Unraveling the complex causality behind the Fe-N-C degradation in fuel cell

Geunsu Bae
Pohang University of Science and Technology
https://orcid.org/0000-0002-6714-1647

Song Jin
Korea Institute of Materials Science

Man Ho Han
Korea Institute of Science and Technology
https://orcid.org/0000-0001-9363-5563

Hyung-Suk Oh
Korea Institute of Science and Technology
https://orcid.org/0000-0002-0310-6666

Moulay Tahar Sougrati
Université de Montpellier
https://orcid.org/0000-0003-3740-2807

Kug-Seung Lee
Pohang Accelerator Laboratory
https://orcid.org/0000-0002-7570-8404

Min Ho Seo
Pukyong National University
https://orcid.org/0000-0003-3910-4512

Frédéric Jaouen
CNRS
https://orcid.org/0000-0001-9836-3261

Chang Hyuck Choi
chchoi@postech.ac.kr
Pohang University of Science and Technology
https://orcid.org/0000-0002-2231-6116

Article

Keywords:

Posted Date: October 26th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-2130764/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Version of Record: A version of this preprint was published at Nature Catalysis on September 28th, 2023.
See the published version at https://doi.org/10.1038/s41929-023-01039-7.
Abstract

Beyond great advances in initial activity, Fe-N-C catalysts face the next challenge of stability issue in acidic medium that must be overcome to replace Pt in fuel cell cathode. However, the complex phenomena in fuel cells and consequential difficulty in understanding deactivation mechanisms of Fe-N-C cathodes impede solutions for prolonged stability. Here, we show time-resolved changes in active site density (SD) and turnover frequency (TOF) of Fe-N-C along with concurrent decrease in oxygen reduction reaction (ORR) current in temperature/gas controllable gas-diffusion electrode (GDE) flow cell. In operando diagnosis of Fe leaching identifies a strong dependence of SD changes on operating parameters, and draws a lifetime-dependent stability diagram that reveals a shift in prime degradation mechanism during the operations. A proof-of-concept strategy with site-isolated Pt ions as a non-catalytic stabilizer, supported by theoretical calculation, demonstrates enhanced fuel cell stability with reduced Fe dissolution, offering new design principle for durable Fe-N-C catalysts.

Introduction

On the way to the hydrogen economy, proton-exchange membrane fuel cell (PEMFC) technologies offer a promising solution for generating clean electricity with reduced pollutants and greenhouse gas emissions. Although PEMFCs have now been successfully commercialized for automobile applications with highly active and durable Pt-group metal (PGM) catalysts, their cost competitiveness and sustainability issues require the replacement of PGM-based with PGM-free catalysts. Especially, efforts have primarily focused on the cathode, where the sluggish oxygen reduction reaction (ORR) occurs. Among a few candidates in acidic environments, Fe-N-C catalysts comprising isolated Fe ions coordinated with nitrogen functionalities (i.e., Fe-N₄) are most appealing owing to their promising initial performance. However, their stability in PEMFCs is poor and typically shows over 40–50% of performance loss within the first tens of hours of operation at 0.5–0.6 V. Hitherto, several degradation paths of Fe-N-C catalysts in an acidic medium have been proposed such as Fe demetallation or agglomeration, carbon corrosion, and surface modifications induced either by protonation of nitrogen functionalities or by reactive oxygen species (ROS).

Although all the above mechanisms may operate to varying degrees depending on the PEMFC conditions, the primary degradation path exacerbating the prolonged PEMFC operation remains unknown. Although the degradation paths have been widely investigated on an ideal thin-film electrode in a rotating disk electrode (RDE) setup, it is worth noting that Fe-N-C cathodes in PEMFCs experience a more complex reaction venue of the triple-phase boundary, where ORR occurs at higher current density, temperature, and oxygen activity, compared to that of conventional RDE experiments. These differences may result in different nature or relative importance of degradation mechanisms, ultimately leading to considerable uncertainty in unraveling the fundamental origin of Fe-N-C deactivation in PEMFCs, as highlighted in Ehelebe’s recent review.
To address this issue, many efforts have been made to unveil the main degradation mechanism of Fe-N-C catalysts in PEMFC devices in recent years. For instance, Dodelet group observed serious demetallation of active Fe-N$_4$ moieties during the PEMFC operations using neutron activation and post-mortem 57Fe Mössbauer spectroscopy. Using similar analytical methods, Jaouen group identified a specific type of Fe-N$_4$ site that quickly transforms into less active (or inactive) Fe$_2$O$_3$ nanoclusters. More recently, Elbaz group precisely quantified the change in number of Fe-N$_4$ sites in situ through a Fourier-transform alternating current voltammetry in PEMFCs. All these cornerstone works, in which the amount of remaining active Fe moieties (and their chemical nature for the 57Fe Mössbauer spectroscopy studies) were intermittently measured after a certain duration of PEMFC operations, corroborated each other indicating the loss of active Fe as the main cause of activity decay of Fe-N-C cathodes.

However, it is worth mentioning that the PEMFC performance loss observed with Fe-N-C cathodes is rather intense during the early stages of its operation, particularly during the first few hours. Although the previous diagnostic methods successfully revealed the degradation of Fe-N-C catalysts at the macroscopic level after tens of hours of PEMFC operation, they unfortunately provide intermittent information primarily because of the low temporal resolution of such end-of-test characterization approaches (Supplementary Note 1 and Supplementary Table 1). Although mathematical models have been recently developed to overcome such experimental limitations, there remains a controversy in accounting for the possible degradation pathways of Fe-N-C. Hence, its degradation under realistic PEMFC conditions, particularly at the beginning of PEMFC operation, has not yet been clearly understood or practically surmounted. At the initial stage of PEMFC operation, multiple phenomena and significant physicochemical changes in Fe-N-C catalyst layer are expected at different rates and timescales. Therefore, it is pivotal to investigate the activity loss and deconvolute it into time-resolved modification in active site density (SD) and turnover frequency (TOF). Subsequently, such methodology would be applicable to study in detail the improved stability of Fe-N-C that can be obtained with rational approaches, accelerating the development of highly stable PGM-free cathodes.

Herein, we unveil a time- and potential-resolved mechanistic picture behind the rapid performance loss of Fe-N-C catalysts at the early stage of their operation. Resolving this long-standing question is achieved by in operando monitoring of Fe dissolution from active Fe-N$_4$ sites using an online inductively coupled plasma-mass spectrometry (ICP-MS) connected to a gas-diffusion electrode (GDE)-type electrochemical flow cell (EFC). This advanced analytical platform can better mimic PEMFC environments than a conventional RDE setup. The real-time diagnosis of SD and TOF modifications under various operating conditions identifies temperature and potential as the most critical parameters triggering Fe dissolution, whereas the ultimate fate of Fe ions released by Fe-N$_4$ sites is strongly affected by the nature of the gas atmosphere. To mitigate the initial rapid deactivation of Fe-N-C catalyst in PEMFC, in part due to the loss of Fe-N$_4$ sites, we suggest that the strengthened ligation of the central Fe ion to N moieties, covalently linked to the supporting carbon network, could be a promising approach. Confirmed by density functional theory (DFT) calculation, this intuition is also experimentally corroborated with one case study catalyst.
that incorporates non-catalytic Pt ions as a stabilizer of the Fe-N bond and shows more prolonged PEMFC operations compared to the unmodified one.

Results And Discussion

Effects of temperature on Fe dissolution of Fe-N-C

The Fe-N-C catalyst (labeled ‘Fe$_{0.5}$NC’) was synthesized by pyrolysis of powdery precursor mixture, homogenized by ball-milling of Fe acetate, 1,10-phenanthroline (phen), and Zn zeolitic imidazolate framework (ZIF-8). As well-identified in our previous studies,20,21 Fe$_{0.5}$NC is solely composed of atomically dispersed Fe-N$_4$ moieties, the main active sites of Fe-N-C catalysts,$^4,^5$ without noticeable amounts of bulk Fe clusters or particles. Detailed physicochemical characterizations of Fe$_{0.5}$NC and their discussion have been provided in Supplementary Note 2 (Supplementary Fig. 1 and Supplementary Table 2). For the real-time diagnosis of SD and TOF modifications during electrochemical operations, we introduced an *online* ICP-MS combined with a GDE-based EFC (*online* GDE/EFC/ICP-MS), offering a great platform that simulates more realistic PEMFC environments than an RDE setup with controllable temperature, potential, and gas atmosphere (Fig. 1a). A detailed description of the *online* GDE/EFC/ICP-MS system has been provided in Supplementary Note 3 (Supplementary Figs. 2–4).

We first studied the effect of temperature on the Fe dissolution of Fe$_{0.5}$NC (Fig. 1b). The Fe dissolution was analyzed with three cyclic voltammograms (CVs) in a potential range of 1.0–0.0 V vs. reversible hydrogen electrode (RHE) with 5 mL min$^{-1}$ Ar flow to prevent any interruption from ORR.12,14,16 An electrolyte was de-aerated 0.1 M HClO$_4$, which continuously flowed into the EFC at 200 µL min$^{-1}$ before introduction into ICP-MS.

At 298 K, no significant Fe dissolution was detected, suggesting the high stability of Fe-N$_4$ sites at ambient temperature. This conclusion aligns with our previous findings using EFC/ICP-MS with a thin film electrode.$^9,^{10}$ However, we observed non-negligible dissolution of active Fe-N$_4$ sites at 313 K, and the dissolution rate increased with increasing temperature. Quantitatively, the cumulative amount of dissolved Fe ions was close to zero at 298 K, but it increased to 192, 842, and 993 µg Fe g$^{-1}$ catal at 313, 333, and 353 K, respectively. These values were greatly correlated with ORR activity loss (Fig. 1c and Supplementary Fig. 5). In addition, no significant morphological changes were observed in their transmission electron microscopy (TEM) images after the CVs (Supplementary Fig. 6). These results pinpoint that the Fe demetallation of Fe$_{0.5}$NC is primarily attributed to a loss of active Fe-N$_4$ moieties, not an artifact from imperceptible bulk Fe species or unexpected Fe impurities in the *online* GDE/EFC/ICP-MS system.

Despite the decisive role of temperature in activating Fe demetallation from Fe$_{0.5}$NC, the underlying dissolution mechanism seems unmodified with temperature (Fig. 1b). During the potential sweep starting from 1 V$_{RHE}$, Fe demetallation initiates at ~ 0.8 V$_{RHE}$ and its rate reaches a maximum at ~ 0.4 V$_{RHE}$.

Page 4/22
independent with temperature. No obvious Fe dissolution was observed above 0.8 \(V_{\text{RHE}} \). Although the high operating temperature may promote carbon corrosion and consequent Fe loss when the local carbon network around Fe-N\(_4\) site is destroyed \(\text{(i.e., indirect Fe dissolution)} \)\(^{22} \), the enhanced Fe dissolution with decreasing potential is opposite to the potential-dependent carbon corrosion trend, which is promoted with increasing potential.\(^9\) The results thus rule out the indirect path as the primary origin of the Fe dissolution. Hence, this potential-resolved Fe dissolution profile from isolated Fe-N\(_4\) moieties is interpreted as a reduction of relatively insoluble O-Fe -N\(_4\) state to unstable Fe -N\(_4\) state and their dissolution into acidic environments,\(^9,10\) as predicted by Holby \textit{et al.} using a density functional theory (DFT) calculation.\(^{23}\)

Effects of gas atmosphere on Fe dissolution of Fe-N-C

After taking the above mechanistic picture under chemically inert Ar conditions, we then studied the Fe dissolution under concurrent ORR electrocatalysis on Fe\(_{0.5}\)NC by flowing O\(_2\) into the GDE/EFC/ICP-MS system at 353 K (Fig. 2a). Notably, under O\(_2\) flow, the Fe dissolution rate reduces considerably. The cumulated amount is only 294 \(\mu \text{g}\text{Fe g\text{catal} }^{-1} \) after three CVs, which is approximately three times lower than that under Ar (993 \(\mu \text{g}\text{Fe g\text{catal} }^{-1} \)). Surprisingly, despite the much larger Fe leaching detected by ICP-MS under Ar than under O\(_2\), the ORR activity drops measured after the CVs are comparable in both cases, or even slightly larger for O\(_2\) than Ar (Fig. 2b and Supplementary Fig. 7). Similar results can also be found during a potentiostatic hold at 0.6 \(V_{\text{RHE}} \) and 353 K (Fig. 2c), typical conditions used for evaluating long-term stability of ORR catalysts.\(^6-8\) In both Ar and O\(_2\) flows, Fe ion starts to dissolve immediately after applying a reductive potential of 0.6 \(V_{\text{RHE}} \) and the dissolution signal converges to the background level after operation for 1 h. However, Fe dissolution amounts were different and more significant under Ar flow (1,285 \(\mu \text{g}\text{Fe g\text{catal} }^{-1} \) for 1 h operation) than that under O\(_2\) (325 \(\mu \text{g}\text{Fe g\text{catal} }^{-1} \)), despite considerable ORR current loss under the O\(_2\) flow (\(~60\%\) decay during 2 h, which will be discussed later in detail).

Subsequently, \textit{post-mortem} TEM and energy dispersive spectroscopy (EDS) analyses of the degraded Fe\(_{0.5}\)NC catalyst, collected from the GDE after 2 h potentiostatic hold, were performed to investigate the morphological changes (Supplementary Figs. 8 and 9). These microscopic and spectroscopic approaches provide a decisive clue for explaining the much lower Fe leaching, as detected by ICP-MS under O\(_2\) than that of Ar. We found precipitation of Fe oxide nanoparticles in the GDE only after testing with O\(_2\), explaining the lower amount of Fe ions detected by GDE/EFC/ICP-MS analysis in this case. The Fe oxides can stand in our operating (and even PEMFCs) conditions because of the slow dissolution kinetics and widened stable region in the Pourbaix diagram at increased temperature.\(^{24,25}\) This result agrees well with Jaouen group’s previous finding that discovered the formation of Fe oxides during 5–50 h of PEMFC operation using \(^{57}\)Fe Mössbauer spectroscopy and X-ray computed tomography,\(^{16}\) not only validates the successful reflection of our GDE/EFC/ICP-MS platform to PEMFC conditions but also highlights that such degradation path is highly intensive at an early stage of Fe\(_{0.5}\)NC polarization, only within 2 h in the present study.
Real-time diagnosis of SD and TOF changes

Stemming from the considerable ORR current drops after the CV and potential hold studies performed with O₂ flow (Fig. 2a–c), our concern was oriented towards determining the number of Fe-N₄ sites that transform to Fe oxide nanoparticles during the ORR catalysis in GDE/EFC/ICP-MS. We anticipated that quantifying the formed Fe oxide nanoparticles would be the key to resolving the prime origin of the rapid catalytic loss of Fe-N-C in PEMFC, which is possible with deconvolution of SD and TOF contributions from the overall apparent activity loss. To achieve this purpose, we optimized acid leaching conditions for selective dissolution of Fe oxide nanoparticles from used Fe₀.₅ NC/GDE without undesirable Fe-N₄ loss (see details in Supplementary Fig. 10), and after that, the amount of Fe oxide nanoparticles generated during the potential hold at 0.6 V_RHE was quantified after 30, 60, 90, or 120 min of operation at 353 K (Supplementary Figs. 11 and 12). As can be seen, the sum of cumulated Fe dissolution measured by GDE/EFC/ICP-MS and post-leaching experiments is comparable to the cumulated amount of Fe dissolution measured under Ar flow (Fig. 2c and Supplementary Fig. 13). This suggests that the same number of Fe-N₄ sites were lost under Ar and O₂ conditions, indicating that the demetallation rate from Fe-N₄ site is quantitatively independent of the gas atmosphere used, although the underlying mechanism can be altered.

With the SD value for pristine Fe₀.₅NC, i.e., 3–4 × 1₀¹⁹ sites g⁻¹ (25% surface utilization of Fe-N₄) that was previously measured with cyanide and nitrite probes,²⁶ we finally traced time-resolved modifications of SD and TOF values in operando from the apparent current drop during ORR catalysis (Fig. 2d and Supplementary Note 4). The ORR current density (j) decay at 0.6 V_RHE reaches ~60% after 2 h operation at 0.6 V_RHE and 353 K. It can be classified into two zones: the first (< 1 h) and second (> 1 h) zones with current decay rates of 6.3 × 1₀⁻² and 1.2 × 1₀⁻² mA cm⁻² min⁻¹, respectively (Fig. 2d and Supplementary Fig. 14). The relative SD decrease was estimated by normalizing the total number of Fe-N₄ sites lost to the initial SD value of unreacted Fe₀.₅NC. The relative TOF modifications were derived from the corresponding relative changes in j and SD values. Plotting the relative loss of j, SD, and TOF values with operating time yields a lifetime-dependent stability diagram of Fe-N₄ site, which shows a rapid decrease in SD in the 1st zone, but it becomes considerably alleviated in the 2nd zone (Fig. 2d). In contrast, TOF decreases continuously during the overall operating period. Therefore, this diagram successfully draws the fundamental origin of Fe₀.₅NC deactivations as a function of the operation time, that is, rapid initial activity loss triggered by Fe leaching from Fe-N₄ sites, followed by gradual deactivation resulting from TOF decrements. The latter is likely induced by chemical oxidation of carbon surface by operando formed ROS (Supplementary Fig. 15).¹⁴

Improving Fe-N-C stability using non-catalytic stabilizer

The time-resolved deconvolution of the loss of j into SD and TOF values leads us to conclude that the key to securing Fe-N-C stability is minimizing the rapid demetallation of active Fe-N₄ sites at an early stage of PEMFC operation. Although TOF modification is non-negligible and of increasing importance at longer
operating times,14 several synthetic strategies for mitigating ROS formation, which have already been proven for commercialized PEMFC with Pt/C cathodes,27,28 bring hope for securing the TOF of Fe-N-C catalysts as recently validated by introducing specific radical scavengers onto Fe-N-C cathodes in PEMFCs.18,29

Consequently, the next issue is to find a way to prevent (or at least mitigate) the demetallation of active Fe-N\textsubscript{4} sites. Previously, Mechler and coworkers achieved prolonged PEMFC operation with Fe-N-C cathode by introducing tiny amounts of Pt nanoparticles.30 Similarly, Shao group also reported improved Fe-N-C stability after hybridization with Pt-Fe alloy nanoparticles and Pt single-atoms.31 Both previous studies attributed the improved stability to Pt nanoparticles which reduced the production of undesirable H\textsubscript{2}O\textsubscript{2} and consequently minimized ROS formation. However, the possible presence and effect of Pt single-atoms instead of Pt nanoparticles on the improved stability of Fe-N-C have to be considered. The presence of Pt single-atoms can be reasonably suspected in the former work from the non-zero valence oxidation state of Pt in X-ray photoelectron spectroscopy (XPS) study and was verified in the latter work by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM).

Interestingly, DFT calculations performed on 11 different hypothetical model structures with various coordination of isolated Pt ions located near the Fe-N\textsubscript{4} site predicted that the coordinated Pt ions effectively strengthen the cohesive energy of Fe with N-doped carbon substrates (Fig. 3a, Supplementary Figs. 16–25, and Supplementary Table 3). Based on these calculations, we functionalized Fe\textsubscript{0.5}NC with isolated Pt ions \textit{via} conventional wet impregnation and H\textsubscript{2} reduction at 523 K (labeled ‘Fe\textsubscript{0.5}NC-Pt’). The Pt loading on Fe\textsubscript{0.5}NC was limited to only 0.5 wt%. X-ray diffraction (XRD) and Raman spectroscopy results show that the carbon structure did not alter significantly after Pt decoration (Supplementary Fig. 26). Meanwhile, in Pt L\textsubscript{3}-edge Fourier-transformed extended X-ray absorption fine structure (FT-EXAFS), Fe\textsubscript{0.5}NC-Pt shows a Pt-N backscattering signal at 1.9 Å without Pt-Pt interaction at 2.9 Å (Fig. 3b). In addition, the wavelet-transformed EXAFS (WT-EXAFS) contour map showed an intense peak at $R \sim 1.9$ Å and $k \sim 6.8$ Å-1 for the Pt-N first shell (Fig. 3c). A less intense signal at $R \sim 3.1$ Å and $k \sim 9.3$ Å-1, which is also visible for Fe\textsubscript{0.5}NC (Supplementary Fig. 1e), is assigned to the Pt-(N)-C second shell. No signal was detected from a Pt-Pt first shell ($R \sim 3.0$ Å and $k \sim 11.6$ Å-1, Fig. 3c). The Pt-N coordination number is close to 4, indicating that it contains square-planar geometry of Pt-N\textsubscript{4} sites (Supplementary Table 4). Pt\textsubscript{4f} XPS identified the and oxidation states, and HAADF-STEM further visualized the atomic dispersion of Pt (Fig. 3d and e). Hence, these results indicated the presence of isolated Pt ions in Fe\textsubscript{0.5}NC-Pt without appreciable amount of crystalline Pt species.

Despite those microscopic and spectroscopic evidence, the insufficient detection limit of the characterization techniques leaves uncertainty in the possible existence of minute amounts of Pt nanoparticles in Fe\textsubscript{0.5}NC-Pt. Thus, we additionally investigated its electrocatalytic properties towards ORR, hydrogen peroxide reduction reaction (PRR), formic acid oxidation reaction (FAOR), and methanol oxidation reaction (MOR). It is of note that these reactions are accelerated on Pt nanoparticles with Pt
ensemble sites, and not on isolated Pt ions.32–34 The results show that the polarization curves of Fe\textsubscript{0.5}NC-Pt and Pt-free Fe\textsubscript{0.5}NC are superimposed for all these reactions, but entirely deviate from those of Pt/C (Fig. 3f, g, and Supplementary Fig. 27). Similarly, when Pt is functionalized on Fe-free NC (labeled ‘NC-Pt’), its electrocatalytic features are similar to those of NC (Supplementary Fig. 28). Therefore, the electrocatalytic results for a broad set of reactions support the absence of crystalline Pt structures in Fe\textsubscript{0.5}NC-Pt, and further infer that the isolated Pt site is inactive (or at least much less active than Pt nanoparticles) towards all the probe reactions.

After confirming the successful synthesis of Fe\textsubscript{0.5}NC-Pt, we studied its stability using online GDE/EFC/ICP-MS at 0.6 V\textsubscript{RHE} and 353 K under O\textsubscript{2} flow. Notably, despite its similar initial ORR activity with Fe\textsubscript{0.5}NC, the Fe\textsubscript{0.5}NC-Pt reveals much better retention of ORR activity during a 2 h potentiostatic hold (~35\% and ~60\% for Fe\textsubscript{0.5}NC-Pt and Fe\textsubscript{0.5}NC, respectively; Fig. 4a). The GDE/EFC/ICP-MS results, measured separately under an Ar flow, show ~3 times less Fe leaching from Fe\textsubscript{0.5}NC-Pt than Fe\textsubscript{0.5}NC (i.e., 465 and 1,285 µg\textsubscript{Fe} g\textsubscript{catal}−1, respectively; Fig. 4b), without discernable Pt dissolution (Supplementary Fig. 29). Unlike Fe\textsubscript{0.5}NC (Fig. 2d), the lifetime-dependent stability diagram of Fe\textsubscript{0.5}NC-Pt shows a close interrelation of \(j\) loss with a decrease in TOF, rather than a decrease in SD (Supplementary Fig. 30). Thus, these results imply that the enhanced stability of Fe\textsubscript{0.5}NC-Pt may result from the stabilization of Fe-N\textsubscript{4} sites against demetallation as a consequence of the introduction of isolated Pt sites in the carbon matrix.

We further found that the enhanced stability, concluded from the GDE/EFC/ICP-MS system, was also transferred to the PEMFC. In the PEMFC, Fe\textsubscript{0.5}NC-Pt cathode showed PEMFC performance similar to that of Pt-free Fe\textsubscript{0.5}NC cathode at the beginning of operation. However, PEMFC with Fe\textsubscript{0.5}NC-Pt cathode exhibited much superior stability during 50 h of operation at 0.5 V (Fig. 4c and d). To identify whether the enhanced stability is attributed to a possible artifact originating from the agglomeration of isolated Pt sites into ORR-active agglomerates, Fe\textsubscript{0.5}NC-Pt cathode was separated from the aged PEMFC and post-mortem characterizations were performed. In the HAADF-STEM image, no discernible changes were observed in the atomic distribution of the Pt species after 50 h of PEMFC operation (Fig. 4e). In addition, the FT- and WT-EXAFS plots for the aged Fe\textsubscript{0.5}NC-Pt revealed a dominant Pt-N interaction, without a perceptible signal from the Pt-Pt interaction (Fig. 4f and Supplementary Fig. 31), almost identical to that for the pristine Fe\textsubscript{0.5}NC-Pt. More evidently, the aged Fe\textsubscript{0.5}NC-Pt recorded a PRR onset potential of 0.81 V\textsubscript{RHE}, which is much lower than that of Pt/C (0.92 V\textsubscript{RHE}) and pristine Fe\textsubscript{0.5}NC-Pt and Fe\textsubscript{0.5}NC (0.83 V\textsubscript{RHE}), and similar to that of aged Fe\textsubscript{0.5}NC (0.81 V\textsubscript{RHE}; Fig. 4g). The results therefore indicated no formation of highly-active Pt nanoclusters and particles during the PEMFC operation. In addition, it can be ruled out that Pt single-atoms could lead to improved stability by acting as peroxide scavengers (Supplementary Fig. 32). Therefore, the fundamental origin of the enhanced stability of PEMFC with Fe\textsubscript{0.5}NC-Pt cathode is unveiled as isolated Pt-induced stabilization of catalytic Fe-N\textsubscript{4} sites against demetallation. Finally, even though a noble element Pt is used and the Pt-modified catalyst is not optimized in the present study, this proof-of-concept study validates that various synthetic approaches can be established to avoid
significant Fe demetallation of active Fe-N₄ sites, a critical degradation path dominating a rapid performance drop during the initial PEMFC operation.

Conclusion

In this work, we quantitatively resolve the two key phenomena behind the rapid performance loss of the Fe-N-C cathode at an early stage of PEMFC operation. A time- and potential-resolved diagnosis, enabled by the *online* GDE/EFC/ICP-MS system, elucidates the strong dependence of Fe leaching from active Fe-N₄ moieties on operating variables, such as temperature and gas atmosphere. The former triggers Fe dissolution and determines its total amount, whereas the latter yields different fates of dissolved Fe ions. In addition, this *operando* study further enables differentiation of a real-time modification of SD and TOF values from the apparent ORR activity drop, a lifetime-dependent stability diagram that presents a clear shift of a prime deactivation path from SD loss to TOF decrease under realistic PEMFC operating conditions. Finally, we conclude that Fe demetallation is a crucial phenomenon responsible for the rapid performance drop observed during the first few hours of PEMFC operation. We show that prohibiting undesirable Fe demetallation and consequently enhancing PEMFC stability are synthetically available by introducing site-isolated Pt ions onto the Fe-N-C catalyst, the concept inspired by previous works and our DFT calculations. Therefore, this new understanding suggests that the development of novel synthetic routes involving non-PGM stabilizers of Fe-N₄ sites could bring hope for the future reality of Fe-N-C catalysts for commercial PEMFCs.

Methods

Catalyst synthesis. Fe₀.₅NC catalyst was prepared from Fe acetate (98%, Sigma-Aldrich), 1,10-phenanthroline (phen; ≥ 99%, Sigma-Aldrich), and Zn⁺⁺ zeolitic framework (ZIF-8, Basolite Z1200, BASF). One gram of the precursor mixture containing 0.5 wt% Fe and a mass ratio of phen/ZIF-8 of 20/80 were mixed using dry ball-milling for four cycles of 30 min at 400 rpm. A ZrO₂ crucible with 100 ZrO₂ balls of 5 mm diameter was used in this procedure. The resulting precursors were pyrolyzed at 1323 K under Ar flow for 1 h. Fe₀.₅NC contained Fe content of *ca.* 1.5 wt%, as confirmed by inductively coupled plasma-optical emission spectroscopy (ICP-OES). For the synthesis of Fe₀.₅NC-Pt, 0.5 wt% Pt was impregnated on Fe₀.₅NC by conventional wet impregnation and subsequent H₂ reduction. 0.1 g Fe₀.₅NC was dissolved and dispersed in 100 mL of deionized water containing 1.3 mg of H₂PtCl₆·6H₂O (≥ 37.5%, Pt basis, Merck), and then the solvent was evaporated at 353 K. The resultant powder sample was dried at 353 K under vacuum overnight and reduced at 523 K for 3 h under H₂ flow (5%, 200 mL min⁻¹). Commercial Pt nanoparticle (HiSPEC 3000, 20 wt% Pt) was purchased from Thermo Fisher Scientific. For the synthesis of Fe₂O₃/NC, the NC catalyst was first prepared identically to Fe₀.₅NC, except for the addition of Fe acetate during the ball-milling step. Note that owing to the presence of trace amounts of Fe impurities in the commercial ZIF-8 (> 100 ppm),³⁵ Fe-free ZIF-8 was used for the synthesis of NC, which was prepared by mixing 2-methylimidazole (2-Melm; 99%, Sigma-Aldrich) and Zn nitrate hexahydrate (Zn salt; 98%,
Sigma-Aldrich) in aqueous solution (Zn salt/2-MeIm/water molar ratio of 1/60/2228). A, Fe$_2$O$_3$/NC was synthesized by a dry ball-milling of 98 mg NC and 2 mg commercial Fe$_2$O$_3$ (96%, Sigma-Aldrich) for four cycles of 30 min at 400 rpm without heat treatment. The Fe content in Fe$_2$O$_3$/NC was ca. 1.3 wt%, as confirmed by ICP-OES.

Physicochemical characterization. X-ray diffraction (XRD) patterns were obtained using a high-resolution X-ray diffractometer (X’Pert PRO MPD, PANalytical) equipped with a Cu K_α X-ray source. The XRD patterns were measured at an accelerating voltage of 60 kV and current of 55 mA, with scan rate of 10° min$^{-1}$ and step size of 0.02°. Raman spectra were obtained using a NRS-5000 series Raman spectrometer (JASCO) with 633 nm laser excitation. XPS measurements were performed using K-Alpha$^+$ (Thermo Scientific) instrument equipped with a micro-focused monochromator X-ray source. The binding energy used for the peak deconvolution of the XPS-Pt spectra (for 4f$_{7/2}$) was 72.4 and 73.8 eV for Pt and Pt$_{3+}$, respectively, and the spin-orbit splitting for 4f$_{5/2}$ and 4f$_{7/2}$ peaks was 3.33 eV.37 ICP-OES analysis was performed using Optima 4300 DV (PerkinElmer Inc.) for determining Fe contents. Fe K-edge or Pt L_3-edge X-ray absorption spectroscopy (XAS) signals were collected in the transmission mode at the Pohang Accelerator Laboratory (8C, Nano XAFS). To compensate any energy shift during data acquisition, the XAS energy scale was calibrated using each metal foil before the measurements. The EXAFS analysis was conducted using Athena and Artemis implemented in the Demeter program package. The EXAFS data in k space was Fourier-transformed with the Hanning window function (dk = 0.5 Å$^{-1}$) after k^3-weighting. Curve fitting of the FT-EXAFS of Fe$_{0.5}$NC-Pt was carried out in the R-range of 1.1–2.3 Å with phase correction by including Pt–N and Pt–Cl scattering paths. The amplitude reduction factor (S_0^2) for Pt was determined to be 0.83 from the curve fitting of the EXAFS of the Pt foil. The wavelet-transform of k^3-weighted EXAFS data was analyzed with phase correction using the HAMA Fortran code. A Morlet function was used for the mother wavelet function ($\eta = 10, \sigma = 1$). The 57Fe Mössbauer spectrum was acquired using a 57Co source in Rh. The measurement was performed by keeping both the source and absorber at room temperature. The spectrometer was operated with a triangular velocity waveform, and a NaI scintillation detector was used to detect γ-rays. TEM, EDS, and HAADF-STEM analyses were performed using TECNAI G2 F30 S-Twin (FEI), TECNAI F20 UT (FEI), and Titan 80–300 (FEI), respectively.

Electrochemical measurements. The electrochemical properties were investigated using a VMP-300 potentiostat (Bio-Logic) in a three-electrode cell equipped with a graphite rod counter electrode and saturated Ag/AgCl reference electrode (RE-1A, EC-Frontier). A 0.1 M HClO$_4$ electrolyte was prepared using ultrapure water (> 18 MΩ, Sartorius) and concentrated HClO$_4$ (70%, Sigma-Aldrich). The reference electrode was calibrated against a Pt electrode in H$_2$-saturated electrolyte to convert the potentials to the RHE scale correctly. The catalyst ink was prepared by dispersing 10 mg of the catalyst in an aqueous solution (868 µL deionized water, 7 µL isopropanol, and 80 µL 5 wt% Nafion solution). After ultrasonication of the above suspension for 30 min, the working electrodes were prepared by dropping 15 µL of catalyst ink onto a glassy carbon disk (0.196 cm2) of the RDE (01169, ALS). The catalyst loadings
were set to 800 µg cm\(^{-2}\) for Fe\(_{0.5}\)NC or Fe\(_{0.5}\)NC-Pt, and 10 µg\(_{Pt}\) cm\(^{-2}\) for Pt nanoparticles. The ORR polarization curves were recorded with a scan rate of 10 mV s\(^{-1}\) and rotation speed of 900 rpm in an O\(_2\)-saturated 0.1 M HClO\(_4\) electrolyte. ORR Faradaic currents were obtained by subtracting the polarization curves measured in an Ar-saturated electrolyte. The PRR polarization curves were measured with a scan rate of 1 mV s\(^{-1}\) and a rotation speed of 900 rpm in an Ar-saturated 0.1 M HClO\(_4\) electrolyte containing 1.3 mM H\(_2\)O\(_2\).

Online GDE/EFC/ICP-MS measurements. The GDE was fabricated by spraying catalyst ink onto a mesoporous layer (MPL) deposited on carbon paper. On a carbon paper with a 20 wt% polytetrafluoroethylene (PTFE) content (2 × 2 cm\(^2\), TGP-H-090, Toray), highly hydrophobic carbon MPL was first fabricated by spraying an ink emulsion containing 100 mg Ketjen black EC-300J, 400 mg PTFE (60 wt%, Sigma-Aldrich), and 20 mL isopropyl alcohol (IPA, 99.5%, Sigma-Aldrich), followed by heat-treatment at 513 and 613 K under Ar atmosphere for 30 min each. The resulting MPL had a Ketjen Black EC-300J loading of 2 mg cm\(^{-2}\). Thereafter, catalyst ink (25 mg catalyst + 10 mL isopropanol + 250 µL 5 wt% Nafion solution) was sprayed onto the MPL to reach target catalyst loadings of 400 µg cm\(^{-2}\). The active catalyst area of the GDE was 0.096 cm\(^2\). Fe dissolution was monitored using ICP-MS (7500ce, Agilent) coupled with a GDE-based EFC. The EFC is equipped with a U-shaped channel with a diameter of 1 mm and an opening for contact with the GDE. A graphite tube counter electrode (inner diameter = 1 mm) was placed at the inlet, and an Ag/AgCl reference electrode was connected to the outlet of EFC. A 0.1 M HClO\(_4\) electrolyte, de-aerated using a degasser (AG-32-01, FLOM Corp.), was flowed into the EFC at a flow rate of 200 µL min\(^{-1}\). The electrolyte was mixed with 0.2 M HNO\(_3\) containing 5 ppb \(^{187}\)Re as an internal standard using a Y-connector (mixing ratio = 1:1). Ar or O\(_2\) gases flowed into the graphite serpentine gas channel at a rate of 5 mL min\(^{-1}\). GDE was pre-treated with 200 fast CV cycles (200 mV s\(^{-1}\)) in the potential range of 1.0 – 0.0 V\(_{RHE}\) at 298 K before the electrochemical measurement. After stabilization at the desired temperature for ca. 10 min, Fe dissolution was analyzed under potentiodynamic or potentiostatic conditions. Fe dissolution under potentiodynamic conditions was analyzed with three slow CV cycles (5 mV s\(^{-1}\)) in the potential range of 1.0 – 0.0 V\(_{RHE}\) at various temperatures (298, 313, 333, and 353 K) under Ar or O\(_2\) flow. Fe dissolution under potentiostatic conditions was analyzed by holding a 0.6 V\(_{RHE}\) at 353 K under Ar or O\(_2\) flow. ORR polarization curves were recorded with a scan rate of 5 mV s\(^{-1}\) at 298 K. A manual \(iR\) compensation (MIR) program was used to compensate 85% of ohmic drop during the electrochemical measurements and 15% post-corrected. The uncompensated resistance was measured using electrochemical impedance spectroscopy (EIS) at open circuit potential (OCP).

Computational Details. All DFT calculations were conducted based on the First-principle using the Vienna ab initio simulation program (VASP) to understand the structurally enhanced stability of Fe-N\(_4\) by impregnating Pt-based coordination compounds such as single-atom Pt, Pt-N\(_4\), Pt-N\(_4\)Cl\(_2\), and Pt-N\(_2\)Cl\(_2\) (including trans- and cis-structure).

Projector Augmented Wave (PAW) pseudo-potential was
implemented to efficiently describe by substituting the interaction of core electrons.39 The generalized gradient approximation (GGA) with the Revised Perdew-Burke-Ernzerhof (RPBE) functional was adopted to describe the electron exchange-correlation functional effects.40,41 In addition, we used the Methfessel-Paxton smearing method for better ionic and geometry optimization.42 To fix the number of plane waves, a plane-wave basis set was defined to effectively expand the Kohn-Sham wave functions of valence electrons with the kinetic energy cut-off of 520 eV. To investigate and compare the cohesive energies of Fe atom on the prepared models, at least 20 Å vacuum space along the z-direction was set to avoid undesirable interactions between the top and bottom of the unit cell box. The k-point mesh was sampled by (9 × 9 × 1) to structurally optimize pristine Fe-N\textsubscript{4} models with/without Pt-coordinated compounds (single-atom Pt, Pt-N\textsubscript{4}, Pt-N\textsubscript{4}Cl\textsubscript{2}, and trans-/cis-Pt-N\textsubscript{2}Cl\textsubscript{2}) to integrate the Brillouin zone and calculate the total energies of the designed structures. The total energy was adopted within 1 x 10−4 eV for the full ionic relaxation step and the maximum atomic forces were set below 0.05 eV Å−1.

Model design. Based on the experimental EXAFS analysis results (Fig. 3b, c, and Supplementary Table 4), we generated a variety of possible candidate models, such as Fe-N\textsubscript{4}, Pt-N\textsubscript{4}, Fe-N\textsubscript{4}/Pt-N\textsubscript{4}Cl\textsubscript{2}, and Fe-N\textsubscript{4}/Pt-N\textsubscript{2}Cl\textsubscript{2}. Initially, it was crucial to define the most stable pristine GNS model as the starting structure (more details can be found in our previous report43). Fe-N\textsubscript{4} and Pt-N\textsubscript{4} as reference models were designed by substituting Fe, Pt, and N to the carbon atom by removing the double vacancies of pristine GNS, as shown in Supplementary Fig. 16. In Supplementary Figs. 17–25, possible Fe-N\textsubscript{4} sites were introduced into the pre-designed Pt-based coordination compounds to generate the possible configurations of Pt-impregnated Fe-N\textsubscript{4}. In particular, the configurations of Pt-N\textsubscript{2}Cl\textsubscript{2} were defined as trans-/cis-structures on the edge sites or basal planes with and without carbon vacancies, as shown in Supplementary Fig. 20. Specifically, possible configurations of Fe-N\textsubscript{4} with various Pt-based coordination compounds were generated as candidates by calculating the formation energies (E_f) for the most stable structures with respect to different volumes or atomic ratios in specific volumes. E_f was calculated using Eq. 1:44

$$E_f = E_{\text{total}} - \sum_i \mu_i x_i \quad (\text{Eq. 1})$$

where E_{total} is the DFT-calculated total energy, and μ_i and x_i are the chemical potential and quantity of element i in the designed model structures, respectively. After identifying the most stable structure in each model through formation energy calculations, the cohesive energies were calculated to compare the stabilities of the Fe atoms and select the representative Pt-impregnated FeN\textsubscript{4} (Fig. 3a and Supplementary Table 3). The cohesive energies (E_{coh}) are described by Eqs. 2:45

$$E_{\text{coh}} = E_{\text{total}} - E_{\text{total}w/o \text{Featom}} - E_{\text{Featom}} \quad (\text{Eq. 2})$$

where the cohesive energy (or binding energy) is described by the E_{total}, $E_{\text{slab}w/o \text{Featom}}$, and E_{Featom} which are the total energy of the designed model, DFT energy without Fe atom in the designed model, and free single Fe atom, respectively, and are all derived from DFT calculation.
PEMFC operation. A membrane electrode assembly (MEA) was prepared by a decal process via doctor blade coating to compare the single cell performance of Fe\textsubscript{0.5}NC and Fe\textsubscript{0.5}NC-Pt as cathode catalysts with all the Pt/C-based anodes. The cathode slurries were prepared by dispersing 0.26 g catalysts (Fe\textsubscript{0.5}NC and Fe\textsubscript{0.5}NC-Pt) in an aqueous solution containing 0.18 g deionized water, 0.14 g isopropanol, 0.14 g n-propanol, and 0.431 g 20 wt% Naion solution (1000 EW, DuPont Fuel Cells). Moreover, the anode slurries were prepared by mixing 0.35 g catalysts (37.7 wt% Pt/C, TANAKA Precious metals) in an aqueous solution containing 1.98 g deionized water, 0.40 g isopropanol, and 2.30 g 5 wt% Naion solution (1100 EW, DuPont Fuel Cells). The Naion ionomer content in both the anode and cathode slurries was adjusted to 25 wt% of the total electrode solid amount. The slurries prepared in the N\textsubscript{2}-filled glove box were stirred in an ultrasonic water bath for 2 h, followed by a three-roll milling process (EXAKT 50I) to effectively break up the agglomerates in the slurries. The mixture was then stirred in an ultrasonic water bath for 1 h for better dispersion. Each cathode and anode slurry was coated onto a PTFE film as a decal substrate using a doctor-blade coater. The coated electrodes were dried at 353 K in an N\textsubscript{2}-purged vacuum oven, and the prepared cathode was hot-pressed onto a Naion 211 membrane with an anode electrode at 100 bar and 383 K for 10 min. After cooling for 10 min via the cooling press, we successfully obtained MEA with an active area of 25 cm2. The catalyst contents of the cathode and anode electrodes were controlled at approximately 4.0 and 0.25 mg cm-2, respectively. The cell performance of MEA was evaluated using an EIS46 potentiostat (Bio-Logic, HCP-803). The test cell includes MEA, gas diffusion layers (320 µm thickness, JNTG), a bipolar plate constituting two channels of graphite, and a current collector plate derived from gold-coated copper blocks to evaluate at single-cell scale. Before evaluating the cell performance of the MEA, we performed an activation process, in which it was necessary to remove impurities on the active sites of Pt and wet the Naion membrane for effective proton transfer. This activation process was conducted in the following steps: (1) H\textsubscript{2} and O\textsubscript{2} as reactant gases with 500 and 1,500 mL min-1 flow rates with the condition of 100% relative humidity (RH) at 353 K were provided for the anode and cathode, respectively. (2) A 0.1 V per step was applied for 30 s in the cycling range of 0.3–0.7 V until the performance of MEA at 0.6 V was saturated and stabilized. To evaluate the practical cell performance of MEA, polarization curves were obtained at ambient pressure, ranging from open circuit voltage (OCV) to 0.2 V at a scan rate of 20 mV s-1 by linear sweep voltammetry under the same operating conditions as that of the activation process.

Declarations

ASSOCIATED CONTENT

Supplementary Information

The following file is available free of charge.
Physicochemical characteristics of Fe\textsubscript{0.5}NC and Fe\textsubscript{0.5}NC-Pt; description of online GDE/EFC/ICP-MS system; ORR polarization curves before and after CVs; *post-mortem* characterization data; post-leaching
experiment results; model structures for DFT calculation and summary of cohesive energy values; additional electrochemical characterization data; additional GDE/EFC/ICP-MS results (PDF)

AUTHOR INFORMATION

Corresponding Authors

*Min Ho Seo
– Email: foifrit@pknu.ac.kr

*Frédéric Jaouen
– Email: frederic.jaouen@umontpellier.fr

*Chang Hyuck Choi
– Email: chchoi@postech.ac.kr

Author Contributions

C.H.C., F.J., and M.H.S. conceived and supervised the project. G.B. conducted most of experimental analyses. S.J. conducted DFT calculation and fuel cell experiment. M.H.H. and H.-S.O. contributed to HAADF-STEM analysis. K.-S.L contributed to XAS measurement. M.-T.S. contributed to ^{57}Fe Mössbauer spectroscopy measurement. The manuscript was written through contributions of all authors.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2019M3D1A1079309, 2021R1A5A1030054, and 2022R1A2C2093090) and by the KIST Institutional Program. The authors acknowledge the Pohang Accelerator Laboratory (PAL) for beamline use (8C, PLS-II).

References

37. Badam, R., Vedarajan, R., Okay, K., Matsutani, K. & Matsumi, N. Sacrificial reducing agent free photo-generation of platinum nano particle over carbon/TiO$_2$ for highly efficient oxygen reduction

Figures
Figure 1

Effects of temperature on Fe dissolution of Fe$_{0.5}$NC. a, Scheme of online GDE/EFC/ICP-MS. An electrolyte de-aerated by the degasser continuously flowed into the EFC, which was composed of the counter and reference electrodes (CE and RE, respectively) and the vacuum trap. PTFE-treated GDE, on which Fe$_{0.5}$NC was deposited, was used as the working electrode. The electrolyte outlet was connected to ICP-MS. b, Real-time Fe dissolution of Fe$_{0.5}$NC/GDE obtained by online GDE/EFC/ICP-MS during the three CVs in a potential range of 1.0–0.0 V$_{RHE}$ under Ar flow at various temperatures (i.e., 298, 313, 333, and 353 K). c, Correlation between the cumulative amounts of dissolved Fe and the ORR activity loss obtained after the three CVs at various temperatures. The activity loss was recorded at 0.8 V$_{RHE}$ after the CVs (Supplementary Fig. 5).
Figure 2

Effects of Ar and O_2 gases on Fe dissolution of Fe_{0.5}NC.

a, Real-time Fe dissolution of Fe_{0.5}NC/GDE obtained by online GDE/EFC/ICP-MS during the three CVs in a potential range of 1.0–0.0 V_RHE under Ar or O_2 flow at 353 K.

b, Cumulative amounts of dissolved Fe and ORR activity loss obtained after the three CVs under Ar or O_2 flow. The activity loss was recorded at 0.8 V_RHE after the CVs (Supplementary Fig. 7).

c, Real-time Fe dissolution of Fe_{0.5}NC/GDE obtained by online GDE/EFC/ICP-MS during the potential hold at 0.6 V_RHE under Ar or O_2 flow at 353 K for 2 h. The relative change in ORR current density is also shown.

d, Relative loss of j, SD, and TOF values as a function of operation time obtained during the potential hold at 0.6 V_RHE and 353 K under O_2 (dot) or Ar flow (line). SD loss under O_2 flow was the sum of both cumulative Fe-N_4 dissolution (measured by GDE/EFC/ICP-MS) and Fe oxides amounts (measured by post-leaching), whereas that under Ar flow was the cumulative Fe-N_4 dissolution only owing to lack of the Fe oxides formation (Supplementary Fig. 13).
Figure 3

Physical and electrochemical characterizations of Fe$_{0.5}$NC-Pt. a, DFT-calculated cohesive energy for the possible configurations of Fe-N$_4$, Pt-N$_4$, and Pt-impregnated Fe-N$_4$ model structures: Fe-N$_4$, Pt-N$_4$, Fe-N$_4$/Pt (#1), Fe-N$_4$/Pt-N$_4$ (#2), Fe-N$_4$/Pt-N$_4$Cl$_2$ (#3), Fe-N$_4$/trans-Pt-N$_2$Cl$_2$ group (#4), and Fe-N$_4$/cis-Pt-N$_2$Cl$_2$ group (#5). b,c, k^2-weighted Pt L$_3$-edge FT-EXAFS (b) and WT-EXAFS (c) spectra of Fe$_{0.5}$NC-Pt and Pt foil. d, XPS-Pt$_{4f}$ spectrum. e, HAADF-STEM image of Fe$_{0.5}$NC-Pt (scale bar = 5 nm). f,g, ORR (f) and PRR (g) polarization curves of Fe$_{0.5}$NC-Pt. For comparison, those for Fe$_{0.5}$NC or Pt/C are also shown.
Figure 4

Proof-of-concept strategy with isolated Pt ion as a stabilizer of Fe-N₄ sites. a, b, ORR current density (a) and real-time Fe dissolution under Ar flow (b) of Fe₀.₅NC/GDE and Fe₀.₅NC-Pt/GDE obtained by *online* GDE/EFC/ICP-MS during 2 h potential hold at 0.6 V_{RHE} and 353 K. c, *iR*-corrected H₂/O₂ fuel cell polarization curves and corresponding power density curves before and after 50 h operation at 0.5 V. d, Normalized current density vs. time obtained during 50 h operation at 0.5 V. e, HAADF-STEM image of Fe₀.₅NC-Pt obtained after 50 h operation at 0.5 V (scale bar = 2 nm). f, k³-weighted Pt L₃-edge WT-EXFAS plots of Fe₀.₅NC-Pt before and after 50 h operation at 0.5 V. g, PRR polarization curves of Fe₀.₅NC and Fe₀.₅NC-Pt before and after 50 h operation at 0.5 V. For comparison, the initial PRR polarization curve of Pt/C is also shown.

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaryInformation.docx