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Abstract This article considers global stabilization prob-
lem for a kind of uncertain high-order nonlinear system-
s (HONSs). Two distinct characteristics of this study

are that the considered system possesses the input-
quantized actuator, and the prescribed time conver-
gence of the system states is wanted. To address these,

a novel state-scaling transformation (SST) is firstly in-
troduced to convert the aboriginal prescribed-time sta-
bilization (PTS) to the asymptotic stabilization of the

transformed one. Then, under the new framework of
equivalent transformation, a quantized state feedback
controller that achieves of the performance requirements

is developed with the aid of the technique of adding a
power integrator (API). Finally, simulation results of a
liquid-level system are provided to confirm the efficacy
of the proposed approach.
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1 Introduction

As typical nonlinear dynamic systems, high-order non-

linear systems (HONSs) have received widespread at-
tention during the last decades because of their signifi-
cant values both in theory and practice [1, 2]. However,

the distinctive feature of the non-existence and/or the
lack of controllability/observability of the Jacobian lin-
earization around the origin, makes the control of HON-

Ss challenging. Thanks to the technique of adding a
power integrator (API)[3], which develops the tradition-
al backstepping technique by introducing the feedback

domination mechanism and contributes to a technologi-
cal breakthrough in coping with such intrinsic obstacle,
a series of results have borne in the asymptotic stabi-

lizing/tracking control of HONSs, for example, refer to
[4–12] and references therein.

On the flip side, the research on finite-time control
has proved to be popular recently because of the su-
perior properties of finite-time stable system, such as

fast response, good robustness and disturbance rejec-
tion. Especially, since the milestone work of the Lya-
punov finite-time stability theorem was established in

[13], many significant results have been obtained [14–
20]. Note that the settling time functions achieved in
the above-mentioned results critically rely on system

initial conditions, which result in that the convergence
time will rise unacceptably large along with the initial
conditions growing. To handle this faultiness, Andrieu

et al. in [21] put forward the concept of fixed-time sta-
bility, that requires that the connected settling time
function is independent from initial system conditions.

With this new framework, many works have appeared
to study the fixed-time control designs of different lin-
ear or nonlinear systems [22–32]. Generally speaking,

the existing methods on such control designs can be di-
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vided into two kinds: the bi-limit homogeneous method

[21, 22] and the Lyapunov-based method [23–32]. How-
ever, it is important to note that both two methods have
some inherent shortcomings. Namely in the former, the

upper bound of the settling time (UBST) function ex-
ists but is unknown, and in the latter, the UBST is
bounded and adjustable, but it is so hard to be pre-

specified discretionarily according to requirements on
account that the derived settling time functions cur-
rently depend on a few design parameters, whose se-

lections are laborious to meet the prespecified settling
time requirements[33].

However, prespecifiable settling time is indeed ex-
pected by some practical applications, e.g., missile guid-
ance [34]. This fact urges that the even stronger control
objective of prescribed-time stability [35] (also named

predefined-time stability [36]) where the UBST is a de-
sign parameter that can be selected (i.e., prescribed)
by the control designer, has been introduced to address

the stabilization problem of various types of systems
by state or output feedback [37–40]. Especially, draw-
ing support from scaling the system states by a func-

tion that grows unboundedly tending to the terminal
time, a sate feedback controller which is computation-
ally singular was given to the PTS of Brunovsky sys-

tems in [35]. This technique was further extended re-
fined in [37], where a novel state-scaling transformation
(SST) was proposed to solve the computationally sin-

gular problem and provided a solution to the problem
of PTS for strict-feedback (switched) nonlinear system-
s. However, the powers of the considered systems are

identically equal to 1 (i.e., pi = 1) required in [35–
40], which certainly limits its applications since quite
a few practical systems are described by HONSs (or

named p-normal systems), refer to the typical example
of liquid-level system given in Section 4. Moreover, an-
other common drawback of the aforementioned results

is that the effect of input quantization is ignored.

As is known to all, most of control tasks of mod-

ern engineering application are achieved based on net-
work information transfer, which means that the actu-
al control signals in such systems must be quantized to

overcome the communication constraints including lim-
ited data transmission rate of communication channels
and the limited bandwidth. However, the application

of quantizers inevitably introduce quantization errors,
which seriously degrade the system’s performance and
prevent the implementation of quantizers [41–43]. Nat-

urally, the folowing interesting question arises: For a

HONS with input quantization, is it possible to achieve

its PTS? If yes, how can one design such quantized con-

troller?

This article focuses on addressing the problem of

global PTS for a kind of HONSs with input quantiza-
tion and giving a predicative answer to the above ques-
tion. The main contributions are underlined as follows.

(i) Fully taking into consideration of practical system
requirements, both quantized input and prescribed-

time convergence are included firstly in this paper.
(ii) A novel SST is proposed to change the aboriginal

PTS problem into the problem of asymptotic stabi-

lization of the transformed one.
(iii) Under a new homogeneous-like restricted condi-

tion on system growth, a systematic design strat-

egy ensuring the achievement of the performance
requirements is proposed by elaborately using the
API technique.

The rest of the article is organised as follows. In

Section 2, the problem formulation and preliminaries of
this article are introduced. In Section 3, details on the
controller design are presented, followed by the rigorous

stability analysis of the CLS. In Section 4, a practical
example of the liquid-level system is provided with sim-
ulation studies to validate the efficiency of the proposed

method. Finally, the article is concluded in Section 5.

2 Problem formulation and preliminaries

2.1 Problem formulation

Consider a kind of HONSs given by


























ż1 = d1(t) ⌈z2⌉q1 + f1 (z1) ,
ż2 = d2(t) ⌈z3⌉q2 + f2 (z̄2) ,

...
żm−1 = dm−1(t) ⌈zm⌉qm−1 + fm−1 (z̄m−1) ,
żm = dm(t)Q(u) + fm (z̄m) ,

(1)

where z̄i = (z1, . . . , zj)
T ∈ R

j is the system state (vec-
tor), and dj ∈ R, qj ∈ R

+ (with qm = 1), j = 1, . . . ,m

are the control coefficients and the power orders of the
system, respectively. For j = 1, . . . ,m− 1, ⌈zj+1⌉qj are
defined as ⌈zj+1⌉qj = sign(zj+1)|zj+1|qj with the stan-

dard signum function sign(·). fj ∈ R (j = 1, . . . ,m)
are uncertain continuous functions satisfying fj(0) = 0.
Q(u) ∈ R denotes the quantized input described by

Q(u) = Q1(t)u+Q2(t), (2)

where

Q1(t) =

{

1 + ϑ1δ, |u| ≥ umin,
1, |u| < umin,

(3)

and

Q2(t) =

{

0, |u| ≥ umin,
ϑ2umin, |u| < umin,

(4)
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where 0 ≤ δ < 1 and umin are known parameters and

−1 ≤ ϑj ≤ 1, j = 1, 2 are unknown parameters of the
quantizer (2).

Remark 2.1. It is worth noting that many practi-
cal quantizers, such as logarithmic quantizer, hysteresis

quantizer, and uniform quantizer, belong to the consid-
ered class described by (2). For instance, consider the
logarithmic quantizer used in [43, 47], which is modeled

as

Q(u) =















uj ,
uj

1 + δ
< u ≤ uj

1− δ
,

0, 0 ≤ u <
d

1 + δ
,

−Q(−u), u < 0,

(5)

where uj = ς1−jd (j = 1, 2, . . .) with the parameters

being selected to satisfy d > 0 and 0 < ς < 1. δ = 1−ς
1+ς

determine the quantization density of Q(u). u0 = d
1+δ

determines the size of the dead zone for Q(u). Clearly,
this quantizer is in the shape of (2) with ϑ1 = (Q(u)−
u)/(δu) and umin = u0.

The aim of this article is to present a quantized state

feedback control mechanism to stabilize the system (1)
within prescribed finite time under the following wild
assumptions.

Assumption 2.1. For j = 1, . . . ,m, there are s-

mooth functions φj ≥ 0 and a constant τ > 0 such
that

|fj(z̄j)| ≤ φj(z̄j)

j
∑

k=1

|zk|
λj−τ

λk , (6)

where λj ’s are recursively defined by

λm+1 = τ, qjλj+1 = λj − τ ≥ 0, j = 1, . . . ,m. (7)

Assumption 2.2. There are positive constants dj
and dj , j = 1, . . . ,m such that dj ≤ dj(t) ≤ dj .

Remark 2.2. Assumption 2.1 is a new type con-
dition of homogeneous-growth-like because λj ’s given
here are much different from the traditional ones em-

ployed in [4–12, 14–20] where they are recursively de-
fined by λ1 = 1, qjλj+1 = λj − τ ≥ 0, j = 1, . . . ,m.
The most important role of such assumption is that

it can ensure the state-scaling-transformed system in-
heriting the homogeneous-like property of the original
system (1) (see Proposition 3.1 below). In addition, it

should be mentioned that, it is reasonable in engineer-
ing practice to impose the boundedness of the control
coefficients in Assumption 2.2. Similar requirements can

be found in the existing literature [14–18, 33, 47].

,

2.2 Preliminary knowledge

Consider the nonlinear system

ż = f(t, z), z(0) = z0 ∈ R
n, (8)

where f : R×R
n → R

n is continuous with respect to x
and contents f(t, 0) = 0.

Definition 2.1[23]. The origin of system (8) is re-
ferred to be globally fixed-time stable if it is globally
finite-time stable and there exists a bounded settling-

time function T (z0) to make sure that the solution
z(t, z0) of (8) satisfies z(t, z0) = 0, ∀t ≥ T (z0).

Definition 2.2. The origin of system (8) is referred

to be globally prescribed-time stable if it is globally
fixed-time stable and a tunable designing parameter
ϑ ∈ R exists to ensure T (z0) ≤ Tc for any prescribed

finite time Tc > 0 and any z0 ∈ R.
Remark 2.3. The prescribed-time stability given

in Definition 2.2 is further developed from the fixed-

time stability, whose state converges to the origin before
the time instant chosen by the users. Compared with
the conventional fixed-time stability, the most signifi-

cant difference is that the settling time of prescribed-
time stability can be arbitrarily preassigned according
to practical requirements.

Lemma 2.1[4]. For any x, y ∈ R, and a constant
a ≥ 1, one has (i)|x + y|a ≤ 2a−1|xa + ya|; (ii)(|x| +
|y|)1/a ≤ |x|1/q + |y|1/a ≤ 2(a−1)/a(|x|+ |y|)1/a.

Lemma 2.2[48]. If c, d are positive constants, then
for any real-valued function one has δ(u, v) > 0, |u|c|v|d ≤
c

c+dδ(u, v)|u|c+d + d
c+dδ

−c/d(u, v)|v|c+d.

Lemma 2.3[48]. Let 0 < p ≤ 1 and a > 0 be con-
stants. then for any u, v ∈ R there is |⌈u⌉ap − ⌈v⌉ap| ≤
21−p|⌈u⌉a − ⌈v⌉a|p.

3 Prescribed-Time Stabilization

In this section, we propose a constructive design mech-

anism of quantized state feedback controller which can
stabilize system (1) within any prescribed finite time
Tc > 0. The design of such stabilizing controller is spe-

cially given as two step. That is, when t ∈ [0, Tc), a
non-autonomous controller is firstly developed to force
the system states to the origin within Tc regardless of

initial conditions, thereafter an autonomous controller
that maintain the system states staying at the origin is
designed.

3.1 Controller design of t ∈ [0, Tc)

Firstly, to change the aboriginal PTS into the asymp-

totic stabilization framework, the following novel coor-
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dinate transformation of state-scaling is introduced.

ζj = Γ (1+c)λjzj , j = 1, . . . ,m,

Q(v) = Γ (1+c)λm+1Q(u),
(9)

where c ≥ (1/τ)−1 is a design constant and Γ is defined
as

Γ =
Tc

Tc − t
. (10)

Remark 3.1. It is obvious that Γ (·) has such im-
portant properties of monotonous growth on [0, Tc) and

satisfies Γ (0) = 1 and Γ (Tc) = +∞.
From (9), system (1) is redescribed as































ζ̇1 = Γ (1+c)τ (d1 ⌈ζ2⌉q1 + g1 (ζ1)) ,

ζ̇2 = Γ (1+c)τ
(

d2 ⌈ζ3⌉q2 + g2
(

ζ̄2
))

,
...

ζ̇m−1 = Γ (1+c)τ
(

dm−1 ⌈ζn⌉qm−1 + gm−1

(

ζ̄m−1

))

,

ζ̇m = Γ (1+c)τ
(

dmQ(v) + gm
(

ζ̄m
))

,

(11)

where

gj(ζ̄j) = ζj
(1 + c)λjΓ̇

Γ 1+(1+c)τ
+ Γ (1+c)(λj−τ)fj(z̄j),

j = 1, . . . ,m,
(12)

Proposition 3.1. For j = 1, . . . ,m, nonnegative

smooth functions φ̄j exist such that

|gj(ζ̄j)| ≤ φ̄j(ζ̄j)

j
∑

k=1

|ζk|
λj−τ

λk . (13)

Proof. See the Appendix.
Next, a state feedback controller for asymptotic sta-

bilization of system (11) is designed for the case of
t ∈ [0, Tc) by employing the API technique.

Step 1. Set ρ ≥ max1≤j≤m{λj} be a constant and

take the Lyapunov function V1 as

V1 = U1 =

∫ ζ1

0

⌈

⌈s⌉
ρ
λ1 − 0

⌉

2ρ−λ1
ρ

ds. (14)

Applying Assumptions 2.1 and 2.2 and (13) produces

V̇1 = Γ (1+c)τ⌈π1⌉
2ρ−λ1

ρ (d1⌈ζ2⌉q1 + g1)

≤ Γ (1+c)τ
(

⌈π1⌉
2ρ−λ1

ρ d1(ζ2⌉q1 − ⌈ζ∗2 ⌉q1)
+d1⌈π1⌉

2ρ−λ1
ρ ⌈ζ∗2 ⌉q1 + |π1|

2ρ−λ1
ρ φ̄1

)

,

(15)

where π1 = ⌈ζ1⌉
ρ
λ1 and ζ∗2 is the virtual controller of ζ2

to be given.
Take the virtual controller ζ∗2 as

ζ∗2 = −⌈π1⌉
λ2
ρ β

λ2
ρ

1 (ζ1), (16)

where

β1(ζ1) ≥
(

m+ φ̄1

d1

)

ρ
q1λ2

, (17)

is a smooth function. Then, putting (16), (17) and (15)
together produces

V̇1 ≤ −mΓ (1+c)τ |π1|
2ρ−τ

ρ

+Γ (1+c)τd1⌈π1⌉
2ρ−λ1

ρ (⌈ζ2⌉q1 − ⌈ζ∗2 ⌉q1) .
(18)

putting together

Step 2. Define π2 = ⌈ζ2⌉
ρ
λ2 − ⌈ζ∗2 ⌉

ρ
λ2 and take the

Lyapunov function V2 = V1 + U2 with

U2 =

∫ ζ2

ζ∗
2

⌈

⌈s⌉
ρ
λ2 − ⌈ζ∗2 ⌉

ρ
λ2

⌉

2ρ−λ2
ρ

ds. (19)

From






































∂U2

∂ζ2
= ⌈π2⌉

2ρ−λ2
ρ ,

∂U2

∂ζ1
= −2ρ− λ2

ρ

∂
(

⌈ζ∗2 ⌉
ρ
λ2

)

∂ζ1

×
∫ ζ2

ζ∗
2

∣

∣

∣
⌈s⌉

ρ
λ2 − ⌈ζ∗2 ⌉

ρ
λ2

∣

∣

∣

ρ−λ2
ρ

ds,

(20)

a direct calculation gives

V̇2 ≤ −mΓ (1+c)τ |π1|
2ρ−τ

ρ

+Γ (1+c)τd1⌈π1⌉
2ρ−λ1

ρ (⌈ζ2⌉q1 − ⌈ζ∗2 ⌉q1)
+
∂U2

∂ζ1
Γ (1+c)τ (d1⌈ζ2⌉q1 + g1)

+
∂U2

∂ζ2
Γ (1+c)τ (d2⌈ζ3⌉q2 + g2)

≤ −mΓ (1+c)τ |π1|
2ρ−τ

ρ

+Γ (1+c)τd1⌈π1⌉
2ρ−λ1

ρ (⌈ζ2⌉q1 − ⌈ζ∗2 ⌉q1)
+Γ (1+c)τ

(

∂U2

∂ζ1
(d1⌈ζ2⌉q1 + g1)

+d2⌈π2⌉
2ρ−λ2

ρ (⌈ζ3⌉q2 − ⌈ζ∗3 ⌉q2)
+d2⌈π2⌉

2ρ−λ2
ρ ⌈ζ∗3 ⌉q2 + ⌈π2⌉

2ρ−λ2
ρ g2

)

,

(21)

where ζ∗3 is the virtual controller of ζ3 to be specified
later. To continue, the following estimates are needed.

Firstly, with the definitions of πj and ζ∗j (j = 1, 2)
and Lemma 2.3, one has

|⌈ζ2⌉q1 − ⌈ζ∗2 ⌉q1 | =
∣

∣

∣

∣

∣

(

⌈ζ2⌉
ρ
λ2

)

λ2q1
ρ −

(

⌈ζ∗2 ⌉
ρ
λ2

)

λ2q1
ρ

∣

∣

∣

∣

∣

≤ 21−
λ2q1

ρ

∣

∣

∣
⌈ζ2⌉

ρ
λ2 − ⌈ζ∗2 ⌉

ρ
λ2

∣

∣

∣

λ2q1
ρ

= 21−
λ2q1

ρ |π2|
λ2q1

ρ .

(22)
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Thus, from (22), Assumptions 2.2 and Lemma 2.2, it is

obtained that

d1⌈π1⌉
2ρ−λ1

ρ (⌈ζ2⌉q1 − ⌈ζ∗2 ⌉q1)
≤ 21−

λ2q1
ρ d̄1|π1|

2ρ−λ1
ρ |π2|

λ2q1
ρ

≤ 1

3
|π1|

2ρ−τ
ρ + |π2|

2ρ−τ
ρ ϱ21,

(23)

for a nonnegative smooth function ϱ21.
Secondly, by Proposition 3.1 and Lemma 2.1, one

gets

|g2| ≤ φ̄2

(

|ζ1|
λ2−τ

λ1 + |ζ2|
λ2−τ

λ2

)

≤ φ̄2

(

|π1|
λ2−τ

ρ + |π2|
λ2−τ

ρ + β
λ2−τ

ρ

1 |π1|
λ2−τ

ρ

)

≤ φ̃2

(

|π1|
λ2−τ

ρ + |π2|
λ2−τ

ρ

)

,

(24)

where φ̃2 ≥
(

1 + β
λ2−τ

ρ

1

)

φ̄2 is a smooth function.

Using (24) and Lemma 2.2 yields

⌈π2⌉
2ρ−λ2

ρ g2 ≤ ⌈π2⌉
2ρ−λ2

ρ φ̃2

(

|π1|
λ2−τ

ρ + |π2|
λ2−τ

ρ

)

≤ 1

3
|π1|

2ρ−τ
ρ + |π2|

2ρ−τ
ρ ϱ22,

(25)

for a nonnegative smooth function ϱ22.

At last, notice that

2ρ− λ2

ρ

∫ ζ2

ζ∗
2

∣

∣

∣
⌈s⌉

ρ
λ2 − ⌈ζ∗2 ⌉

ρ
λ 2

∣

∣

∣

ρ−λ2
ρ

ds

≤ 2ρ− λ2

ρ
|π2|

ρ−λ2
ρ |ζ2 − ζ∗2 |

≤ 2ρ− λ2

ρ
21−

λ2
ρ |π2|,

(26)

and
∣

∣

∣

∣

∣

∣

∂
(

⌈ζ∗2 ⌉
ρ
λ2

)

∂ζ1

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∂(β1⌈π1⌉)
∂ζ1

∣

∣

∣

∣

≤
∣

∣

∣

∣

∂β1

∂ζ1

∣

∣

∣

∣

|π1|+
ρ

λ1
β1|π1|

ρ−λ1
ρ

≤ |π1|
ρ−λ1

ρ γ2,

(27)

where γ2 ≥ 0 is a smooth function.

Therefore, on the basis of (24), (26), (27) and Lem-
ma 2.2, one has

∂U2

∂ζ1
(d1⌈ζ2⌉q1 + g1)

≤ 2ρ− λ2

ρ

∫ ζ2

ζ∗
2

∣

∣

∣
⌈s⌉

ρ
λ2 − ⌈ζ∗2 ⌉

ρ
λ2

∣

∣

∣

ρ−λ2
ρ

ds

×

∣

∣

∣

∣

∣

∣

∂
(

⌈ζ∗2 ⌉
ρ
λ2

)

∂ζ1

∣

∣

∣

∣

∣

∣

(d1⌈ζ2⌉q1 + g1)

≤ 1

3
|π1|

2ρ−τ
ρ + |π2|

2ρ−τ
ρ ϱ23,

(28)

with ϱ23 ≥ 0 being a smooth function.

Bringing (23), (25) and (28) to (22) gives

V̇2 ≤ −(m− 1)Γ (1+c)τ |π1|
2ρ−τ

ρ

+Γ (1+c)τd2⌈π2⌉
2ρ−r2

ρ (⌈ζ3⌉q2 − ⌈ζ∗3 ⌉q2)
+Γ (1+c)τ

(

d2⌈π2⌉
2ρ−r2

ρ ⌈ζ∗3 ⌉q2

+ (ϱ21 + ϱ22 + ϱ23)|π2|
2ρ−τ

ρ

)

.

(29)

Then, one can design the virtual controller

ζ∗3 = −⌈π2⌉
λ3
ρ β

λ3
ρ

2 (ζ̄2), (30)

where the smooth function β2 satisfies

β2(ζ̄2) ≥
(

m− 1 + ϱ21 + ϱ22 + ϱ23
d2

)

ρ
q2λ3

, (31)

such that

V̇2 ≤ −(m− 1)Γ (1+c)τ
(

|π1|
2ρ−τ

ρ + |π2|
2ρ−τ

ρ

)

+Γ (1+c)τd2⌈π2⌉
2ρ−r2

ρ (⌈ζ3⌉q2 − ⌈ζ∗3 ⌉q2) .
(32)

Step j (j = 3, . . . ,m−1). The following proposition
is obtained in this step.

Proposition 3.2. Assume that at step j − 1, there
exists a C1 Lyapunov function Vj−1 that is positive def-

inite and proper, and a series of C0 virtual controllers
ζ∗1 , . . . , ζ

∗
j defined by

ζ∗1 = 0, π1 = ⌈ζ1⌉
ρ
λ1 − ⌈ζ∗1 ⌉

ρ
λ1 ,

ζ∗2 = −⌈π1⌉
λ2
ρ β

λ2
ρ

1 (ζ1), π2 = ⌈ζ2⌉
ρ
λ2 − ⌈ζ∗2 ⌉

ρ
λ2 ,

...
...

ζ∗j = −⌈πj−1⌉
λj
ρ β

λi
ρ

j−1(ζ̄j−1), πj = ⌈ζj⌉
ρ
λj − ⌈ζ∗j ⌉

ρ
λj ,

(33)

with βj > 0, j = 1, . . . ,m− 1 being smooth, to render

V̇j−1 ≤ −(m− j + 2)Γ (1+c)τ

j−1
∑

k=1

|πk|
2ρ−τ

ρ

+Γ (1+c)τdj−1⌈πj−1⌉
2ρ−λj−1

ρ (⌈ζj⌉qj−1 − ⌈ζ∗j ⌉qj−1).

(34)

Then the jth Lyapunov function Vj = Vj−1 + Uj

with

Uj =

∫ ζj

ζ∗

j

⌈

⌈s⌉
ρ
λj − ⌈ζ∗j ⌉

ρ
λj

⌉

2ρ−λj
ρ

ds, (35)

is C1, positive definite and proper, and there is a C0

state feedback controller

ζ∗j+1 = −β
λj+1

ρ

j (ζ̄j)⌈πj⌉
λj+1

ρ , (36)
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such that

V̇j ≤ −(m− j + 1)Γ (1+c)τ

j
∑

k=1

|πk|
2ρ−τ

ρ

+Γ (1+c)τdj⌈πj⌉
2ρ−rj

ρ (⌈ζj+1⌉qj − ⌈ζ∗j+1⌉qj ).
(37)

Proof. See the Appendix.
Step m. Selecting

Vm =
m
∑

j=1

Uj =
m
∑

j=1

∫ ζj

ζ∗

j

⌈

⌈s⌉
ρ
λj − ⌈ζ∗j ⌉

ρ
λj

⌉

2ρ−λj
ρ

ds,

(38)

the above inductive step indicates that there exists a
desired quantized output

ζ∗m+1 = −⌈πm⌉
λm+1

ρ β
λm+1

ρ
m (ζ̄m), (39)

such that

V̇m ≤ −Γ (1+c)τ
m
∑

k=1

|πk|
2ρ−τ

ρ

+Γ (1+c)τ⌈πm⌉
2ρ−λm

ρ

(

Q(v)− ζ∗m+1

)

≤ −Γ (1+c)τ
m
∑

k=1

|πk|
2ρ−τ

ρ

+Γ 2(1+c)τ⌈πm⌉
2ρ−λm

ρ

(

Q(u)− Γ−(1+c)τ ζ∗m+1

)

.

(40)

Therefore, the state feedback control u is designed as

u =































(

Γ−(1+c)τζ∗m+1

1− δ
+ umin

)

, ζ∗m+1 > 0,

0, ζ∗m+1 = 0,
(

Γ−(1+c)τζ∗m+1

1− δ
− umin

)

, ζ∗m+1 < 0,

(41)

which renders the inequality (42) of next page holds.

By noticing that −⌈πm⌉
2ρ−λm

ρ ζ∗n+1 ≥ 0, one gets

V̇m ≤ −Γ (1+c)τ
m
∑

k=1

|πl|
2ρ−τ

ρ ≤ −
m
∑

k=1

|πk|
2ρ−τ

ρ . (43)

Consequently, the following theorem is drew out.

Theorem 3.1. For the system (1) under Assump-
tions 2.1 and 2.2, the quantized state feedback con-
troller (41) consisting of (33) and (39) renders the states

of the closed-loop system convergent to zero within pre-
scribed finite time Tc > 0.

Proof. represents that property that positive defi-

nite and proper of Vn given in Proposition 3.2 together
with (43) and Lemma 4.3 in [49] reveal that, there exist
class K∞ functions κ1, κ2 and κ3 such that

κ1(|ζ|) ≤ Vm(ζ) ≤ κ2(|ζ|), (44)

V̇m ≤ −κ3(|ζ|), (45)

which indicate that ζ(t) is asymptotically convergent
and is bounded on [0, Tc).

On the other hand, the SST (9) gives

zj(t) = Γ−(1+c)λjζj(t)

=

(

Tc − t

Tc

)(1+c)λj

ζi(t), j = 1, . . . ,m.
(46)

Consequently, it further is obtained that

lim
t→Tc

zj(t) = lim
t→Tc

(

Tc − t

Tc

)(1+c)λj

ζj(t)

= 0, j = 1, . . . ,m.

(47)

Therefore, the proof is completed.

3.2 Controller design for t ∈ [Tc, +∞) and main result

Notice that the quantized controller that drives system
states to zero within prescribed time Tc > 0 has been
designed in the above subsection. As a result, in this

subsection we need only consider how to design a con-
troller such that the states reach and stay at the origin
for all t ∈ [Tc, +∞).

On basis of the solution properties of existence and
continuation, it is obtained that z(Tc) = 0. Therefore,
the control u can be simply selected as u = 0, which

together with fj(0) = 0 guarantees z(t) = 0 for any
t ∈ [Tc, +∞) [37]. However, this choice will render that
the CLS is sensitive to uncertainties/disturbances. To

avoid this, we here give an alternative solution for t ∈
[Tc, +∞). Notice the fact that the aboriginal system
(1) and the transformed system (11) possess the similar

structure except the control coefficient Γ (1+c)τ . This
means that, by simply setting Γ = 1, a new controller
u of from (41) can be designed to keep the states at the

origin for all t ≥ Tc.
Unill now, the control design of PTS for the system

(1) is finished. Thereby the main results of this article

is summed up as follows.
Theorem 3.2. For the system (1) under Assump-

tions 2.1 and 2.2, if the quantized state feedback con-

troller

u =































(

Γ−(1+c)τζ∗m+1

1− δ
+ umin

)

, ζ∗m+1 > 0,

0, ζ∗m+1 = 0,
(

Γ−(1+c)τζ∗m+1

1− δ
− umin

)

, ζ∗m+1 < 0,

(48)

with

Γ1 =







Tc

Tc − t
, t ∈ [0, Tc),

1, t ∈ [Tc, +∞),
(49)
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(

Q(u)− Γ−(1+c)τ ζ∗m+1

)

=































Q1(t)

(

Γ−(1+c)τ ζ∗m+1

1− δ
+ umin

)

− Γ−(1+c)τ ζ∗m+1 > 0, ζ∗m+1 > 0,

0, ζ∗m+1 = 0,

Q1(t)

(

Γ−(1+c)τ ζ∗m+1

1− δ
− umin

)

− Γ−(1+c)τ ζ∗m+1 < 0, ζ∗m+1 < 0.

(42)

ζ∗m+1 = −⌈πm⌉
λm+1

ρ β
λm+1

ρ
m (ζ̄m), (50)

is introduced, then the origin of the closed-loop system
is globally prescribed-time stable.

Proof. The properties that, on [0, Tc), Γ (t) = Tc/(Tc−
t) monotonously grows and ζ(t) is asymptotically con-
vergent, give

|z(t)| ≤ |ζ(t)| ≤ |ζ(0)| = |z(0)|. (51)

Putting this and z(t) = 0 for any t ∈ [Tc, +∞)

together lead to

|z(t)| ≤ |z(0)|, t ≥ 0. (52)

That is to say, the origin of the closed-loop system is
globally Lyapunov stable. Furthermore, with the global

prescribed-time convergent of the closed-loop system in
mind, this theorem is straightforwardly concluded from
Definition 2.2.

Fig. 1 Schematic diagram of the liquid-level system.

4 Simulation example

To example the utilization of the proposed control scheme,
this section considers a liquid-level system exhibited in

Fig.1, the dynamics of which are represented by

C1Ḣ1 = O1

C2Ḣ2 = I −O1 −O2

O1 =

{

k1
√

2g|H2 −H1|, H2 ≥ H1,

−k1
√

2g|H2 −H1|, H2 < H1,
O2 = k2

√
2gH2,

(53)

with the same physical meanings of system parameters
given in [29].

By drawing into the variable changes

z1 = H1 −H, z2 = H2 −H1, u =
I

C2
− k2

√
2gH

C2
,

(54)

and taking the quantized input nonlinearity into ac-
count, the dynamics of (53) can be further modelled
as

ż1 = d1⌈z2⌉
1
2 ,

ż2 = Q(u) + f2(z̄2),
(55)

where d1 = k1
√
2g

C1
and f2(z̄2) = −C1

C2
d1⌈z2⌉

1
2−k2

√
2g

C2
⌈z1+

z2 +H⌉ 1
2 + k2

√
2g

C2
⌈H⌉ 1

2 , Q denotes the quantized input
nonlinearity described by (5). With Lemma 2.1, it is
easy to check that Assumptions 2.1 and 2.2 hold with

λ3 = τ = 1, λ1 = λ2 = 2, φ2 =
√
2g

C2
(k1 + k2).

Introducing ζi = Γ
(1+c)λi

1 zi, i = 1, 2 with

Γ1 =







Tc

Tc − t
, t ∈ [0, Tc),

1, t ∈ [Tc, +∞),
(56)

and taking ρ = 2 and c = 0, according to Theorem 3.2

one can design a quantized state feedback controller

u =























(

Γ−(1+c)τ ζ∗3
1− δ

+ umin

)

, ζ∗3 > 0,

0, ζ∗3 = 0,
(

Γ−(1+c)τ ζ∗3
1− δ

− umin

)

, ζ∗3 < 0,

(57)

ζ∗3 = − (0.1 + ϱ21 + ϱ22 + ϱ23) ⌈π2⌉
1
2 , (58)

with β1 = (1.1+ 2
Tc
(1+ζ21 )

1
2 )/d1 if t ∈ [0, Tc) and β1 =

1.1/d1 if t ∈ [Tc, +∞), π2 = ζ2 − ζ∗2 , ζ
∗
2 = −β1ζ

2
1 , φ̃2 =

(1+β
1
2
1 )(1+c)λ2|ζ2|τ/λ2/Tc+φi, ϱ21 = 3.7712d

3
2
1 , ϱ22 =

0.6667φ̃
3
2
2 + φ̃2, ϱ23 = |∂ζ

∗

2

∂ζ1
d1| + 0.6667|∂ζ

∗

2

∂ζ1
|3(d1β

1
2
1 +

2
Tc
(1 + ζ21 )

1
2 )3, which renders the system (55) globally

prescribed-time stable.

In the simulation, we select the system parameter-
s as H = 100cm, g = 9.8m/s2, C1 = C2 =

√
2g =

4.427cm2, k1 = 1cm2, k2 = 0.25cm2, d = 0.05, δ = 0.2

and the prescribed time as Tc = 4s. With the different
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Fig. 2 The responses of the CLS with initial condition
(z1(0), z2(0)) = (0.5,−1).

initial conditions, Figs. 2 and 3 are given to exhibit the
responses of the CLS. It is clearly see that the CLS is
stable and the convergence time maintains below the

prescribed finite time 4s despite the initial value grow-
ing, which confirms the validity of the control scheme.

Remark 3.3. In this remark, our contributions is
stressed by contrasting these main features of the pro-

posed approach with the existing approaches on pre-
scribed/fixed-time controllers in Table 1.

5 Conclusion

In this article, the problem of prescribed-time state
feedback stabilization has addressed a kind of HON-
Ss with quantized input nonlinearity. Based on a novel

SST to translate the aboriginal problem of PTS into the
asymptotic stabilization of the transformed one, a con-
structive quantized control design procedure of state

feedback is established with the aid of the API tech-
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Fig. 3 The responses of the CLS with initial condition
(z1(0), z2(0)) = (5,−10).

nique. A significant advantage of the presented scheme

is that the settling time can be preset and easy to ad-
just discretionarily in line with practical requirements.
The efficacy is confirmed by the practical application

of a liquid-level system.

Disclosure statement

The authors declare that they have no conflict of inter-
est.

Appendix

Proof of Proposition 3.1. From the definition of Γ

in (10), one has Γ̇ = Γ 2/Tc, which together with (9)
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Table 1 Qualitative comparison with state-of-the-art approaches.

Approaches and features Priori setting
time

Singular con-
troller

For HONSs Involving quantized
input nonlinearity

Bi-limit homogeneous approach
[21, 22]

No No No No

Lyapunov-based approach [23–32] No No No No

Scaling transformation approach [35] Yes Yes No No

The proposed SST approach Yes No Yes Yes

and Assumption 2.1 implies

|gj(ζ̄j)| =
∣

∣

∣

∣

∣

ζj
(1 + c)λjΓ̇

Γ 1+(1+c)τ
+ Γ (1+c)(λj−τ)fj(z̄j)

∣

∣

∣

∣

∣

≤ (1 + c)λj

Tc
Γ 1−(1+c)τ |ζj |

+

∣

∣

∣

∣

∣

Γ (1+c)(λj−τ)φj

j
∑

k=1

|zk|
λj−τ

λk

∣

∣

∣

∣

∣

≤ (1 + c)λj

Tc
Γ 1−(1+c)τ |ζj |+ φj

j
∑

k=1

|ζk|
λj−τ

λk .

(59)

By noting that c ≥ (1/τ) − 1 and Γ ≥ 1 for all t ∈
[0, Tc), the smooth functions φ̄j(ζ̄j) ≥ (1+c)λj |ζj |τ/λj/Tc

+φj exists to ensure that Proposition 3.1 is true.

Proof of Proposition 3.2. First of all, some sim-

ple calculations lead to







































∂Uj

∂ζj
= ⌈πj⌉

2ρ−λj
ρ ,

∂Uj

∂ζk
= −2ρ− λj

ρ

∂
(

⌈ζ∗j ⌉
ρ
λj

)

∂ζk

×
∫ ζj

ζ∗
j

∣

∣

∣
⌈s⌉

ρ
λj −

⌈

ζ∗j
⌉

ρ
λj

∣

∣

∣

ρ−λj
ρ

ds,

(60)

for k = 1, . . . , j − 1. By ρ ≥ max1≤j≤m{λj} and βj(·)
being smooth, it is clear that Uj , and also Vj is C1.

Second, by employing the idea of classified discus-
sion [4], one can prove that

Uk ≥ Ck|ζk − ζ∗k |
ρ−λk

ρ , (61)

for some constant Ck > 0.

Furthermore one has

Vj = Vj−1 + Uj ≥ Vj−1 + Uj |ζj − ζ∗j |
ρ−λj

ρ , (62)

and thus Vj is positive definite and proper.

At last, we prove the inequality (37) is true. From

(34) and (60), one has

V̇j ≤ −(m− j + 2)Γ (1+c)τ

j−1
∑

k=1

|πk|
2ρ−τ

ρ

+Γ (1+c)τ

(

dj−1⌈πj−1⌉
2ρ−λj−1

ρ (⌈ζj⌉qj−1 − ⌈ζ∗j ⌉qj−1)

+dj⌈πj⌉
2ρ−λj

ρ ⌈ζj+1⌉qj + ⌈πj⌉
2ρ−λj

ρ gj

+

j−1
∑

k=1

∂Uj

∂ζk
(dk⌈ζk+1⌉qk + gk)

)

.

(63)

Similar as those in Step 2, the estimates of some
terms of (63) on the basis of Lemma 2.1–2.3 can be
provided as

dj−1⌈πj−1⌉
2ρ−λj−1

ρ (⌈ζj⌉qj−1 − ⌈ζ∗j ⌉qj−1)

≤ 1

3
|πj−1|

2ρ−τ
ρ + |πj |

2ρ−τ
ρ ϱj1,

(64)

⌈πj⌉
2ρ−λj

ρ gj

≤ 1

3

j−1
∑

k=1

|πj |
2ρ−τ

ρ + |πj |
2ρ−τ

ρ ϱj2,
(65)

k−1
∑

j=1

∂Uj

∂ζk
(dk⌈ζk+1⌉qk + gk)

≤ 1

3

j−1
∑

k=1

|πk|
2ρ−τ

ρ + |πj |
2ρ−τ

ρ ϱj3,

(66)

where ϱij , j = 1, 2, 3 are nonnegative smooth functions.

Substituting (64)–(66) into (63) results in

V̇j ≤ −(m− j + 1)Γ (1+c)τ

j−1
∑

k=1

|πk|
2ρ−τ

ρ

+Γ (1+c)τ

(

dj⌈πj⌉
2ρ−λj

ρ (⌈ζj+1⌉qj − ⌈ζ∗j+1⌉qj )

+dj⌈πj⌉
2ρ−λj

ρ ⌈ζ∗j+1⌉qj + |πj |
2ρ−τ

ρ (ϱj1 + ϱj2 + ϱj3)

)

.

(67)
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Then, the virtual (actual) controller

ζ∗j+1 = −⌈πj⌉
λj+1

ρ β
λj+1

ρ

j (ζ̄j), (68)

where βj(·) is smooth and satisfies

βj(ζ̄j) ≥
(

m− j + 1 + ϱj1 + ϱj2 + ϱj3
dj

)

ρ
qjλj+1

, (69)

renders

V̇j ≤ −(m− j + 1)Γ (1+c)τ

j
∑

k=1

|πk|
2ρ−τ

ρ

+Γ (1+c)τdj⌈πj⌉
2ρ−λj

ρ (⌈ζj+1⌉qj − ⌈ζ∗j+1⌉qj ).
(70)

This completes the proof.
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Figures

Figure 1

Schematic diagram of the liquid-level system.



Figure 2

The responses of the CLS with initial condition (z1(0), z2(0)) = (0.5, −1).



Figure 3

The responses of the CLS with initial condition (z1(0), z2(0)) = (5, −10).
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