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ABSTRACT 12 

Estimation of bedload transport in rivers is a very complex and important river 13 

engineering challenge needs substantial additional efforts in pre-processing and 14 

ensemble modeling to derive the desired level of prediction accuracy. This paper 15 

aims to develop a new framework for the formulation of bedload transport in rivers 16 

using multi-level Multi-Model Ensemble (MME) approach to derive improved 17 

explicit formulations hybridized with multiple pre-processed-based models. Three 18 

pre-processing techniques of feature selection by Gamma Test (GT), dimension 19 

reduction by principal component analysis (PCA), and data clustering by subset 20 

selection of maximum dissimilarity (SSMD) are utilized at level 0. The multi-linear 21 

regression (MLR), MLR-PCA, artificial neural network (ANN), ANN-PCA, Gene 22 

expression programming (GEP), GEP-PCA, Group method of data handling 23 

(GMDH) and GMDH-PCA are used to develop individual explicit formulations at 24 

level 1, and the inferred formulas are hybridized with the MME approach at level 2 25 

by Pareto optimality. A newly revised discrepancy ratio (RDR) for error 26 

distributions in conjunction with several statistical and graphical indicators were 27 

used to evaluate the strategy's performance. Results of MME showed that the 28 

about:blank
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proposed framework acted as an efficient tool in explicit equation induction for 29 

bedload transport (i.e., 33–96% reduction of RMSE; 2-29% increase of R2, 2-138% 30 

increase of NSE and 38-98% reduction of RAE in testing step in comparison with 31 

the best individual model) and clearly outperformed estimations made by other 32 

models. The current study highlights the importance of pre-processing and multi-33 

modelling techniques in deep learning models to encounter the challenges of 34 

function finding for complex bedload transport estimations in multiple observed 35 

datasets.  36 

Keywords: Multi-model ensembles approach, bedload transport, function finding, 37 

equation optimization, machine learning 38 

 39 

1- Introduction   40 

Sediment transport in river flows leads to several challenges for the water resources 41 

tasks and is crucial in the context of reservoir sedimentation, flood control, river 42 

morphology changes, stable channel design, fish and wild life habitat, and watershed 43 

management (Van Rijn, 1993; Bhattacharya et al., 2007; Dey, 2014; Elkurdy et al., 44 

2021; Ahmadianfar et al., 2021). In sediment transport, the coarse-grains conveyed 45 

by higher discharges and floods immediately above the bed are known as bedload 46 

(Barry, 2007).  47 

Sediment transport is a highly complex, stochastic phenomenon with somewhat 48 

unknown theory. It is hard to measure in the field due to the time and cost-intensive 49 

process. These features of sediment transport produce high uncertainty in predictive 50 
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equations that made their applicability questionable and makes limitation on 51 

employing them (Bhattacharya et al., 2007; Riahi-Madvar and Seifi, 2018).  52 

The predictive methods of bedload transport are generally categorized into physical 53 

and data driven models (Kitsikoudis et al., 2014; Gholami et al., 2018 & 2019). 54 

Considering challenges of phenomenon complexity, inaccuracies in the predictive 55 

equations of bedload and measuring difficulties with the physical methods, 56 

development of new data-driven-based models with an appropriate determination of 57 

effective parameters of bedload having easily accessible field variables is vital 58 

(Ghani et al., 2011; Gao, 2011; Ebtehaj et al., 2021).  59 

With the emerging applications of machine learning (ML) models, producing 60 

effective results in formulation of complex nonlinear challenges in river engineering, 61 

researchers have endeavoured to use these new techniques to cope with the 62 

complicated nature of bedload transport in parallel with the experimental and 63 

physical-based studies (Bhattacharya et al., 2007; Safari et al., 2020).  64 

Various ML methods were implemented for sediment transport modelling such as 65 

artificial neural network: ANN (Afan et al., 2016; Bhattacharya et al., 2007;  66 

Kitsikoudis et al., 2014), fuzzy logic and  adaptive neural fuzzy inference system: 67 

ANFIS (Kitsikoudis et al., 2014; Qasem et al., 2017), support vector machine: SVM 68 
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(Roushangar and Shahnazi, 2020; Sahraei et al., 2017), genetic expression 69 

programming: GEP (Danandeh Mehr et al., 2018; Ghani and Azamathulla, 2014).  70 

Montes, et al., (2021), Noori et al. (2010a-c, 2011) and Liu et al (2020) figured out 71 

that these techniques suffer from the generalization capabilities of the results due to 72 

inappropriate selection of training set, inaccuracy issues with limited extrapolation 73 

abilities when applied to unseen data set extensive than the data used in training 74 

phase. They suggested pre-processing techniques such as data clustering for subset 75 

selection in train and testing steps. The studies in the literature of bedload prediction, 76 

have neglected mathematical-based clustering of train and test sets, while this study 77 

considered a subset selection of maximum dissimilarity (SSMD) to overcome these 78 

challenges. 79 

The data-driven models developed so far for bedload transport estimations are 80 

basically black-box type tools such as ANN, ANFIS and suffer from limited 81 

interpretability of physical importance of the input parameters and their interactions 82 

to the model outputs, inability to capture physical processes (Noori et al., 2010a-c, 83 

2011; Montes et al., 2021; Seifi and Soroush, 2020; Madvar et al., 2020). Therefore, 84 

the derivation of explicit accurate equations for bedload transport in rivers based on 85 

AI models, remains challenging. 86 
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To address this problem, in the current study a hybridization of four mathematical 87 

models including ANN, GEP, group method of data handling (GMDH), and multi 88 

linear regression (MLR) are employed in deriving the explicit predictive equations 89 

for bedload using a new multi-model-based strategy.  90 

The data-driven models are susceptible to the number of the input variable. To the 91 

best of our knowledge, few studies there are relating to the use of approach to reduce 92 

the dimension of input data space and to astutely designate appropriate input 93 

variables for prediction of bedload in a multi-model ensemble approach.  94 

Generally, the bedload rate is chosen as a dependent parameter.  The fluid properties, 95 

flow conditions, sediment properties, and channel geometry are considered 96 

independent parameters in data-driven model developments (Montes et al., 2021; 97 

Qasem et al., 2017). In conventional ML-based models usually rely on the 98 

researchers’ subjective “suggesting” the input variables that will result in a poor 99 

prediction (Liu et al., 2020). 100 

Hence, proposing a sophisticated approach such as principal component analysis 101 

(PCA) (Snieder et al., 2020) and Gamma test (GT) to reduce the dimension of the 102 

input space leading to choose proper input parameters of the model, is valuable. The 103 

studies in the literature neglected input vector manipulation and data dimension 104 

reduction for ML prediction of bedload. In contrast, the present study used PCA and 105 
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GT techniques for dimension reduction and effective variable selection. In the 106 

current study pre-processing techniques of GT and PCA as dimension reductions are 107 

used in conjunction with ANN, GEP, GMDH and MLR.   108 

This literature review confirms that, there are three main challenges and questionable 109 

problems in the ML techniques developments for bedload rate including: 110 

1- the input feature selection (Dehghani et al., 2019) , input dimension reduction to 111 

infer most effective variables (Snieder et al., 2020), 112 

 2- optimized subset selection of train and test data sets to avoid overfitting (Riahi-113 

Madvar et al., 2019 & 2021), and 114 

 3- multi-model procedure to overcome the weakness of single models using 115 

ensembles modeling strategy (Khatibi et al., 2020). 116 

4- This study aims to address these challenges and efforts to improve the estimation 117 

of bedload transport rate through considering techniques implemented in a multi-118 

model-based approach. As powerful ML models, MLR, ANN, GMDH and GEP 119 

in conjunction with SSMD, PCA and GT techniques are utilized for modeling. 120 

The bedload prediction challenges are improved by a successive strategy including 121 

Multiple Models (MM) in three levels as follows: 122 
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(i) Level 0: use pre-processing techniques, SSMD, GT and PCA in data 123 

manipulation, dimension reduction and input feature selection, 124 

 (ii) Level 1: developing standalone ML models as base reuse and recursion 125 

techniques, that their results are reused as inputs in the next level inputs;  126 

(iii) Level 2: reuse and recursion of base models in a Pareto multi-gene 127 

framework by reusing the results of the previous level to the inputs of the 128 

present level and the bedload rate as a target for improved accuracy.  129 

The main contribution of the current paper is four-fold. First, implementing the 130 

SSMD, GT, and PCA-based approaches in input vector manipulation, dimension 131 

reduction, and pre-processing of an extensive bedload transport database. Second, 132 

the utilized data set includes a wide range of low shear to high shear sediment 133 

transport observations. When combined with the pre-processing techniques, will 134 

improve the generalization issues of previous studies by dimension reduction.  Third 135 

utilizing individual MLR, MLR-PCA, ANN, ANN-PCA, GEP, GEP-PCA, GMDH, 136 

GMDH-PCA models to derive explicit predictive equations for bedload. Fourth, 137 

integrating the output of individual models with the POMGGP procedure as a new 138 

multi-model strategy that utilizes individual models' power of and eliminates their 139 

weakness in bedload predictions.  140 
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To the best of the author’s knowledge, the presented multi-model ensembles 141 

approach driven by the different techniques is a unique one in the literature 142 

concerning bedload rate prediction. This paper is organized as follows. Section 2 143 

presents the material and method, including data, dimension analysis, preprocessing 144 

techniques, stand-alone, and multi-model strategy. Section 3 discusses the results of 145 

the study in three pre-defined levels. Section 4 provides summaries and conclusions. 146 

 147 

2- Material and methods 148 

2-1- Experimental data and dimensional analysis   149 

Literature review revealed that bedload material properties, cross-section geometry 150 

features, and flow conditions are the main properties that affect the sediment 151 

transport in streams (Safari et al., 2020; Ghani ,1993;) and bedload transport in rivers 152 

can be defined by the following set of effective parameters in the form of unknown 153 

f1 function  154 

𝑞𝑏 = 𝑓1(𝑈, 𝐻, 𝑊, 𝑅, 𝐷𝑠, 𝑆, 𝑔, 𝜌𝑠, 𝜌𝑤, 𝜇, 𝑢∗, 𝑢∗𝑐  )     1 155 

Where qb is bedload transport, U is flow velocity, H is flow depth, W is river width, 156 

R is hydraulic radius, Ds is sediment size, S is bed slope, g is gravity acceleration, s 157 

and w are sediments and water mass density respectively,  is dynamic viscosity, 158 
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u* is shear velocity, and u*c is critical shear velocity. The dimensionless form of 159 

bedload transport rate can be written in unknown f2 functional form as 160 

∅ = 𝑓2(𝑆, 𝐷𝑔𝑟 , 𝑅𝐷𝑠 , 𝑈𝑢∗𝑐 , 𝐻𝐷𝑆 , 𝐻𝑊 , 𝐹𝑟 , 𝐹𝑟𝑔 , 𝑅𝑒 , 𝑅𝑒∗, 𝜃, 𝑈𝑢∗)      2 161 

in which the dimensionless parameters are particle mobility parameter ∅, Slope 𝑆 , 162 

dimensionless grain diameter 𝐷𝑔𝑟, relative depth 𝑅𝐷𝑠, critical velocity ratio 
𝑈𝑢∗𝑐, depth 163 

ratio 
𝐻𝐷𝑆, aspect ratio 

𝐻𝑊, Froud number Fr, densimetric Froud number 𝐹𝑟𝑔, Reynold 164 

number Re, densimetric Reynold number 𝑅𝑒∗, shields parameter 𝜃,  velocity ratio 
𝑈𝑢∗, 165 

defined by 166 

∅ = 𝑞𝑏𝐷𝑠√𝑔(s−1)𝐷𝑠,  𝐷𝑔𝑟 = 𝐷𝑠 [(𝑆−1)𝑔𝜗2 ]1/3
, 𝑅𝑒∗ = 𝑢∗𝐷𝑠𝜗 , 𝑅𝑒 = 𝑈𝐻𝜗 ,   3 167 

𝐹𝑟 = 𝑈√𝑔𝐻, 𝐹𝑟𝑔 = 𝑈√𝑔𝐷𝑆(𝑠−1), 𝜃 = 𝛾𝐻𝑆𝑔𝐷𝑆(𝑠−1) 168 

In order to develop the models, several datasets available in the literature were 169 

extracted, pre-processed, and utilized (Cao, 1997; Meyer-Peter and Müller, 1948; 170 

Recking et al., 2004). A total of 1280 data sets are used in this current study that are 171 

provided in the paper's supplementary material. The sediment diameter ranges from 172 

0.274 mm to 44.3 mm. The bed sloped varies from 0.01 % to 20 %, flow depth from 173 

0.00084 m to 1.0921 m, flow velocity from 0.193 m/s to 2.88 m/s, Froud number 174 

from 0.41 to 5.19 and bed material load from 0.01 g/m3 to 1356 g/m3.  175 
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 176 

 177 

 178 

2-2- Level 0: Pre-Processing techniques of bedload data 179 

2-2-1- Feature selection using Gamma test 180 

In the current study the GT is used to select the best input variables in ML-based 181 

bedload predictions. The GT stands on the hypothesis that when two points of x’ and 182 

x are close together in input space, their corresponding bedload rate in output space 183 

of φ’ and φ should be close, else their difference is due to noise. In each data set of 184 

{(xi, ∅i) € Rm, 1≤ i ≤M} by only supposition of the functional form of bedload 185 

transport ∅ = ∅(𝑥1, … 𝑥𝑚) + 𝑟, where ∅ is a smooth function, and r is a random 186 

variable that shows noise with the bounded variance of noise Var(r). In mathematics 187 

a function could be considered "smooth" if it is differentiable everywhere (hence 188 

continuous) and in the Gamma test procedure the ∅ is smooth if it has constrained 189 

first partial derivatives. For a function to be smooth, it must have continuous 190 

derivatives up to a certain order, say k. We say that function is kth order smooth. 191 

Now the domain of possible predictive model is constrained to the smooth functions 192 ∅ that have constrained first partial derivatives. The Gamma indicator Γ is an 193 

estimation of that portion of the variance of the predictions that cannot be achieved 194 

by a smooth model (Remesan et al., 2009). By calculating the Euclidean distance 195 
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𝛿 and 𝛾 of kth nearest neighbour xN [i, k] from xi(1≤i≤M), (1≤k≤p) the Γ is computed 196 

from least-square fit between 𝛿 and 𝛾 as: 𝛾 = 𝐴𝛿 + Γ. The slope of regression A 197 

represents the complexity of bedload transport phenomenon under investigation. In 198 

the GT, if the Γ in comparison with the variance of ∅ as Vratio were high, the 199 

probability of predicting ∅ using selected inputs is low, when the Vratio is small or 200 

near zero, the probability of predicting ∅ by selected inputs is high. So, using the 201 

mask tests, the most effective parameters on ∅  can be determined. Also, the GT 202 

using M-test can determine the appropriate number of data records in modelling 203 

bedload transport (Dehghani et al. ,2019). In this study the WinGamma software is 204 

sued for GT, freely available at: 205 

http://users.cs.cf.ac.uk/O.F.Rana/Antonia.J.Jones/GammaArchive/Gamma%20Soft206 

ware/Mathematica/GammaTestMathematicaFiles.htm    207 

 208 

2-2-2- Data Clustering and Subset Selection by SSMD  209 

According to Montes et al. (2021) and Safari (2020), the range of dissimilarity in the 210 

training dataset directly influences the model generality, overfitting problem, 211 

extrapolation ability and accuracy. The SSMD is used to avoid the overfitting of 212 

data-driven models. Suppose that X is the dataset as 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑝) and a 213 

collection of 𝑚 = 1,2, . . , 𝑁 points defined as a selected subset for the training stage. 214 

If the squared distance between ith and jth point define as 𝐷𝑖𝑗2 , and k points have 215 

http://users.cs.cf.ac.uk/O.F.Rana/Antonia.J.Jones/GammaArchive/Gamma%20Software/Mathematica/GammaTestMathematicaFiles.htm
http://users.cs.cf.ac.uk/O.F.Rana/Antonia.J.Jones/GammaArchive/Gamma%20Software/Mathematica/GammaTestMathematicaFiles.htm
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already been selected (k<p), then the minimum distance from applicant point of N 216 

to k points define as (Memarzadeh et al., 2020) 217 

𝐷𝑖𝑗2 = ‖𝑥𝑖 − 𝑥𝑗‖2 = ∑ (𝑥𝑘𝑖 − 𝑥𝑘𝑗)2𝑝𝑘=1            4 218 

The (k+1)th 
 candidate point in train group is chosen from remaining (N-k) points in 219 

the dataset that has the highest distance from an existing point. In this study, the 220 

SSMD code is developed in MATLAB environment. 221 

 222 

2-2-3- Component selection and dimension reduction using PCA 223 

 224 

In the PCA pre-processing technique, the original input variables are converted and 225 

reduced to fewer independent principal components (PCs) through an orthogonal 226 

projection into uncorrelated PCs (Lu et al., 2003). Using this technique, 227 

combinations of the P primary variable, 𝑋1, . . . , 𝑋𝑝, are used to create P independent 228 

components, 𝑃𝐶1, . . . , 𝑃𝐶𝑝 equal to the number of original variables.  229 

 230 

2-3- Level 1: Standalone predictive models 231 

 232 

2-3-1- Multiple linear regression (MLR) 233 

If we have n observations of the p-dimensional independent variable X and want to 234 

establish a linear relationship with the response variable ∅, we can use the following 235 

MLR model (Zounemat-Kermani et al., 2020): 236 
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∅ = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑝𝑥𝑝 + 𝜀            5 237 

The parameters 
j , pj ,,1,0 = are called regression coefficients. The least-squares 238 

method is commonly used to estimate the regression coefficients.   239 

2-3-2- ANN-MLP 240 

The Multi-Layer Perceptron (MLP) models are the most popular NN tools used in 241 

most of research and literature (Seifi and Soroush, 2020). By determining the 242 

weights and biases of NN architecture, and simplifying the MLP, the predictive 243 

equation of model can be derived. The ANN is developed using the MATLAB 244 

toolbox. 245 

 246 

2-3-3- Pareto Optimal GEP and MGEP 247 

The innovative technique of gene expression programming (GEP) utilized with 248 

Darwinian theory of evolution by natural selection to automatically solve 249 

optimization problems based on its two main components, the chromosomes and 250 

expression trees. A new sophisticated version of GEP is the Multigene-251 

GEP(MGEP), that the initial population is created by GP trees with different genes 252 

(a number selected from1 and Gmax).  In the MGEP approach two conflict goals are 253 

considered. The first is the selection of the bedload predictive equation with lowest 254 

complexity and the second is the highest accuracy. These two conflict objects lead 255 

to a multi objective optimization problem.  Here to solve the optimization problem 256 
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with two conflict goals the Pareto optimality is combined with multi-genetic 257 

programming. In the multi-model-based framework the Pareto optimization is sued 258 

in order to balance between the complexity of model and the accuracy. Suppose that 259 

X1 and X2 are two feasible solutions. In the dominance relationship, two solutions 260 

must satisfy the constraints of (Zhang et al., 2017): 𝑓𝑑(𝑋1) ≤ 𝑓𝑑(𝑋2), ∀𝑑 ∈261 {1,2, … , 𝐷} and 𝑓𝑖(𝑋1) ≤ 𝑓𝑖(𝑋2), ∃𝑖 ∈ {1,2, … , 𝐷}, In which fd  is the fitness value of 262 

d solution, and D is the number of the optimization goals.   263 

If the feasible solution X* satisfies the above conditions and there isn’t any sequence 264 

solution X while X< X*, so that the solution X* will be preserved and is called the 265 

Pareto optimal solution. A collection of entire Pareto optimal solutions is entitled as 266 

the final Pareto optimal solutions set, and a set of values of the target function that 267 

are related to the disassembly sequence is called the Pareto optimal frontier.  The 268 

complexity of each multi-gene is calculated simply by summation of individual gene 269 

complexity. In individual genes, the complexity is determined by counting the nodes, 270 

the subtrees, leaves. A tradeoff between model accuracy and complexity would 271 

result in Pareto optimal selection of the best equation. The POMGGP is used in the 272 

MATLAB software with GPTIPS toolbox.   273 

 274 

2-3-4- Group Method of Data Handling (GMDH)   275 
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 GMDH is one of the meta-heuristic data-driven models based on multivariate 276 

analysis for complex systems without the need to have a special basic knowledge. 277 

The GMDH develops an analytic function using a progressive network with 278 

binomial transfer functions (Shaghaghi et al., 2018). The mathematical form of 279 

GMDH that maps inputs (x1, x2, x3, …, xn) to the predicted output (∅̂) is written as 280 ∅̂ = 𝑎𝑜 + ∑ 𝑎1𝑥𝑖 + ∑ ∑ 𝑎𝑖𝑗𝑥𝑖𝑥𝑗 + ∑ ∑ ∑ 𝑥𝑗𝑎𝑖𝑗𝑘𝑥𝑖𝑥𝑗𝑥𝑘 + ⋯𝑛𝑘=1𝑛𝑗=1𝑛𝑖=1𝑛𝑗=1𝑛𝑖=1𝑛𝑖=1      6 281 

The least-squares error rule is utilized for coefficient determination of GMDH in 282 

MATLAB environment.  283 

2-4- Level 2: Multi-model ensembles (MME) approach 284 

In the present study, in addition to the individual predictive models, an innovative 285 

multi-model ensembles approach is presented. This feeds the output of standalone 286 

models into the POMGGP as a multi-model technique to improve the predictive 287 

capability of models. 288 

This new contribution in bedload rate prediction as an ensembles approach consists 289 

of two primary levels: Level 1 in which the original input variables or pre-processed 290 

(PCs) are used to estimate bedload transport rate in standalone models of MLR, 291 

MLR-PCA, ANN, ANN-PCA, GMDH, GMDH-PCA, GEP, GEP-PCA; Level 2 in 292 

which the outputs of level 1 models are used as inputs to the POMGGP along with 293 

the original bedload rate as output.  294 
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In this framework, as presented in Fig.1 the POMGGP is used to run models at level 295 

1 based on Pareto optimality analysis. Observed values of bedload rate serve as the 296 

target output in both levels. The strength of the developed framework is learning at 297 

two levels, automatic individual model selection by natural evolution in multi-gene 298 

GEP, balancing surrogate model complexity and accuracy via Pareto optimality.   299 

The idea behind the multi-model ensembles approach has been inspired by the 300 

hierarchical recursion of models, that teamworking of models in parallel can help 301 

achieve a more accurate prediction (Khatibi et al., 2020).  302 

The models in level 1 and 2 are comparatively evaluated using performance metrics 303 

coefficient of determination (R2), root mean square error (RMSE), mean absolute 304 

error (MAE), Nash Sutcliffe efficiency (NSE), and graphical analysis including 305 

scatter plots, importance probability, Pareto front and Taylor diagrams.  306 

Furthermore, a newly revised discrepancy ratio (RDR) for error distributions 307 

developed by the authors (Riahi et al., 2020) is used to overcome non-normality, 308 

zero or negative value predictions with a rectified linear unit (ReLu) function 309 

(Ramachandran et al., 2018). The RDR is calculated by: 310 

𝑅𝐷𝑅 = 𝑆𝑖𝑔𝑛(∅𝑝,𝑖 − ∅𝑜,𝑖) |𝑙𝑜𝑔 |∅𝑝,𝑖∅𝑜,𝑖||                7 311 

In which the ∅𝑜,𝑖 is measured value ∅𝑝,𝑖 is the estimated model output. In the case 312 

of over-predictions by POMGGP, the value of RDR>0 and in the case of under-313 
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prediction RDR<0 and for exact predictions RDR is equal to zero. The multi-314 

model ensemble is developed using MATLAB environment. 315 

 316 
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 317 

Fig. 1.  Flowchart of the developed multi-model ensembles approach for function 318 

finding in bedload prediction 319 



19 

 

3- Results and discussion 320 

3-1- Level 0: Pre-processing  321 

The results obtained using the pre-processing techniques are presented in Table 1. 322 

The train (80%) and test (20%) sets are selected using the SSMD approach. For a 323 

sizeable natural data bank like those used in this study, the SSMD expandes the 324 

envelope range of training sets, improves the applicability of developed predictive 325 

models and encompasses outlier data in the training set.  326 

 327 

Table 1. Descriptive statistics of parameters in all, train and test subsets categorized by SSMD. 328 

  Parameter Mean Mode SD Min 

First 

quartile Median 

Third 

quartile Max 

All 

(1280 

data 

points) 

S 0.02 0.01 0.04 0.00 0.00 0.01 0.02 0.20 

Dgr 163.08 12.88 210.77 6.98 35.97 80.70 221.92 1150.14 

U/u*c 11.73 11.21 3.38 3.26 9.86 12.12 14.37 18.99 

H/W 0.21 0.13 0.14 0.01 0.09 0.18 0.28 0.85 

Fr 1.19 1.13 0.60 0.41 0.79 1.09 1.35 5.19 

Re* 944.92 28.00 1834.21 21.00 55.00 199.50 1103.00 15086.00 

 0.20 0.05 0.30 0.01 0.05 0.07 0.29 3.70 

U/u*c 11.69 11.87 3.43 3.26 9.86 12.13 14.37 18.98 

 1.84 0.00 11.59 0.00 0.00 0.02 0.67 264.05 

Train 

(1024 

data 

points) 

S 0.03 0.07 0.04 0.00 0.00 0.01 0.02 0.20 

Dgr 192.86 12.88 223.84 6.98 51.78 107.35 262.17 1150.14 

U/u*c 11.08 11.21 3.36 3.26 9.00 11.25 13.42 18.99 

H/W 0.22 0.04 0.15 0.01 0.10 0.20 0.30 0.85 

Fr 1.21 1.13 0.64 0.41 0.83 1.08 1.33 5.19 

Re* 1151.67 30.00 1992.09 21.00 98.00 362.50 1265.00 15086.00 

 0.19 0.05 0.32 0.01 0.05 0.07 0.16 3.70 

U/u*c 11.04 3.26 3.42 3.26 9.00 11.24 13.42 18.98 

 1.95 0.00 12.93 0.00 0.00 0.01 0.14 264.05 

Test 

(256 

data 

points) 

S 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.02 

Dgr 43.95 12.88 63.24 12.86 12.88 12.88 51.78 608.49 

U/u*c 14.31 11.47 1.89 7.19 13.46 14.55 15.66 17.68 

H/W 0.15 0.07 0.11 0.01 0.08 0.12 0.18 0.58 

Fr 1.12 0.69 0.41 0.45 0.72 1.13 1.44 2.16 

Re* 117.91 28.00 309.44 25.00 29.00 35.00 81.00 3528.00 

 0.25 0.06 0.21 0.02 0.05 0.30 0.43 0.87 

U/u*c 14.31 14.24 1.89 7.20 13.46 14.55 15.66 17.68 

 1.42 0.00 1.79 0.00 0.00 0.94 2.32 9.07 
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The GT is used for feature selection and determining the proper input vector that 329 

characterizes the complex process in bedload transport. At first, the datasets are 330 

normalized [-1 1] and then GT is utilized via mask test procedure, and GT results 331 

for different input configurations are shown in Table 2. In Table 2, 12 dimensionless 332 

variables are used as the input variables with varying combinations to the GT.  333 

In the first configuration, all 12 input parameters are used and GT indices calculated 334 

as given in the first row of Table 2.  Then in the next GT run, the first input parameter 335 

is removed and masked and the GT results are recalculated, as given in the second 336 

row. Again, the removed variable is returned into the input vector and the second 337 

input variable is masked, and GT is performed in all the combinations. This method 338 

is continued for all selected variables in Table 2, one by one and in each step the Γ 339 

value is calculated.  340 

The masking of the most influential variables in bedload prediction is associated 341 

with increases in the Γ value (V ratio) regarding the case that includes all variables 342 

(first row in Table 2). The highest Γ value indicates that the removed variable is 343 

essential and should be selected as the input variable of models.   344 

Finally based on the results of GT in Table 2, the most important variables with the 345 

highest Γ value are S, Dgr, U/u*c, H/W, Fr, Re*, Q, U/u* as shown in bold style. The 346 

input components reduced from 12 to 8 and the functional form simplified as 347 
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Table 2. The GT results on the selected 12 input masks for feature selection 348 

 Removed Gamma Gradient 
Standard 

Error 
V-Ratio  Mask 

0 None 0.04134632 0.24293793 0.02504585 0.165385281 111111111111 

1 S 0.043221076 0.25201855 0.02499108 0.172884302 011111111111 

2 Dgr 0.041702514 0.246745969 0.025434014 0.166810055 101111111111 

3 R/Ds 0.041275668 0.249138526 0.025293184 0.165102672 110111111111 

4 U/u*c 0.042657031 0.251330176 0.025272607 0.170628125 111011111111 

5 H/ Ds 0.041493969 0.260073122 0.025051376 0.165975875 111101111111 

6 H/W 0.044526813 0.273403925 0.025769505 0.178107253 111110111111 

7 Fr 0.043472253 0.258844691 0.024823123 0.173889012 111111011111 

8 Frg 0.040546081 0.271921358 0.025270117 0.162184324 111111101111 

9 Re 0.040604003 0.258535669 0.024947276 0.162416013 111111110111 

10 Re* 0.041900604 0.255306066 0.025551793 0.167602418 111111111011 

11  0.042757646 0.337648978 0.024902663 0.171030583 111111111101 

12 U/u* 0.042685003 0.251320735 0.025282989 0.170740012 111111111110 

 349 ∅ = 𝑓3(𝑆, 𝐷𝑔𝑟 , 𝑈𝑢∗𝑐 , 𝐻𝑊 , 𝐹𝑟 , 𝑅𝑒∗, 𝜃, 𝑈𝑢∗)                    8 350 

The PCA is used as a dimension reduction technique over the GT results. According 351 

to KMO=0.624, the PCA is applicable for dimension reduction and the input 352 

variables are reduced into three principal components which are a linear combination 353 

of primitive dimensionless variables as 354 

𝑃𝐶1 = 0.069𝑆𝑛 + 0.310𝐷𝑔𝑟,𝑛 − 0.256 ( 𝑈𝑢∗𝑐)𝑛 + 0.012 ( 𝐻𝑊)𝑛 − 0.042(𝐹𝑟)𝑛355 + 0.293(𝑅𝑒∗)𝑛 − 0.151(𝜃)𝑛 − 0.253 ( 𝑈𝑢∗)𝑛 356 

𝑃𝐶2 = 0.314𝑆𝑛 − 0.143𝐷𝑔𝑟,𝑛 − 0.051 ( 𝑈𝑢∗𝑐)𝑛 + 0.064 (𝐻𝑊)𝑛 + 0.39(𝐹𝑟)𝑛 −357                              0.081(𝑅𝑒∗)𝑛 + 0.382(𝜃)𝑛 − 0.059 ( 𝑈𝑢∗)𝑛    9 358 

𝑃𝐶3 = −0.113𝑆𝑛 + 0.289𝐷𝑔𝑟,𝑛 + 0.267 ( 𝑈𝑢∗𝑐)𝑛 + 0.683 (𝐻𝑊)𝑛 + 0.037(𝐹𝑟)𝑛359 + 0.289(𝑅𝑒∗)𝑛 + 0.266(𝜃)𝑛 + 0.264 (𝑉𝑈𝑢∗ )𝑛 360 
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Here, the n footnote indicates the normalized parameters in PCA. These three PCs 361 

explained the 85 % of total variances in the bedload transport datasets. The PCA 362 

results are given in Table 3, and the Kaiser criterion shows that three components 363 

have eigenvalues of more than 1 with a cumulative total variance of 85 %.  364 

Therefore, the 8 bedload transport parameters can be reduced to the three 365 

uncorrelated PCs while preserving 85 % of the information of primary variables. As 366 

this table shows, the PC1 has an eigenvalue of 3.526 that explains 44.071 % of the 367 

total variance, PC2 has an eigenvalue of 2.049 with 25.614 % of total variance 368 

presented and PC with an eigenvalue of 1.16 has an eigenvalue of 14.505 %.   369 

A scree graph of the amount of variance explained versus PCs and eigenvalues is 370 

shown in Fig.2, indicates that a break of the line occurred after PC3 and shows that 371 

only first three PCs maintain useful information. The selected PCs are rotated to 372 

determine their importance relative to each of 8 dimensionless parameters, as given 373 

in Table 4. A high value for each parameter's PC loading indicates a reasonable 374 

correlation between the parameter and corresponding PC.  375 

 376 

 377 

 378 

 379 
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Table 3. The PCA results on bedload transport data 380 

Component 
Eigenvalues 

Total % of Variance Cumulative % 

1 3.526 44.071 44.071 

2 2.049 25.614 69.685 

3 1.160 14.505 84.190 

4 0.800 10.006 94.196 

5 0.297 3.712 97.908 

6 0.129 1.610 99.518 

7 0.037 0.462 99.980 

8 0.002 0.020 100.000 

 381 

Table 4. Rotated PC loading of bedload effective parameters 382 

 Parameter 
Component 

1 2 3 𝑆 0.423 0.825 -0.159 𝐷𝑔𝑟  0.865 -0.171 0.345 𝑈𝑢∗𝑐  -0.834 -0.317 0.320 𝐻𝑊 0.068 0.106 0.791 𝐹𝑟  0.126 0.925 0.011 𝑅𝑒∗ 0.856 -0.028 0.339 𝜃 -0.222 0.815 0.281 𝑈𝑢∗ -0.830 -0.334 0.317 

 383 

As these results show, the first component is explained by 𝐷𝑔𝑟 and 𝑅𝑒∗ and includes 384 

the highest level of information and describes the sediment material properties. The 385 

second PC is explained by S, , 𝐹𝑟 and 𝜃 that describes the flow properties, and the 386 

third PC is explained by   𝑈𝑢∗𝑐, 𝐻𝑊, and 
𝑈𝑢∗, which this PC describes the geometry and 387 
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friction properties of the bedload transport. These three relevant PCs will be used as 388 

an input vector to the multi-models as follows 389 

∅ = 𝑓4( 𝑃𝐶1, 𝑃𝐶2, 𝑃𝐶3)           10 390 

 391 

Fig. 2. Scree plot showing the variance of all components 392 

 393 

3-2- Level 1: Performance of standalone models  394 

The results obtained by using the presented standalone models are presented and 395 

discussed here. A comprehensive evaluation of the model predictions should include 396 

at least ‘goodness-of-fit’ such as R2, NSE and error indices such as RMSE, or RAE.  397 

The comprehensive comparison of the best single model results using the selected 398 

input variables by the GT and the quantitative values of performance evaluation 399 
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indices of the MLR, MLR-PCA, ANN, ANN-PCA, GEP, GEP-PCA, GMDH, 400 

GMDH-PCA are presented in Table 5.   401 

In the training step, the ensembles ANN-PCA model showed a relatively accurate 402 

estimation of bedload with (R2=1≈0.996), RMSE=0.71 when compared with the 403 

ANN (R2=0.98, RMSE=1.66), GEP-PCA (R2=0.95, RMSE=2.94) and the others. 404 

Based on the classification of model performances by the R2 metric, all models in 405 

Table 5 had an outstanding performance (0.7>R2>1) in bedload predictions, except 406 

the MLR-PCA. In the test stag, the same performance trend and accuracy 407 

improvement when combined the standalone models with the PCA were declared.  408 

The best results were comparatively obtained by the ANN-PCA, GEP-PCA and 409 

ANN models. In this regard the ANN-PCA model with R2=0.96, RMSE=0.38, 410 

RAE=0.16 and NSE=0.95 have the best predictions for the bedload in the test stage. 411 

The NSE values of the GEP-PCA, ANN-PCA, GEP and ANN models in the train 412 

and testing steps confirmed excellent predictions for the bedload transport in the test 413 

stage with NSE>0.75.  The best accuracy of the GEP-PCA and ANN PCA-based 414 

models confirmed their ability in the emerging non-linear system indentation when 415 

combined GT and PCA's pre-processing model-free techniques. 416 

The hierarchical accuracy of models follows the order of ANN-PCA> ANN> GEP-417 

PCA> GEP> GMDH-PCA> GMDH> MLR-PCA> MLR in terms of the R2, RMSE, 418 
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RAE and NSE values for the test stage, as given in Table 5. The percent of prediction 419 

improvements by utilizing the PCA as input dimension reduction in RMSE reduction 420 

was 57% and 3% in ANN-PCA, 4% and 4% in GEP-PCA, 9% and 45% in GMDH-421 

PCA for train and testing steps, respectively. The explicit form of predictive 422 

equations based on the trained above eight models are as follows: 423 

MLR: 424 𝑀𝐿𝑅 = −3.39𝑆 + 0.02𝐷𝑔𝑟 − 2.02 𝑈𝑢∗𝑐 − 5.4 𝐻𝑊 − 8.3𝐹𝑟 − 0.002𝑅𝑒∗ − 46.2𝜃 + 1.8 𝑈𝑢∗ + 4.81  11 425 

MLR-PCA: 426 𝑀𝐿𝑅 − 𝑃𝐶𝐴 = 1.95 − 2.81𝑃𝐶1 + 6.35𝑃𝐶2 + 3.65𝑃𝐶3             12 427 

GMDH: 428     𝐺1 =  1.9𝑆𝑒0.27(𝜃+0.64) + 0.16𝑆2 + 12𝑒0.27(𝜃+0.64) − 2.84𝑆 − 11.44  429 𝐺2 = 411.52 ∗ 𝑒0.002(𝐺1+1.73) − 411.4            13 430 

   𝐺3 = 115671.3𝑒0.000009(𝐺2+1.35) − 115671.3  431 𝐺𝑀𝐷𝐻 = 970.9𝑒0.000956(𝐺3+1.36) − 970.79        432 

GMDH-PCA: 433 𝐺𝑀𝐷𝐻 − 𝑃𝐶𝐴 = 504.351+𝑒4.55𝑃𝐶3−17.7 + 1.78𝑒0.998+0.3008𝑃𝐶3+0.55𝑃𝐶2−0.225𝑃𝐶1 +434  0.01𝑒−(3.71𝑃𝐶1+10.83) − 0.61𝑃𝐶3 + 0.44𝑃𝐶3 × 𝑃𝐶1 − 506.39       14 435 

GEP: 436 𝐺𝐸𝑃 = 𝜃 × 𝐹𝑟 + 𝑒𝐹𝑟−2.21 + 6.2𝑒𝜃 − 𝜃 − 𝑆 − 7.14         15 437 

GEP-PCA: 438 

𝐺𝐸𝑃 − 𝑃𝐶𝐴 = 33.6𝑒−(𝑃𝐶2−7.81)22𝑃𝐶32 + 1479391.4𝑒−(𝑃𝐶2−24.13)22𝑃𝐶32 − 1.75𝑒−0.37(𝑃𝐶2−𝑃𝐶1)2 +439 2(𝑃𝐶2−𝑃𝐶1) + 0.73            16 440 

ANN: 441 𝐴𝑁𝑁 = 530.21+𝑒−2(𝑇1+𝑇2+𝑇3+𝑇4)−28.3 − 265.1         17 442 
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𝑇1 = 16.361 + 𝑒0.66𝑆−12.94𝐷𝑔𝑟+5.18 𝑈𝑢∗𝑐+0.2𝐻𝑊+5.44𝐹𝑟+7.66𝑅𝑒∗−4.34𝜃−5.18 𝑈𝑢∗−5.86 − 8.18 443 

𝑇2 = −41.461 + 𝑒31.22𝑆+1.74𝐷𝑔𝑟+109.78 𝑈𝑢∗𝑐−165.86𝐻𝑊+136.76𝐹𝑟+2.3𝑅𝑒∗+92.44𝜃+117.63 𝑈𝑢∗−271.4444 + 20.73 445 𝑇3 = −2.981 + 𝑒1.26𝑆−12.64𝐷𝑔𝑟+4.8 𝑈𝑢∗𝑐+0.1𝐻𝑊+5.28𝐹𝑟+7.44𝑅𝑒∗−2.68𝜃−4.72 𝑈𝑢∗−4.2 + 1.49 446 

𝑇4 = 0.241 + 𝑒26𝑆−4.78𝐷𝑔𝑟−2.52 𝑈𝑢∗𝑐+9.24𝐻𝑊+6.06𝐹𝑟−0.3𝑅𝑒∗−38.42𝜃−0.38 𝑈𝑢∗+9.38 − 0.12 447 

ANN-PCA: 448 𝐴𝑁𝑁 − 𝑃𝐶𝐴 = 530.21+𝑒−2(𝑇1+𝑇2+𝑇3)−68.43 − 265.1        18 449 𝑇1 = −5.0651 + 𝑒−37𝑃𝐶1+34.63𝑃𝐶2−2𝑃𝐶3−30.2 + 0.091 + 𝑒20.2𝑃𝐶1−16.9𝑃𝐶2+2.75𝑃𝐶3+9.68 + 2.48 450 

𝑇2 = 68.91 + 𝑒1025.7𝑃𝐶1+34.7𝑃𝐶2+195.9𝑃𝐶3+347.4 + 5.641 + 𝑒−36.4𝑃𝐶1+18.4𝑃𝐶2−8.6𝑃𝐶3−18.6451 − 37.3 452 𝑇3 = −0.031 + 𝑒−9.75𝑃𝐶1+17.1𝑃𝐶2+0.3𝑃𝐶3+3.6 + 0.013 453 

The scatter plots of the measured bedload rate against predicted by the models are 454 

presented in Fig.3.  This figure shows that MLR, MLR-PCA, GMDH and GMDH-455 

PCA model have underestimations for the bedload rate. As the results in this figure 456 

confirmed, the GEP-PCA, ANN-PCA models are most consistent with the 1:1 line 457 

and provide superior predictions for bedload transport rate in rivers compared to the 458 

standalone models of ANN, GEP, MLR, and GMDH.   459 
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 As the first main motivation and contribution of the current study was to introduce 460 

the feasibility of utilizing the pre-processing model-free techniques of SSMD, GT 461 

and PCA and their ensemble ability with standalone models for bedload transport 462 

rate prediction in rivers, these techniques show an improved generalization capacity 463 

than non-preprocessed predictions and is confirmed with high estimation accuracy 464 

obtained.  465 

 466 

Table 5. The statistical measures of standalone models in the train and testing 467 

steps 468 

 Train 

 MLR 

MLR-

PCA ANN 

ANN-

PCA GEP 

GEP-

PCA GMDH 

GMDH-

PCA MME 

R2 0.76 0.37 0.98 0.996 0.94 0.95 0.80 0.55 0.997 

RMSE 6.27 10.27 1.66 0.71 3.06 2.94 12.77 9.39 0.6 

RAE 0.90 1.39 0.10 0.08 0.24 0.20 2.28 1.26 0.06 

NSE 0.76 0.37 0.98 0.996 0.94 0.95 0.02 0.47 0.997 

          

       Test    

 MLR 

MLR-

PCA ANN 

ANN-

PCA GEP 

GEP-

PCA GMDH 

GMDH-

PCA MME 

R2 0.78 0.76 0.96 0.96 0.93 0.92 0.88 0.89 0.98 

RMSE 5.66 4.75 0.37 0.36 0.56 0.54 6.16 3.37 0.24 

RAE 3.06 2.83 0.18 0.16 0.34 0.25 4.21 2.16 0.1 

NSE -9.03 -6.07 0.96 0.95 0.90 0.91 -10.91 -2.57 0.98 

 469 
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 470 

 471 

Fig. 3. Scatter plots of observed bedload rates versus prediction by standalone models in A) tarin 472 

and B) test data sets 473 

A) train 

B) Test 
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 474 

3-3- Level 2: Performance of EMM approach: Ensembles-POMGGP 475 

In the developed new strategy of EMM approach for bedload transport predictions, 476 

the Pareto optimality in conjunction with the multi-gene genetic programming is 477 

used to predict bedload transport by considering the output of standalone models. In 478 

this strategy the MLR, MLR-PCA, ANN, ANN-PCA, GEP, GEP-PCA, GMDH and 479 

GMDH-PCA predictions are used as the input vector to the POMGGP model and 480 

the feasible inputs are selected automatically by the geniting programming.  481 

The Multi-Model input variable importance is shown in Fig. 4. As this figure shows, 482 

the most important sub-model is the ANN with an importance probability of 0.301, 483 

followed by the ANN-PCA sub-model with an importance probability of 0.286, and 484 

the MLR model with an importance probability of 0.225. Less important sub-models 485 

in the ensembles multi-model for predicting the dimensionless bedload transport rate 486 

follows the order of GMDH (probability=0.075)> GEP (probability=0.071)> 487 

GMDH-PCA (probability=0.029)> GEP-PCA (probability=0.014)> and MLR-PCA 488 

(probability=0.0).  489 

The importance probability graph of sub-models in Fig. 4 shows that using the 490 

results of ANN, ANN-PCA, MLR, GMDH and GEP models, we are able to derive 491 

a predictive equation with an importance probability of 95.8%. So, in order to reduce 492 
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the complexity of the final multi-model, and increase the application feasibility of 493 

the results, the Pareto optimality is used to derive the equation of final multi-model.  494 

 495 

 496 

Fig. 4. The Multi-Model input variable (standalone models) importance 497 

 498 

The parameters in Table 6 are determined by trial and error and using those 499 

suggested in the literature. The multi-gene genetic programming is trained and 500 

optimized by the least square error, the RMSE as the fitness function, basic math 501 

operators in function set, and Pareto optimality as the selection criteria. The Pareto 502 

graph of the evolved multi-models for bedload predictions using all sub-models as 503 

inputs, i.e: MLR, MLR-PCA, ANN, ANN-PCA, GEP, GEP-PCA, GMDH, and 504 

GMDH-PCA are shown in Fig. 5.  505 
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The Pareto-optimal solution of different multi-models on the Pareto front are chosen 506 

not more than 10% decrease occurred in model accuracy neither in the train nor at 507 

testing step.  In this figure, the Pareto front is demonstrated with green circles, and 508 

the best final multi-model as the optimal solution is displayed by a circle with red 509 

perimeter and green color filled.  The structural properties of the final multi-model 510 

include the overall complexity of 367, with 89 nodes in the selected symbolic 511 

expression, 4 individual genes, depth value 6 and -7.77 as the bias term, with MLR, 512 

ANN, ANN-PCA, GEP-PCA, GMDH as selected optimum input sub-models in 513 

agreement with probability importance graph in Fig. 4.  514 

 515 

 516 

Fig. 5. Pareto graph of the best evolved multi-models 517 
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The final parse tree of the Pareto selected multi-model is presented in Fig. 6. This 518 

figure presents the symbolic expression of each gene in the multi-gene model. The 519 

corresponding equation and simplified expression of each gene, the individual gene 520 

weights, the number of nodes, individual complexities and depths are presented in 521 

Table 7. 522 

As shown in Table 7, The bias term with weight=-7.77, Gene 2 that includes ANN 523 

and ANN-PCA with weight=7.6, Gene 4 with weight= -3.86 added the MLR, 524 

GMDH followed by Gene 1, has the highest weight and importance in the multi-525 

gene model solution. To evaluate the statistical significance of individual genes the 526 

p-value of each gene calculated and the p-values in all of the genes were smaller than 527 

0.00001, confirms and indicates the statistical importance of individual genes in the 528 

multigene model. Finally, by applying the coefficients of individual genes and 529 

simplifying the final Pareto solution of multi-gene expression, the final explicit 530 

predictive equation for dimensionless bedload rate based on the developed multi-531 

model strategy with its effective sub-models is derived as 532 

∅ = 1.13ANNPCA − 0.079𝐴𝑁𝑁 − 0.073𝐺𝐸𝑃𝑃𝐶𝐴 + 0.027𝑀𝐿𝑅 +533 7.6𝑒(𝐸𝑥𝑝(−3.34𝐸𝑥𝑝(𝐴𝑁𝑁𝑃𝐶𝐴2)) + 3.93𝐴𝑁𝑁𝐺𝑀𝐷𝐻 − 4𝐴𝑁𝑁𝑃𝐶𝐴𝐺𝑀𝐷𝐻 + 0.073𝑀𝐿𝑅𝐺𝑀𝐷𝐻 −534                   𝐴𝑁𝑁𝑃𝐶𝐴13.74𝐺𝑀𝐷𝐻−3.82𝐴𝑁𝑁𝑃𝐶𝐴+13.74𝑀𝐿𝑅𝐴𝑁𝑁 − 7.77     19 535 
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 536 

Fig. 6. The final parse tree of the Pareto selected multi-model 537 

 538 

Performance indices of the final MME predictions for bedload are compared in 539 

Table 5 in train and test stages. Graphically, the results of Eq. 34 as the final multi-540 

model solution are presented in Figs. 7 and 8 for the test stage and in Figs. 9 and 10 541 
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for the train stage. The scatter plots and series plots show the multi-model is 542 

accurately capable of capturing low and high values of bedload with different 543 

conditions in input observations. This is one remarkable aspect of our multi-model 544 

in mimicking low and high flows.  545 

These results revealed that the multi-model approach improved the generalization 546 

capacity of single standalone single models, as confirmed with better estimation 547 

accuracy obtained in this extensive dataset (Train: R2=0.997, RMSE=0.6, 548 

RAE=0.06, NSE=0.997, and in test Train: R2=0.98, RMSE=0.1, RAE=0.24, 549 

NSE=0.98. Comparing the results of the training period of multi-model with the 550 

greatest improvement, about 16% in RMSE, and 25% in RAE was obtained 551 

compared to the best standalone model, ANN-PCA.  552 

Based on the results in training step, the Multi-model had a decrease of 90% (in 553 

RMSE, RAE) and an increase of 31% (in NSE, R2) compared to MLR. Multi-Model 554 

also showed a decrease of 95% (in RMSE, RAE) and an increase of 169% (in NSE, 555 

R2) compared to MLR-PCA; a decrease of 63% and 40%% (in RMSE, RAE) and an 556 

increase of 2% (in NSE, R2) compared to ANN, a decrease of 80% and 75%% (in 557 

RMSE, RAE) and an increase of 6% (in NSE, R2) compared to GEP; a decrease of 558 

79% and 70% (in RMSE, RAE) and an increase of 5% (in NSE, R2) compared to 559 

GEP-PCA in train stages.  560 
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 561 
Fig. 7. Scatter plot of multi-model in training step 562 

 563 

Fig. 8. Comparison of observed versus predicted bedload transport in training step 564 
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 565 

Fig. 9. Scatter plot of multi-model in testing step 566 

 567 

Fig. 10. Comparison of observed versus predicted bedload transport in testing step 568 

 569 
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The percentage of improvements in the test stage of multi-Model when these results 570 

are compared with other standalone predictions, are presented in Table 8. The 571 

improvement percentages in this table indicates that utilizing the multi-model 572 

strategy the RMSE and RAE values, as major error indices are decreased from 33% 573 

in ANN-PCA up to 96% in MLR and GMDH. In the R2 measure the improvement 574 

varies from 2% up to 29%, and in the NSE, the gain varies from 2 up to 138%.  These 575 

values confirm the superiority of the developed strategy in the generalization of 576 

bedload prediction.   577 

To compare the underestimation or overestimation of the multi-model with the other 578 

models, in Figs. 11 and 12 the standardized error distribution of prediction in terms 579 

of RDR versus probability and the Taylor diagram of all models in train and test 580 

stages are shown. As these figures show the MLR, MLR-PCA, ANN and GEP 581 

models have underestimated and the GMDH-PCA, GMDH, ANN-PCA and GEP-582 

PCA models overestimated for the bedload, while the multi-Model have reasonable 583 

estimates in training step. In the testing step, the RDR graph in Fig. 10, declares that 584 

the multi-Model strategy provides more generalities in the predictions and the RDR 585 

distribution is accurately around the 0, while the ANN, GEP, MLR and MLR-PCA 586 

have considerable underestimates and ANN-PCA, GEP-PCA, GMDH-PCA and 587 

GMDH have high overestimate in bedload. Reasonable accuracy and generality and 588 

parsimonious structure, endorse the developed multi-model approach for bedload 589 
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transport estimation in practice. The leading cause behind the improvement in MME 590 

originates from the inherent multi-process nature and different patterns of bedload 591 

transport in the extremely low flows up to high flows is that the sediment transport 592 

is a mixture of a laminar, turbulent, linear and nonlinear phenomenon in rivers that 593 

would be taken into account by integration of linear and nonlinear models.   594 

Table 6. Parameter setting for the MME development. 595 

Run parameter Value   Run parameter Value 

Population size 100  Gaussian perturbation of 

constant 
0.05 

Max. generations 500  Max. genes 4 

Generations elapsed 500  Max. tree depth 6 

Input variables 8  Max. total nodes Inf 

Training instances 1024  ERC probability 0.3 

Tournament size 50  Crossover probability 0.84 

High level Crossover 0.2  Low level Crossover 0.8 

Elite fraction 0.75  Mutation probabilities 0.14 

Sub-tree mutation 0.9  Input Mutation probabilities 0.05 

Lexicographic selection 

pressure 
On  Complexity measure Expressional 

Function set  *, -, +, /, ^,√ , exp, ln, multi3, cub, gauss, add3, square,   

 596 

Table 7. The Multi-gene results of Pareto solution in MME. 597 

Term Value 
Gene 

weights 

Nodes Depth Complexity 

Bias -7.77 -7.71 - - - 

Gene 1 15.4 ANN + 12.9 ANNPCA + 15.4 MLR 2.57 34 6 151 

Gene 2 
7.6 ANN + 7.6 ANNPCA + 7.6 Exp(Exp(-3.34 

gauss(ANNPCA))) 

7.6 30 6 125 

Gene 3 

(0.0728 ANN)/GMDH - 0.0728 GEPPCA - ( 

ANNPCA)/(13.74 GMDH – 4.2 ANNPCA + (13.74 

MLR)/ANN) - 0.0728 ANNPCA - (0.146 

ANNPCA)/GMDH + (0.0728 MLR)/GMDH 

-0.0728 9 6 31 
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Term Value 
Gene 

weights 

Nodes Depth Complexity 

Gene 4 
-(3.86 (ANNPCA -ANN + 6.0 ANN× GMDH + 5.0 

ANNPCA ×GMDH + 4.0GMDH ×MLR))/GMDH 

-3.86 23 6 97 

Overall Structure of Multi-Model: Genes:4; Nodes:89; Complexity: 367; Depth:6; Inputs selected: 

MLR, ANN, ANN-PCA, GEP-PCA, GMDH 

  598 

 599 

Train 
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 600 

Fig. 11. The RDR graph in train and test stages of the MME 601 

  

Test 
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 602 

Fig. 12. The Taylor diagram in train and test stages 603 

 604 

Table 8. The percentage of improvements in bedload rate prediction with multi-605 

Model strategy in testing step 606 

  
MLR 

MLR-

PCA 
ANN 

ANN-

PCA 
GEP 

GEP-

PCA 
GMDH 

GMDH-

PCA 

R
2
 26 29 2 2 5 7 11 10 

RMSE -96 -95 -35 -33 -57 -56 -96 -93 

RAE -97 -96 -44 -38 -71 -60 -98 -95 

NSE 111 116 2 3 9 8 109 138 

 607 

 608 

 609 

4- Conclusions 610 

In this study, a new multi-Model strategy integrated with pre-processing techniques 611 

of SSMD, GT, and PCA is developed to derive an explicit predictive equation for 612 

the bedload transport in rivers with extensive dataset. The framework of enhanced 613 

multi-modelling improves the accuracy and heuristic capability to learn tendencies 614 

within residuals of individual model results and gain an insight into the nature of 615 

bedload transport in three-level strategy.  616 

Test 
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At level 0, the pre-processing, input selection and dimension reduction are carried 617 

out by SSMD, GT, PCA. At level 1, the standalone models of MLR, MLR-PCA, 618 

ANN, ANN-PCA, GEP, GEP-PCA, GMDH, GMDH-PCA are compared to derive 619 

explicit predictive equations. At level 2, the EMM is developed by utilizing the 620 

output of individual models as an external input to the multigene genetic 621 

programming with Pareto optimality. The main conclusions of this ensemble 622 

modeling are as follows: 623 

1- The hierarchical accuracy of models follows the order of ANN-PCA> ANN> 624 

GEP-PCA> GEP> GMDH-PCA> GMDH> MLR-PCA> MLR in terms of the 625 

R2, RMSE, RAE and NSE values for the test stage. 626 

2- The percent of prediction improvements by utilizing the PCA as input 627 

dimension reduction in terms of RMSE reduction was 57% and 3% in ANN-628 

PCA, 4% and 4% in GEP-PCA, 9% and 45% in GMDH-PCA for training and 629 

testing steps respectively. 630 

3- The MME had a decrease of 90% (in RMSE, RAE) and an increase of 31% 631 

(in NSE, R2) compared to MLR, a reduction of 95% (in RMSE, RAE) and an 632 

increase of 169% (in NSE, R2) compared to MLR-PCA; a decrease of 63% 633 

and 40%% (in RMSE, RAE) and an rise of 2% (in NSE, R2) compared to 634 

ANN, a decrease of 80% and 75%% (in RMSE, RAE) and an increase of 6% 635 
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(in NSE, R2) compared to GEP; a reduction of 79% and 70% (in RMSE, RAE) 636 

and an increase of 5% (in NSE, R2) compared to GEP-PCA. 637 

4- The explicit predictive equation based on EMM approach has resulted in the 638 

gaining of a robust system with significant predictive accuracy improvement, 639 

(i.e., 33–96% in terms of RMSE; 2-29% in terms of R2, 2-138% in terms of 640 

NSE and 38-98% in terms of RAE in testing step).  641 

Finally, the authors would like to acknowledge the not always subtle differences 642 

in the previous studies' data measurement/collection methods. These differences 643 

constitute a limitation of the current research and a potential source of error when 644 

compiling the data set for machine learning. However, most of the sources used 645 

for compiling the comprehensive data set needed for the training and testing of 646 

the machine learning models have followed similar data measurement methods 647 

and standard data analysis, and reporting protocols to serve a truly global 648 

international community of researchers in this field. 649 
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