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Abstract
Wafer map defect classi�cation is a key task for the semiconductor industry to improve the yield rate.
Most wafer map defect classi�cations suffer from the problem of data imbalance and insu�cient data.
This paper proposes a global-to-local generative adversarial network (G2LGAN) method using the deep
learning framework. It extracts global features and local features separately to generate effective data
even in the imbalanced dataset. We use random under-sampling to suppress the majority class of data.
We use MobilenetV2 as the classi�er, and use two datasets for validation. One is open dataset 1WM-
811K and the other is called 21-Defect built from the industry. Based on the serious dataset imbalance
problem, this paper integrates data enhancement and random undersampling methods to optimize the
dataset and uses the proposed classi�cation network for classi�cation tasks. The results of WM-811K
dataset show that the proposed method has a classi�cation accuracy of 98.39 and an F1-Score of 93.01.
We also conduct cross-validation on the 21-Defect dataset and the results show that the proposed
method has good robustness.

I. Introduction
Semiconductor manufacturing technology has greatly improved in recent years. The complexity of the
process and the environment, human error and machine problems still make wafer defects unavoidable.
The wafer map defect classi�cation is essential to improving production yields. The defect pattern on the
wafer map will show some important information about the production problem [1]-[2] and the root cause
of failures.

Wafer defects can be classi�ed into local defects and global defects [3]. Local defects are usually caused
by a process problem that results in a regular distribution of defects at a certain location on the wafer. For
example, uneven application of photoresist can lead to defects at the edges of the wafer. Global defects
are caused by environmental problems such as dust, temperature, and humidity in space. As caused by
these factors, they are evenly distributed throughout the wafer and can obscure local defects making
defect classi�cation more di�cult. Therefore, some studies are attempting to eliminate overall defects.
The engineers analyze the wafer map to �nd out the cause of the failure, and then take corresponding
measures to solve the problem and improve the process yield. Nowadays, it is still relied on engineers to
classify wafer map defects based on their experience. By manual classi�cation, it requires additional
labor costs and it mostly relies on the experience and subjective judgment of the engineer.

Nowadays, convolutional neural networks are a reliable method for image classi�cation [4]-[5]. It uses
convolution computation to extract the features of different dimensions from the image. In the task of
image recognition, the convolutional neural networks even can operate more accurately than humans.
However, neural networks have several problems to be overcome [6]. It always need a large amount of
training data and a large number of parameters and calculations in neural networks. Also the problem of
insu�cient data is particularly serious in the task of wafer map defect classi�cation. Generally the wafer
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map implies commercially con�dential information that companies will not easily disclose. Also the cost
of data labeling is very high, so data with labels is very scarce.

In this paper, we apply the neural network to classify the defect types. To solve the problem of insu�cient
data, we propose an e�cient method called global-to-local generative adversarial network (G2LGAN) to
expand the limited data. We suppress the in�uence of the majority class on the model by undersampling.
We also increase the data of the minority class by data augmentation to balance the data set. The
difference from traditional generative adversarial network (GAN) [7] is that the proposed method can
effectively generate data of conditional class on imbalanced datasets. We develop a neural network
architecture using MobileNetV2 [8] as the backbone network with the less number of model parameters
and calculations. The proposed method outperforms the high accuracy and low number of parameters
and computation with other proposed approaches.

We organize the rest of the paper as follows. The related work for data augmentation and wafer map
defect classi�cation is provided in Section II. Section III introduces the details of Fig. 1. Data distribution
of WM-811K. The dataset is composed of real-world wafer maps and labeled by experts in IC industry.

the training dataset, data pre-processing, GAN architecture, and classi�cation network. In Section VI, the
experimental results is shown and compared with the other methods. Finally, the conclusion is provided
in Section V.

Ii. Related Work
A. Imbalanced datasets

When using neural networks for classi�cation tasks, imbalanced datasets will cause the model
classi�cation results to lean toward the majority class. For imbalanced datasets, various resampling
strategies have been used. One common method is random undersampling [9] which reduces the amount
of data in the majority class by discarding data. However, overuse of undersampling causes over�tting
and removal of potentially useful data. One of the common open datasets is the WM-811K [10] which is
widely used in many papers. As shown in Fig. 1, it suffers from the imbalance classes. The majority class
“None” and the minority class “Near-Full” in the WM-811K dataset account for 85.24% and 0.086% of the
entire data set, respectively. Thus only using random undersampling has a limited effect on improving the
performance of the model.

B. Data augmentation

Typical data augmentation is used to perform random rotations, �ips, and translations as well as the
addition of Gaussian noise to the original dataset. These transformations can produce more data from
the existing data. Recently, generative models based on neural networks have been proposed. The most
common methods are variational autoencoder (VAE) [11] and GAN. VAE used an encoder and decoder to
down-sample and up-sample the data and added noise to the hidden layer to enable the network to
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generate new data instead of simply reconstructing the data. Because VAE needs to be differentiated by
hidden units, it cannot have discrete latent variables.

GAN was widely applied in many areas. Due to the scarcity of wafer defect images, people expect that the
excellent image generation capabilities of the GAN model can assist the classi�cation model to achieve
higher performance. [12] conditioned GANs on discrete labels. They changed the binary probability in the
traditional GAN to conditional probability to generate conditional data. Mariani et al. [13] designed the
balancing GAN (BAGAN) to resolve unbalanced datasets by applying class conditions in the potential
space to push the generation process to the target class. Yu et al. [14] proposed the Multiple Granularities
GAN (MGGAN) by feeding the multigranularity feature learned with an auxiliary feature extractor into the
generator. Obviously, data augmentation has a signi�cant impact on the convergence and accuracy of
deep neural networks.

C. Wafer map defect classi�cation

Some researchers have applied deep learning methods to wafer map classi�cation. Wu et al. [10]
extracted Radon-Based Features and Geometry-Based Features from wafer maps and used support
vector machines (SVM) to classify wafer map defects. However, SVM is less effective on multiple
classi�cation tasks and di�cult to train on large-scale data. Ishida et al. [15] proposed a data
augmentation technique to reduce the noise of random defects by Hough transform so that the wafer
map can retain the original features. Batool et al. [16] pointed out the high imbalance in the existing
dataset, and the team proposed an undersampling approach. They selected 400 images from each
category to participate in classi�er training and validation and built a DCNN model for feature extraction.
The results show that the used undersampling can effectively improve accuracy and maintain good
results even with a small amount of data.

Alawieh et al. [17] used deep selective learning for wafer map defect pattern classi�cation. Their method
has an integrated rejection option where the model chooses to avoid predicting class labels when the risk
of misclassi�cation is high. To solve the class imbalance problem in wafer map classi�cation, the team
proposed a data enhancement framework around a convolutional autoencoder model. Han et al. [18]
proposed an autoencoder to augment the data of the wafer map and use MobileNetV1 for classi�cation.
Meanwhile, autoencoder has the shortcomings of being di�cult to train and generating images with poor
resolution. Yu et al. [19] proposed the conditional two-dimensional principal component analysis
algorithm to extract more effective features from the imbalanced wafer maps. It preserves more spatial
information in comparison to the conventional 1DPCA.

Iii. Proposed Approach
The main problems with wafer defect classi�cation are insu�cient data and data imbalance. In this
section, we introduce the current situation of wafer map datasets, the problems encountered, and the
corresponding solutions. We apply some preprocessing methods to datasets. Then we introduce the
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proposed GAN model. Finally, we use the classi�cation network which maintains high accuracy with a
low number of parameters and low computational effort.

A. Preprocessing on Datasets

In this paper, we use the WM-811K dataset to train our model. This dataset has 811457 wafer maps
divided into 9 classes. Among them, only 3.1% (25519 wafers) of the entire dataset have actual defect
patterns, 18.2% (147431 wafers) are marked as "None", and 78.7% (638570 wafers) are unmarked. It
shows that WM-811K has a serious data imbalance problem. The learning goal of a general classi�er is
to optimize the accuracy by minimizing the loss function to optimize the model. When the dataset is
unbalanced, the classi�er will tend to judge the output as majority classes. This reduces the in�uence of
a minority class and makes it di�cult for the classi�er to learn from the patterns of the minority class. 

We use different methods for different categories to balance the dataset. For the majority class, we
modify the traditional random undersampling. We adjust the number of all classes in each epoch instead
of deleting the data of the majority class randomly. The proposed random under-sampling details are
shown in Algorithm 1. We balance the number of each class in each iteration, where the number of
iterations is determined by the minority class. In this way, all the data in the minority class can be trained.
We shu�e the training data at the beginning of each epoch so that the remaining data in the majority
class can be trained in the subsequent epochs. For the minority class, we use GAN to augment the data.
Overall, we balance the dataset by suppressing the data of the majority class and generating new data of
the minority class to increase the classi�cation model accuracy.
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As shown in Fig. 2, each point in the original wafer map is composed of three states: 0, 1, and 2, where 0
means None, 1 means Pass, and 2 means Fail. These three states are independent of each other, but the
distance between them is not �xed. As a result, it causes uneven penalties when the neural network
propagates backward. We used a hot encoding to �x the distance between them to 1 to make the network
converge better. It maps one-dimensional data to three-dimensional orthogonal coordinates to increase
the dimensionality of the data and balances the penalty of the loss function between the three types.

B. Data Augmentation

The data augmentation network is to solve the problem of insu�cient training data and uneven
distribution among the dataset classes to improve the performance of the classi�cation task. Here we
present our modi�cations to the network architecture of the deep convolutional generative adversarial
network (DCGAN) [20] and the new training strategy proposed in this paper. DCGAN is an extension of the
original GAN. As shown in Fig. 3, it consists of two sub-models: the generator and the discriminator. The
purpose of the discriminator is to determine whether the input images are the real images from the
dataset or the fake images generated by the generator. Therefore, the generator needs to generate images
that be similar to the real image to confuse the discriminator and then train each other through a zero-
sum game. The generator of DCGAN has a major disadvantage. Since deconvolution with stride 2 2 is
used to do up-sampling, it results in checkerboard artifacts [21]. This occurs when the kernel size of the
deconvolution cannot be divided by stride.

We choose to resize the image to high resolution �rst and extract features by convolution to avoid the
checkerboard artifacts. The loss function of GAN is shown as follows:

Where  is a prior on input noise variables;  is the generator that maps a sample z drawn from
a distribution  to the data space;  is the real data distribution;  represents the
probability that x came from the data rather than the generator. According to [23], under the optimal
discriminator, minimizing the generator's loss is equivalent to minimizing the Jensen-Shannon (JS)
divergence between  and . Since  and  are almost impossible to have an overlap, the JS
divergence is always approached constantly . Finally, it leads to the disappearance of the generator
gradient. We replace the original loss function with Hinge Loss of (2).

Hinge Loss was widely used in SVM for binary classi�cation. The goal of the discriminator in GAN is also
to perform binary classi�cation of the real image and fake image so that it also has a good performance

×

pz (z) G (z)

pz (z) pdata (x) D (x)
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log2
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on GAN tasks.

In the strategy of training GAN, the traditional GAN uses a discriminator to classify whether the input
image is true or false. This makes the data generated by GAN without labeled data. In the past, there were
three main methods to obtain labeled data. The �rst is the additional manpower to classify the generated
data. The second is to train its generative model for each category. In the case of insu�cient data, the
model will not converge or the generated data lacks diversity. The third is to send category information
into the model for training through architectures like CGAN and ACGAN. However, it will make the minority
class less effective than in an unbalanced dataset.

Since different classes of data usually have certain correlations, we call them global features. The unique
features of individual classes are called local features. The way we generate conditional classes is to
train a GAN for each class. However, when the data is insu�cient, GAN will be more di�cult to converge.
Even if GAN successfully converges, it is easy to produce model collapse.

Due to the general lack of data and imbalance in the wafer map dataset, we propose a new training
strategy called G2LGAN, which can generate effective{ images even when the data is imbalanced.
G2LGAN divides the training of the GAN into two stages as shown in Fig. 4. The �rst stage uses the data
of each class as training data to train the generative model. We expect that the generative model can
learn the global features of the dataset in the �rst stage. For example, the global features of WM-811K are
the outline of the wafer map and some random defects on the wafer. The second stage is to �ne-tune the
model through various classes. In this stage, the model learns the local features of the class. G2LGAN
enables generative models for a minority class to be trained on a better basis rather than using initialized
models, and thus can effectively address the lack of generative diversity caused by minority classes in an
imbalanced dataset.

Assuming that the training time of the model is proportional to the training data. The number of the
training data is D, there are nine classes in D, the amount of data for each class is 1/9*D, the epoch is e,
and the other training parameters are the same. There are two ways to generate labeled data using GAN,
the �rst is to train a GAN model independently for each class. The time cost could be roughly estimated
as T=(1/9*D *e)*9 = D*e, and the second is a conditional GAN like BAGAN, ACGAN, CGAN. The estimated
time cost is T = D*e. Our proposed G2LGAN has a time cost T = D*e/3+(1/9*D*e*2/3)*9 = D*e. It shows
that the time cost of the proposed method is the same as that of the existing method.

Wafer Map Defect Classi�cation Network

More complex models will cause long computation time and low e�ciency. However, the simpler models
will result in low accuracy and failure to maintain product yield. To balance the computation and
accuracy, we use MobileNet V2 as the backbone network. MobileNet V2 has the advantage of a low
number of parameters and low computation, but still maintains high accuracy.
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The main concept of MobileNet V2 is the inverted residual block, which consists of 1 1 convolution, and
depthwise separable convolution. The purpose of the 1 1 convolution is to let the dimension of the
feature map raise so that it can reduce information loss caused by non-linear functions. The other is
depthwise separable convolution, which can be divided into depthwise convolution and pointwise
convolution.

According to [20], the shallow features can only capture local details and shapes, while the deep features
have a wider �eld of view and therefore can capture more global information. In the wafer map defect
classi�cation task, we believe that the shape of the defect is more important than the location of the
defect. So our architecture stacks the bottleneck layer when the feature map depth is 8 and 16 to extract
more shallow features. We take a 64 64 wafer map as input, eliminate the full convolution of the �rst
layer of MoiblenetV2 and directly use the inverted residual block for downsampling. We stack the layers
in the shallow network to obtain more information about the wafer defect shapes. The remaining
structure is shown in Table I. The loss functions of the network are as follow:

where c is the number of classes and n is the number of samples for a single iteration.  is the ground
truth of the i-th data.  is the probability that the i-th data predicted for class c.

Experimental Results
This section will explain the datasets and evaluation metrics. Based on it we can show the
implementation results and make some comparisons with other works. Quantitative assessment is also
evaluated in detail.

A. Datasets and Evaluation Metrics

This paper uses the WM-811K dataset and 21-Defect dataset to evaluate the effectiveness of the
proposed architecture. The 21-Defect dataset, as shown in Fig. 5, is extracted from real wafer maps in the
industry to provide more classes by [15]. It includes a total of 16388 wafer maps in 21 categories. Since
the number of categories is more than that of WM-811K, and the probability of occurrence of some
categories is low, the problem of data imbalance is more serious than that of WM-811K. We expect the
proposed method applies to more severe tasks as well. For both datasets, we �rst use 70% of the dataset
as a training set and 30% as a test set. We provide the data from the training set to the GAN for training
and merge the generated data with the training set, and then provide the merged data to the classi�cation
network for training. The test set is independent and not trained by the GAN or added to the data
generated by the GAN to ensure the fairness of the test results. Since WM-811K is collected from different
lots, the wafer map dimension will be different according to the different die sizes of different lots. So we
resize all data to 64 64 to preserve as much as possible the feature of each size.
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Most of the existing GAN methods use human evaluation. However, human evaluation is often biased
towards the quality of the generated samples and ignores the diversity of the samples. We use the
method proposed by [22] for G2LGAN evaluation. It includes Inception Score (IS), Mode score (MS),
Fréchet inception distance (FID), Kernel maximum mean discrepancy (Kernel MMD), Wasserstein
distance (WD), 1- nearest neighbors algorithm. If the model is good, the IS and MS should be as high as
possible and the FID, Kernel MMD, and WD should be as low as possible. And 1-nearest neighbor
accuracy is close to 0.5, and the better the result.

On the classi�cation network, most of the existing methods use accuracy to judge model performance.
When the data set is not balanced, the accuracy of the model is overestimated and fairness is lost.
Therefore, we use both precision, recall, and F1-score as the evaluation metrics of our model. Because we
consider each category of metrics to be equally important, we use Macro-average rather than Weighted-
average when balancing metrics multi-class.

Implementation Results

We evaluate the effectiveness of the data augmentation network and classi�cation network separately. In
the data augmentation network evaluation, the proposed method is compared with those of CGAN,
ACGAN, and BAGAN. Since the o�cial source code is not available, we replicated them and achieved
similar results. In the wafer classi�cation network evaluation, we train the model using augmented data
and compare the classi�cation network to state-of-the-art works.

In the training setup, our method is implemented in Tensor�ow. All the models are trained by adaptive
moment estimation (Adam). The optimizer of G2LGAN have β1 = 0 and β2 = 0.9. The learning rate for the
discriminator is 0.0004 and the learning rate for the generator is 0.0001. G2LGAN �rst trains 3 epochs
with all the data and then trains 10 epochs with each class of data. Each epoch contains 10000
iterations, and each batch size is set to 64. The optimizer of classi�cation network with β1 = 0.9, β2 =
0.999 and the initial learning rate is 0.1. We use WM-811K and virtual data generated by G2LGAN and run
for 1000 epochs using a step decay of learning rate at the factor of 10 at epochs 200, 500, and 800.

C. Quantitative Assessment of G2LGAN

We show the comparison with the conditional image GAN that is currently able to generate the speci�ed
classes, and the generated image results are shown in Fig. 4. Let's take Donut as an example. Donut only
accounts for 2.17% (555 images) of the classes with patterns, which is one of the minority classes. From
Fig. 6, we can see that G2LGAN generates better results than other methods. It not only preserves the
global features of the wafer map but also generates the class features of Donut.

However, evaluating the model only by generating images tends to focus on the generation effect and
ignore the importance of diversity. So we conduct a quantitative analysis of each method as the results
are shown in Table II. When trained on WM-811k at 64×64 resolution, G2LGAN achieves an IS of 8.763,
FID of 15.241, and 1-NN accuracy of 0.531. It shows that all the methods have low scores in the IS and
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MS projects. We classify the WM-811K dataset using InceptionNet pre-trained on ImageNet as shown in
Table III. More than half of the data in WM-811K were classi�ed into Petri dishes, and more than 90% of
the data were classi�ed into 4 of the 1000 classes in ImageNet. This is because IS and MS are calculated
using the Inception network pre-trained on ImageNet. Since the image of the wafer map is very different
from the spatial distribution of the ImageNet data, no matter how well it is generated, the WM-811K data
will not have enough diversity in ImageNet and thus the IS and MS scores are low.

The proposed method scores 15.241, 0.478, and 7.402 in the comparison of FID, MMD, and WD. These
three distance-related metrics are extracted by using InceptionNet pre-trained on ImageNet to extract
features and then compare the distance between real data and generated data by different methods.
Since the feature maps are compared directly instead of the classi�cation results, the impact of the
dataset on the metrics is smaller. The accuracy of G2LGAN in 1-NN is 0.531. The ideal value of GAN's 1-
NN accuracy is 0.5, which means that the G2LGAN generation results are very realistic so that the 1-NN
classi�er cannot classify between the real and the generated data. From the experimental results, the
proposed method is the best in all the metrics, especially in the 1-NN accuracy we are very close to the
ideal state. In the next subsection, we will combine the generated data with the training data to further
verify whether our G2LGAN can work well in real applications.

D. Quantitative Assessment of Wafer Map Classi�cation

We combine the images generated by G2LGAN with the training set and undersampling to balance the
dataset. Our undersampling is different from the traditional random undersampling, which randomly
deletes excess data. The advantage of this approach is that no valid data is deleted and most of the
untrained data may be trained in the next epoch. We generate the data to 5000 if the number of original
data is less than 5000. The balanced data distribution is shown in Table IV.

Table V shows the results of the classi�cation network by different works. In this table, the rank of
number one is marked in red color. In [10], VGG16 is used for the classi�cation network, and therefore the
maximum number of parameters is used. When the training data is insu�cient, using a large network
structure will lead to over�tting. [15] and [16] used the standard CNN component classi�cation networks.
The standard CNN uses a larger number of parameters compared to the depthwise separable
convolution. [17] only used three layers of convolutional layers and one layer of fully connected layers to
achieve low parameter values. However, too few parameters make the classi�cation model unable to
effectively infer the correct defect category. In [18], the depth-separable convolution is also used as the
backbone of the classi�cation network.

[14] and [19] are the newest works. In [14], a multigranularity GAN was used to generate synthetic wafer
maps for WMDR which is similar to our method. However, our G2LGAN achieves better classi�cation
accuracy since it extracts global features in the �rst stage, and then �ne-tunes the model by each class in
the second stage. In [19], an additional 2DPCA framework is used here to extract more features from
wafer maps. However, it also increases the overall complexity of the classi�cation model. In contrast, we
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focus more on extracting low-dimensional features and reducing the number of convolutions for high-
dimensional features to reduce the number of parameters and maintain high accuracy.

Our proposed method is the best in almost all the metrics compared with the current methods. Since
most of the methods do not use undersampling to suppress the amount of data for most classes, it
makes accuracy overestimated. Since our classi�cation network uses depthwise separable convolution
and focuses on low-dimensional features, we can maintain accuracy with a low number of parameters.

Commonly, a network architecture with a lower number of parameters often requires sacri�cing model
accuracy. Thus we emphasize the data augmentation to balance the data set and improve model
performance. In Table V, we also show our method without G2LGAN as a reference result. The results
show that the dataset enhanced with G2LGAN increases accuracy by 9.16%, F1-Score by 8.76%, precision
by 6.31%, and recall by 11.39%. This shows that the data generated by G2LGAN can be effectively
applied with obvious improvement.

Table VI shows the confusion matrix. It demonstrates the prediction accuracy of the proposed method for
each class on the dataset. The numbers in the matrix indicate the distribution of the predicted labels and
the actual labels and the subscripts of the diagonal data indicate the recall rate of that class. It can be
easily seen that None-class is more misclassi�ed than other classes. Since we want to keep the fairness
of the testing set, we do not balance the testing set, which further explains the reason that the proposed
method has only 90.9% precision. The performance of each class is shown in Table VII. Note that Donut
has the worst performance in the WM-811 category because it has fewer test data and it is easier to pull
down the score due to a small amount of misclassi�cation.

We also conducted experiments on 21-Defect. Since the data set is too small, and even some categories
have only single-digit samples, we �rst use rotation and �ipping for preliminary data enhancement, and
then use G2LGAN to generate data for each category. Since 21-Defect is a non-public dataset, hereby we
�rstly show the difference between the works with G2LGAN and without G2LGAN respectively. As shown
in Table VIII, the scores of the data after using G2LGAN can be improved by 15% in each indicator.
Compared to our previous work [18], although our F1-Score is only 0.1% higher, our model is 70% smaller
than [18].

Since WM-811K and 21-Defect have overlapping categories, including Center, Mount, Edge-Arc (Edge-Loc),
Edge-Ring, Random, Scratch-Acr&Scratch-Line, Near-full. We feed the data of overlapping categories in
21-Defect into the classi�cation model trained on WM-811K for classi�cation, to test whether the data in
the non-training data set can be correctly classi�ed by the classi�cation network. The confusion matrix of
the classi�cation results is shown in Table IX, the horizontal axis is the data label of 21-Defect, and the
vertical axis is the label predicted by the Our + model trained with WM-811K. The experimental results
show that most of the overlapping categories can be accurately classi�ed, representing no over-�tting
and good robustness of our model.
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V. Conclusions
In this paper, we propose G2LGAN to generate images where it extracts global features and local features
separately to generate effective data. Especially in the imbalanced dataset, we consider suppressing the
in�uence of the majority class on the model by undersampling and also increasing the data of the
minority class by data augmentation to balance the data set. Compared with the existing conditional
GANs, our G2LGAN can generate high-quality images even on data imbalanced datasets. In our G2LGAN,
it achieves 0.531% 1-NN accuracy on WM-811K. We further use G2LGAN to construct the wafer
classi�cation model. We use MobileNet V2 as the backbone network and use random undersampling and
G2LGAN to balance the WM-811K dataset. The proposed method maintains high accuracy and is
superior to the existing methods. In the number of parameters and computation, our proposed model has
signi�cant performance compared with other proposed approaches.It can effectively classify the defect
patterns on WM-811K and achieve an F1-Score of 93.01%.
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Figure 1

Data distribution of WM-811K. The dataset is composed of real-world wafer maps and labeled by experts
in IC industry.

Figure 2

Data pre-processing using one hot encoding.
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Figure 3

GAN architecture and training �ow. The generator maps the Gaussian noise to the real data space, and
the discriminator randomly selects input from real data and fake data and judges whether it is real data.

Figure 4

G2LGAN �owchart. G2LGAN is a two-step network. The �rst step allows the model to learn the global
features of the entire dataset. The second step trains by the pre-trained model on the entire dataset with
classes of conditions to learn the local features of the conditional classes.
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Figure 5

Visualization of 21-defect dataset defect pattern.

Figure 6

From left to right: (a). Real data of WM811K, (b). the proposed G2LGAN, (c). BAGAN optimized for data
imbalance, (d). ACGAN using auxiliary classi�er, and (e). CGAN to supply class labels for generator and
discriminator.
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