 to 0.2
mol%, the Solketal selectivity increased from 82.39–98.84%, indicating that the addition of catalyst species is conducive to the improvement of catalytic performance. However, catalytic performance can’t be continuously enhanced after that is higher than 0.2 due to the sufficient catalyst for limited reactant. Above all, the optimal reaction conditions are: 25°C reaction temperature, 30 min reaction time, 1: 10 molar ratio of glycerol and acetone, and 0.2 mol% FeCl₃/γ-Al₂O₃-IPA catalyst. The glycerol conversion, Solketal selectivity, and Solketal yield are 99.89%, 98.36%, and 98.25%, respectively. The separation and reusability of catalysts are greatly significant for commercialization and environment friendly. Under optimal reaction circumstances, the recovery performance of FeCl₃/γ-Al₂O₃-IPA is investigated (Fig. 8). The glycerol conversion nearly unchanged and the Solketal selectivity only show a minor drop of Solketal selectivity after six recycle. The experimental results of re-impregnating FeCl₃ for the catalytic process revealed that it may be reused at least six times without losing substantial activity. Inductively Coupled Plasma Optical Emission Spectrometer further reveals there are seldom Fe in the solution, demonstrating the practical recoverability of this catalyst.

4. Conclusion

In conclusion, we prepare various FeCl₃/γ-Al₂O₃ as catalyst for the acetalization of glycerol and acetone. γ-Al₂O₃ are synthesized by sol-gel method by different washing solvents, and FeCl₃/γ-Al₂O₃ catalysts are further prepared by impregnation method. The catalysts are characterized by XRD, FTIR, BET, SEM, etc, revealing their high thermal stability, large specific surface area and rich pore structure. FeCl₃/γ-Al₂O₃-IPA is used as a representative catalyst for the acetalization reaction. When carried out in an optimized experimental conditions that 25°C reaction temperature, 30 min reaction time, 1: 10 molar ratio of glycerol and acetone, and 0.2 mol% FeCl₃ load, the glycerol conversion and Solketal selectivity are 99.89% and 98.36%, respectively. Importantly, the catalyst could be reused for at least six reaction cycles without loss of catalytic activity, demonstrated its great value for practical application.

Declarations

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by * Beijing Municipal Science and Technology Project * (grant D17110500190000).

References

40. Jackson, W., et al., Closing Pandora's box: Chemical products should be designed to preserve efficacy of function while reducing toxicity. Green Chemistry, 2016. Doi: 10.1039/c6gc90073a

41. Jessop, P., The use of auxiliary substances (e.g. solvents, separation agents) should be made unnecessary wherever possible and innocuous when used. Green Chemistry, 2016. 18(9): p. 2577-2578. Doi: 10.1039/c6gc90039a

Scheme 1

Scheme 1 is available in the Supplementary Files section.

Figures

Figure 1

TGA and DTG curves of the precursors: (a) AlOOH-H₂O, (b) AlOOH-MT, (c) AlOOH-EA, (d) AlOOH-IPA, (e) AlOOH-NBA, (f) AlOOH-IAA, (g) AlOOH-HA, and (h) AlOOH-CA.

Figure 2
(a) XRD patterns, and (b) FTIR spectra of the various spherical γ-Al_2O_3.

Figure 3

TEM images of (a) γ-Al_2O_3-H_2O, (b) γ-Al_2O_3-MT, (c) γ-Al_2O_3-EA, (d) γ-Al_2O_3-IPA, (e) γ-Al_2O_3-NBA, (f) γ-Al_2O_3-IAA, (g) γ-Al_2O_3-HA, and (h) γ-Al_2O_3-CA.

Figure 4

(a) Nitrogen adsorption-desorption isotherms, and (b) pore size distribution of the various spherical γ-Al_2O_3.

(a) Nitrogen adsorption-desorption isotherms, and (b) pore size distribution of the various spherical γ-Al_2O_3.
Figure 5

SEM micrographs of (a) γ-Al₂O₃-H₂O (b) γ-Al₂O₃-MT (c) γ-Al₂O₃-EA (d) γ-Al₂O₃-IPA (e) γ-Al₂O₃-NBA (f) γ-Al₂O₃-IAA (g) γ-Al₂O₃-HA (h) γ-Al₂O₃-CA.

Figure 6

<table>
<thead>
<tr>
<th>Element</th>
<th>Atomic number</th>
<th>Normalized quality / %</th>
<th>Atom / %</th>
<th>abs. error / % (1 sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>6</td>
<td>19.73</td>
<td>28.94</td>
<td>2.59</td>
</tr>
<tr>
<td>O</td>
<td>8</td>
<td>44.84</td>
<td>49.37</td>
<td>4.95</td>
</tr>
<tr>
<td>Al</td>
<td>13</td>
<td>29.35</td>
<td>19.16</td>
<td>1.34</td>
</tr>
<tr>
<td>Fe</td>
<td>26</td>
<td>2.75</td>
<td>0.87</td>
<td>0.12</td>
</tr>
<tr>
<td>Cl</td>
<td>17</td>
<td>3.33</td>
<td>1.65</td>
<td>0.14</td>
</tr>
</tbody>
</table>

100.00 100.00
(a) TEM image, (b-d) EDS analysis of FeCl₃/γ-Al₂O₃-IPA.

Figure 7

Effect of (a) the reaction temperature (10 mmol glycerol, 100 mmol acetone, 1 mol% FeCl₃/γ-Al₂O₃-IPA, 30 min), (b) the reaction time (10 mmol glycerol, 100 mmol acetone, 1 mol% FeCl₃/γ-Al₂O₃-IPA, 25 °C), (c) the molar ratio of glycerol and acetone (1 mol% FeCl₃/γ-Al₂O₃-IPA, 25 °C, 30 min), and (d) the FeCl₃ load (10 mmol glycerol, 100 mmol acetone, 25 °C, 30 min) on the glycerol conversions, Solketal selectivity, and/or Solketal yield of the acetalization reaction.
Figure 8

Catalytic performance of the recycled FeCl$_3$/γ-Al$_2$O$_3$-IPA.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- GraphicalAbstract.tif
- Scheme1.tif