LRRK2-G2019S Synergizes With Ageing and Low-Grade Inflammation to Promote Gut and Peripheral Immune Cell Activation That Precede Nigrostriatal Degeneration

Bianca Marchetti (biancamarchetti@libero.it)
University of Catania; Oasi Research Institute-IRCCS

Carmela Giachino
Oasi Research Institute-IRCCS

Cataldo Tirolo
Oasi Research Institute-IRCCS

Salvatore Caniglia
Oasi Research Institute-IRCCS

Maria Francesca Serapide
University of Catania

L'Episcopo Francesca
Oasi Research Institute-IRCCS

Federico Bertoli
German Center for Neurodegenerative Diseases (DZNE)

Claudio Giuliano
Mitochondria and Inflammation in Neurodegenerative Diseases, DZNE

Marika Mearelli
Mitochondria and Inflammation in Neurodegenerative Diseases, DZNE

Meike Jakobi
University of Tübingen

Nicole Schneiderhan-Marra
NMI Natural and Medical Sciences Institute at the University of Tübingen https://orcid.org/0000-0001-6785-181X

Michela Deleidi
German Center for Neurodegenerative Diseases (DZNE)
LRRK2-G2019S SYNERGIZES WITH AGEING AND LOW-GRADE INFLAMMATION TO PROMOTE GUT AND PERIPHERAL IMMUNE CELL ACTIVATION THAT PRECEDE NIGROSTRIATAL DEGENERATION

Carmela Giachino¹, Cataldo Tirolo¹, Salvatore Caniglia¹, Maria F. Serapide², Francesca L’Episcopo¹, Federico Bertoli³, Claudio Giuliano³,4, Marika Mearelli³,4, Meike Jakobi⁵, Nicole Schneiderhan-Marra⁵, Michela Deleidi³,4# & Bianca Marchetti¹,2*,

¹Neuropharmacology Laboratory, Oasi Research Institute-IRCCS, Troina, Italy
²Biomedical and Biotechnological Sciences, Pharmacology Section, University of Catania-Italy
³Mitochondria and Inflammation in Neurodegenerative Diseases, DZNE, Tübingen-Germany
⁴Hertie Institute for Clinical Brain Research, University of Tübingen
⁵NMI Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany

#Co-last authors
*Corresponding authors: biancamarchetti@libero.it; michela.deleidi@dzne.de

Running title: G2019S, low-grade inflammation and ageing in PD

Acknowledgements

This project was supported by a grant for the “Network of Centres of Excellence in Neurodegeneration (CoEN) 2017, Pathfinder III project”, “Investigating the interaction between ageing and immune dysfunction in LRRK2 Parkinson's disease” to MD, (University of Tübingen-Germany), BM (OASI-IRCCS-Troina, Italy). CG had a Coen Grant fellowship (OASI-IRCCS-Troina). We are grateful to CAPiR (Center for Advanced Preclinical in vivo Research) Team, of the University of Catania, for maintenance and care of animals. The authors acknowledge the assistance of the laboratory of Neuropharmacology (BM, OASI-IRCCS-Troina), the Pharmacology Laboratory section (BM, BIOMETEC) and the technical assistance at Bio-nanotech Research and Innovation Tower (BRIT, BIOMETEC). The research program also received partial support from the Italian Ministry of Health (Ricerca Corrente 2018-2022, to B.M.), from the University of Catania (PIACERI and PhD program in Biotechnology, to CG and BM), the Helmholtz Association Young Investigator Award (VH-NG-1123, to MD).
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most frequent cause of familial Parkinson's disease (PD). The incomplete penetrance of LRRK2 mutations suggest that additional hits are required for disease onset. We hypothesized that chronic low-grade inflammation interacts with LRRK2 G2019S, the most frequent PD-associated mutation, to activate peripheral and central immune reactions and drive age-dependent neurodegeneration. We exposed wild-type and LRRK2 G2019S mice to a low chronic dose of lipopolysaccharide and performed a longitudinal analysis of central and peripheral immune reactions and neurodegeneration. Low-dose inflammation triggered nigrostriatal degeneration, peripheral monocyte infiltration, and astro-/microgliosis. LRRK2 G2019S mice showed an early dysregulation of peripheral cytokines as well as increased CD4+ T-cell infiltration and α-synuclein aggregation in the colon. Peripheral immune activation and colonic α-synuclein aggregation preceded brain inflammation and degeneration. Our study suggests an early role of the peripheral immune system and the gut in LRRK2 PD and provides a novel model to study early therapeutic immune targets and biomarkers.

Keywords: LRRK2, low-grade inflammation, ageing, Parkinson’s disease, nigrostriatal dopaminergic degeneration, colonic α-synuclein, central and peripheral inflammation, brain-gut-axis.
INTRODUCTION

Parkinson’s disease (PD) is the most prevalent neurodegenerative movement disorder, mostly occurring in a sporadic manner, through a complex interaction between genetic risk, ageing, and environmental exposure.\(^1,2\) Progressive loss of midbrain dopaminergic neurons (mDAns) in the substantia nigra pars compacta (SNpc) along with the presence of Lewy bodies and Lewy neurites composed of α-synuclein (α-syn) in the SNpc and other brain and peripheral tissues are the main neuropathological hallmarks of the disease.\(^3-8\) Degeneration of mDA terminals in the striatum (Str) is slow in most cases, but irreversible, with current therapies providing only symptomatic relief.\(^8\)

Among genetic risk factors, mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most prevalent cause of late-onset autosomal dominant PD.\(^9,10\) Both idiopathic and LRRK2 PD display a strong age-dependent development of motor and non-motor symptoms and are clinically indistinguishable.\(^11,12\) The incomplete penetrance of LRRK2 mutations is recognized in humans and LRRK2 murine models.\(^12-14\) Notably, transgenic mice overexpressing pathogenic LRRK2 mutations fail to develop an overt neurodegenerative phenotype—up to 2 years of age, which has hampered the identification of key mechanisms that drive neurodegeneration.\(^15-21\) These findings suggest that the disease may result from a complex interplay between genetic predisposition and exogenous insults, such as the ageing process, inflammation, and toxic exposure.\(^22-26\)

In fact, the degeneration of mDAns in the SNpc also occurs in healthy ageing,\(^23,27-30\) and LRRK2 penetrance progressively increases with age.\(^13,14,31\) Both ageing and inflammation are recognized as key factors contributing to both sporadic and familial PD.\(^26,32-38\) Furthermore, burgeoning evidence shows that PD involves the gut before affecting the brain, leading to the fascinating hypothesis that an age-dependent dysfunction of the gut-brain axis might be involved in disease initiation.\(^39-41\) Changes in the crosstalk between the central and the peripheral immune system\(^42,43\) may exacerbate glial reactions and promote nigrostriatal neuron vulnerability/death. In this regard, reactive astrocytes, microglia, and infiltrated peripheral immune cells play major roles in immune-related mDA degeneration.\(^32-38,42-49\) LRRK2 is highly expressed in both innate and adaptive immune cells, being tightly regulated by inflammatory triggers.\(^37,50-52\) Interestingly, LRRK2 is an IFN-γ target gene and it is involved in the host immune response to pathogens.\(^50,51,53-56\) Significantly, LRRK2 has also been linked to inflammatory bowel diseases and several bacterial infections, including enteric pathogens.\(^57-61\) Hence, LRRK2 may be involved in the regulation of the peripheral immune system, including intestinal immunity, and, potentially, colonic α-syn pathology. Whether LRRK2-related intestinal and peripheral immune processes precede neurodegeneration is still unknown.

We herein hypothesized that a chronic low-grade systemic inflammatory stimulus interacts with LRRK2 G2019S (the most frequent PD-associated LRRK2 mutation) as the mice age to alter the crosstalk between the peripheral and central immune system and to promote nigrostriatal degeneration. To address this hypothesis, we developed a mouse model integrating LRRK2 genetic vulnerability, low-grade inflammation, and ageing, the key risk factors for PD.\(^2,22,23,26-29,32-38,44-47,61-64\)

It is well known that aged animals show higher pro-inflammatory cytokines levels, both in the brain and in the periphery, in response to systemic acute immune activation, when compared to younger animals.\(^55-60\) As ageing is recognized as the primary risk factor influencing the clinical presentations and the progression of both sporadic and LRRK2 PD,\(^2,22,23,26\) we assessed whether LRRK2 G2019S mutation combined with chronic systemic moderate inflammation interacts with the ageing process to modulate systemic and central immune reactions as well as nigrostriatal neurodegeneration. The ageing process is relevant as a single acute injection of a high dose (5 mg kg\(^{-1}\)) of lipopolysaccharide (LPS), which is commonly used to study the effect of endotoxemia, results in a moderate (\(\pm\)25-30%) loss of mDAns between 7 days and 7 months.
(M) post-injection in transgenic \textit{LRRK2} R1441G mutant mice.70 Furthermore, in this experimental setup, neuroinflammatory processes observed in \textit{LRRK2} mutant mice are mostly mediated by circulating inflammatory molecules.70 Similarly, the study of Litteljohn and co. (2018)71 shows that acute systemic LPS injection is not sufficient to induce microgliosis in young \textit{LRRK2} G2019S mice, suggesting that other factors, such as ageing, may interact with the \textit{LRRK2} genotype in the regulation of the inflammatory processes.

To mimic a chronic, low-grade inflammation, we exposed both young and middle-aged WT and G2019S mice to a very low LPS dose (0.1 mg kg-1), administrated twice weekly for 12 weeks. We selected two previously well-characterized temporal windows- young-adult and middle-aged, 67-72,76 as during middle-age nigrostriatal DA neuron vulnerability progressively increases28-30,72-75, while dopaminergic adaptive/compensatory capacity diminishes76,77. To monitor the interaction between \textit{LRRK2} G2019S, low-grade inflammation and ageing, the mice were sacrificed at 6 M, 10 M, and 16 M.

We herein show that \textit{LRRK2} G2019S synergizes with ageing and low-grade inflammation to trigger nigrostriatal DA degeneration. Specifically, \textit{LRRK2} G2019S, low-grade inflammation, and ageing promote macrophage/monocyte infiltration in the CNS, CD4+ T-cell infiltration, and α-syn aggregation in the colon that precede mDAn degeneration. This new preclinical model will enable the identification of novel immune-related targets involved in mDAn degeneration, both at the central and peripheral level, and it will be useful to explore the early pathological events with clinical relevance and the development of disease-modifying therapies.

RESULTS

\textbf{\textit{LRRK2} G2019S interacts with ageing and chronic low-grade inflammation to impair nigrostriatal dopaminergic function}

To address the interaction between \textit{LRRK2} G2019S, low grade chronic inflammation, and ageing, wild type (WT) and hemizygous C57BL/6J-TG (\textit{LRRK2}+G2019S)2AMjff/J transgenic (G2019S) mice were exposed to intraperitoneal (ip) injection of a low dose (0.1 mg kg-1) of lipopolysaccharide (LPS, \textit{Escherichia coli} serotype O111:B4), administrated twice a week for 12 consecutive weeks. As ageing is recognized as the primary risk factor influencing the clinical presentations and the progression of both sporadic and \textit{LRRK2} PD 22,31 treatments were performed in two different age groups, 3M (young adult) and 7M (at the beginning of middle-age) (\textit{Supplementary Figure 1A-B}). We first monitored motor coordination with the accelerated Rotarod78,79. In NaCl-treated mice, a non-significant age-dependent motor deficit was observed in G2019S compared to WT mice (\textit{Supplemental Figure 1C}). Both WT and G2019S mice treated with LPS showed a significant decrease in the Rotarod starting at 11 M, when compared to their motor performance at 3 M (Basal, -LPS). With ageing, however, only G2019S mice showed a stable significant deficit (\textit{Supplemental Figure 1C}). These results suggest a synergistic effect between \textit{LRRK2} G2019S, ageing, and chronic low-grade systemic inflammation.

\textbf{\textit{LRRK2} G2019S interacts with ageing and chronic low-grade inflammation to promote nigrostriatal neurodegeneration}

Next, we performed a stereological quantification of DA neurons in the SNpc of NaCl- and LPS-treated mice of both genotypes at 3, 6, 10 and 16 M, in serial coronal sections, encompassing the striatum and the SNpc according to Franklin and Paxinos (1997)80 as previously described.73-75,81 Within the NaCl group, we did not find significant differences
between G2019S WT mice from 3 to 16 M; however, within genotypes, a significant decrease in the total number of TH+ neurons was observed by 16 M in both WT and G2019S NaCl-treated mice (Figure 1 A, C).

The chronic low-dose LPS regimen in 3 M old mice for 12 consecutive weeks did not affect the total number of TH+ neurons by 6 M of age in both genotypes (Figure 1 B, C), whereas starting LPS treatment at middle age (7 M) for 12 weeks until 10 M, significantly reduced TH+ neuron numbers in G2019S (+70% loss) compared to WT counterparts (+30% loss). After this time-point, TH+ neurons further declined until 16 M in TG and WT mice, with TH+ neuron loss being significantly greater in G2019S (+80%) compared to WT (+40%) (Figure 1 A, B, C). Quantitative confocal laser microscopy on striatal sections revealed an age-dependant reduction of striatal TH-immunofluorescent (IF) reaction in both genotypes, without significant differences between WT and G2019S genotypes (Figure 1 A, C). Starting the LPS regimen at 3 M did not affect TH-IF at 6 M, in both genotypes, whereas starting the LPS chronic regimen at middle-age significantly reduced striatal TH-IF reaction (Figure 1 B, C). Within the LPS-treated group, striatal TH immunoreactivity was significantly reduced in G2019S compared to WT mice. (Figure 1 B, C).

LRRK2 G2019S mice display downregulation of dopaminergic neuron transcripts, increased phosphorylated α-Syn, GSK-3β and TAU

Next, we focused on the 10 M group to assess gene and protein levels in the ventral midbrain (VM) of WT and G2019S mice (Figures 1D and Figure 2 A-C). Within the NaCl-treated group, LRRK2 gene expression was significantly up-regulated in G2019S compared to WT mice (Figure 1 D). LPS exposure increased LRRK2 expression in both genotypes, with a more significant impact in G2019S mice (Figure 1 D). DA neuron mRNA species (Th, Slc6a3 (DAT), Drd2, Nr4a2 (NURR1), Foxa2) were significantly down-regulated upon LPS exposure in G2019S compared to LPS-treated WT mice (Figure 1 D). LRRK2 regulates tau phosphorylation through activation of glycogen synthase kinase-3β (GSK-3β), which, in turn, is involved in mDA neuron death. LPS treatment significantly increased GSK-3β transcript levels both in WT and G2019S mice, with a significant higher impact in G2019S mice (Figure 1 D). Furthermore, LPS induced a significant increase in SNCA (α-syn) and MAPT (microtuble associated protein tau) gene expression levels in both WT and G2019S mice, with significant higher levels detected in G2019S compared to WT mice (Figure 1 D). Finally, the cell death marker Caspase 6 was up-regulated in G2019S compared to WT mice in both NaCl and LPS groups (Figure 1 D). Immunofluorescent staining and Western blot analyses confirmed these data (Figure 2 A-C). We found increased LRRK2 levels in SNpc DAT+ neurons of NaCl-treated G2019S mice compared to WT counterparts (Figure 2 A). Additionally, low-grade inflammation increased LRRK2 levels in both WT and G2019S mice, with a more significant effect in G2019S mice (Figure 2 A). Upon LPS treatment, both α-syn and α-syn phosphorylated at Ser-129, which is the dominant pathological modification of α-syn in both familial and sporadic PD, were increased in SNpc DAT+ neurons of G2019S mice compared to WT mice of the same age and treatment group (Figure 2 B). Likewise, both proteins were up-regulated in G2019S compared to WT counterparts, as determined by WB (Figure 2 C). Importantly, TH and Nurr1 protein levels were significantly reduced in G2019S compared to WT SNpc, whereas active pTyr216-GSK-3β protein levels determined by WB analysis were significantly increased in NaCl- and LPS-treated G2019S compared to WT mice (Figure 2 C). LPS treatment increased tau phosphorylation at Ser396, when compared to WT counterparts (Figure 2 C). These data suggest that LRRK2 G2019S synergizes with ageing and low-grade chronic inflammation to promote the up-regulation of several key factors involved in mDA neuron dysfunction/death.

LRRK2 G2019S synergizes with ageing and systemic low-grade inflammation to exacerbate astro- and microgliosis
Next, we examined inflammatory reactions in the SNpc of WT and G2019S mice. Coronal SNpc and Str sections were immunostained for the astrocytic cell marker, GFAP, the macrophage/microglial cell marker, IBA1, the chemokine receptor, CCR2, which is known to be expressed on peripheral monocytes and macrophages but not in brain microglia,92-94 and the T-cell marker CD3. We found that G2019S mice displayed an age-dependent increase of GFAP$^+$ astrocytes starting at 10 M, whereas in WT mice GFAP$^+$ astrocytes significantly increased by 16 M compared to WT mice at 3M (Figure 3 A). Furthermore, at 10 and 16 M, LPS further enhanced astrocyte cell numbers in G2019S mice (Figure 3A). The middle-age group was the most vulnerable group in both genotypes; here, LPS-treated G2019S mice show the most significant increase in GFAP$^+$ astrocytes (Figure 3 B-C). At 10 M, LPS-treated G2019S mice showed a significant astrocytic hypertrophy compared to WT counterparts (Figure 3 C, D). In line with these data, GFAP was up-regulated at the mRNA and protein levels in the VM of NaCl and LPS-treated G2019S mice (Figure 3 E, F). Furthermore, we observed neurite loss and TH$^+$ neuron atrophy associated to poor contact with GFAP$^+$ astrocytes in the SNpc of 10 M-old LPS-treated G2019S mice (Figure 3 D). On the contrary, WT mice under LPS displayed longer TH$^+$ neurites, and TH neuronal cell showed closed interactions with GFAP$^+$ astrocytic processes, similar to what observed in NaCl-treated WT mice (Figure 3 C). In the striatum, we detected a significant increase of GFAP+/DAPI$^+$ astrocytes both at 10 and 16 M in G2019S mice compared to WT mice, which was enhanced by LPS chronic exposure (Supplementary Figure 2 A-B). Similarly, the number of IBA1$^+$ microglial cells increased as a function of age and LPS exposure, with significant higher numbers in G2019S mice compared to WT mice both in the SNpc and Str (Figure 4 A, B, C and Supplementary Figure 2 C-D). Microglial cells shifted to a reactive phenotype with age and LPS treatment in both genotypes, characterized by increased cell body area with less ramified processes (Figure 4 B-C). G2019S mice under LPS exposure showed significantly higher levels of major inflammatory transcripts including Macrophage antigen complex-1 (Mac1), nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB), inducible nitric oxide synthase (NOS2), phagocyte oxidase (gp91PHOX), a major NADPH oxidative stress transcript member,95 cyclooxygenase 2 (COX2, Supplementary Figure 3), the cytokines TNF-α, TNF-R, IL-18, which are inflammatory cytokines induced by NF-κB activation,96 (Figure 4 D and Supplementary Figure 3), and the C-X-C motif chemokine 10, CXCL10 (Figure 4 D) promoting leukocyte recruitment and neuronal injury.97 On the contrary, the C-C chemokine, CCL3 significantly decreased under LPS treatment in G2019S VM (Supplementary Figure 3). Similarly, in WT mice of the same age- and treatment-group, such inflammatory markers increased under low-grade inflammation, albeit levels were lower compared to G2019S mice (Figure 4 D, and Supplementary Figure 3). While we did not find differences in IL-1β mRNA levels, at the protein level, pro-caspase-1 promoting caspase-1 activation,98 was significantly elevated in G2019S VM. These data were supported by higher levels of mature IL-1β protein in G2019S VM (Figure 4 E). The cytokines IL 4 and IL 10 were undetectable in both WT and G2019S mice under LPS regimen in the same age group. In line with an exacerbated pro-inflammatory status of G2019S VM, we found increased IBA-1, NF-κB-65, iNOS and gp91Phox protein levels by Wb analysis, as compared to WT LPS-treated counterparts (Figure 4 E).

LRRK2 G2019S promotes the recruitment of peripheral monocytes and T-cells

Next, we examined whether LRRK2 G2019S alters peripheral immune cell infiltration. One of the key mechanisms involved in monocyte recruitment is the CCL2/CCR2 signaling, which plays a key role in the recruitment of peripheral monocytes into the SN in a PD model of α-syn-induced inflammation and neurodegeneration.99 Using triple immunofluorescent staining, we monitored macrophage/monocyte trafficking from 3 M to 16 M. Undetectable or low CCR2-IF signal was found in 3 to 6 M old mice in both NaCl- or LPS- treated mice, irrespective of the mouse genotype (Figure 5A, B). Starting at 10 M, we found significant higher numbers of CCR2$^+$/IBA1$^+$ cells in the midbrain of LPS-
treated G2019S mice compared to WT mice (Figure 5 A, C). Remarkably, reactive GFAP+ astrocytes (Supplementary Figure 4) and IBA1+ microglia (Figure 5 C) were observed close to infiltrating CCR2+ macrophages/monocytes. These results were confirmed by WB analysis that showed a significant increase of CCR2 protein levels in the VM of 10 M-old G2019S mice, in both NaCl and LPS experimental groups (Supplementary Figure 4). Furthermore, immunofluorescent staining revealed CD3+ T cell brain infiltration in the SNpc of 10 M-old LPS-treated G2019S mice compared to WT mice (Figure 5 E). At the peripheral level, we found a greater spleen infiltration of CD3+/LRRK2+ cells starting at 6 M in LPS-treated G2019S mice compared to WT spleens of the same age and treatment (Figure 5 F-G). Increased LRRK2 protein was found in the spleen of G2019S mice, both under NaCl and LPS treatment by 6 M (Figure 5 F-G). To examine the response of spleen macrophages (SPMs) as a function of age x genotype x LPS regimen, ex vivo individual cultures of SPMs established from WT and G2019S mice of different age-groups were differentiated into the M1 phenotype after stimulation with LPS (100 ng/ml) ± IFN-γ (10 ng/ml) (Figure 6A). To monitor M1 status, we evaluated TNF-α and IL-6 release in the conditioned medium (CM). First, we assessed the response at basal conditions, in untreated individual mice of different ages and found no difference between G2019S and WT SPMs in the release of TNF-α and IL-6 from 6 to 16 M of age. LPS treatment promoted a significant TNF-α and IL-6 release in both primary splenocytes and BV2 cells, used as control (Figure 6 B-C). M1-polarized SPMs from LPS-treated G2019S mice expressed higher amounts of both cytokines starting at 6 M (Figure 6 D). Moreover, LRRK2-2G019S synergized with LPS and IFN-γ to promote TNF-α and IL-6 release in G2019S mice compared to WT SPMs derived from WT counterparts of the same age and treatment (Figure 6 D). These data indicate that in the spleen, G2019S and low-grade inflammation shift SPMs towards a proinflammatory phenotype starting at 6 M. Next, we measured the protein level of cytokines in the serum of WT and G2019S mice in response to LPS at different time points. At the baseline (3 M), LRRK2 G2019S mice showed increased levels of IL-6, IFN-γ, TNF-α, IL-17A, and IL-4 in 6 M old G2019S LPS-treated mice compared to WT mice. At 16 M, G2019S LPS-treated mice showed increased levels of IL-6, IFN-γ, TNF-α compared to WT mice (Figure 7A).

Gut inflammation and α-syn aggregation precede neurodegeneration

Multiple lines of evidence support a role for gastrointestinal (GI) dysfunction and intestinal α-syn pathological accumulation in PD pathogenesis. A link between GI inflammation and neurodegeneration has also been proposed. However, whether intestinal immune cell activation precede neurodegenerative processes has not been investigated. To address this question and examine whether LRRK2 G2019S modulates intestinal immune cell infiltration, we assessed CD4+ T-cell and macrophage numbers in colonic tissues of WT and G2019S mice at different timepoints (3 M, 6M, and 16M). We observed a significant increase of CD4+ T-cells in the colon of untreated LRRK2 G2019S mice, compared to WT mice starting at 6 months of age (Figure 7B, C). LPS treatment significantly increased CD4+ T-cell infiltration in the colon of LRRK2 G2019S mice at 6 M, whereas no significant effect was observed in LRRK2 WT mice (Figure 7B, C). Furthermore, a significant increase of CD68+ macrophages was observed in 16 M-old LRRK2 G2019S compared to LRRK2 WT mice (Figure 7B, C). At 16 M, treated LRRK2 G2019S mice showed a significant increase in colonic CD68+ cells compared to LRRK2 WT mice (Figure 7B, C). Immunohistochemical analysis of colonic tissues with the aggregate specific α-syn antibody, MJF-14, showed the induction of aggregation of α-syn by LPS treatment in both 6 and 16 M-old LRRK2 G2019S and LRRK2 WT mice, with a significant stronger effect in LRRK2 G2019 mice (Figure 8A, B). However, neither the LRRK2 genotype nor the treatment affected the number of HuC/HuD positive neurons at the different timepoints of analysis (Figure 9A, B). These results suggest that the LRRK2 genotype is associated with age-
dependent gut immune cell infiltration, which, combined with a low dose chronic inflammatory stimulus, may promote α-syn aggregation.

DISCUSSION

Here, we examined the role of the PD-associated *LRRK2* G2019S mutation in modulating central and peripheral immune responses as well as nigrostriatal DA vulnerability with ageing. We show that low-dose inflammation triggers mDAα degeneration in *LRRK2* G2019S mice, macrophage/monocyte CNS infiltration as well as astro- and microgliosis. Interestingly, neurodegeneration is preceded by peripheral immune activation as well as increased CD4+ T-cell infiltration and α-syn aggregation in the colon. Furthermore, we show a synergistic effect between *LRRK2* G2019S and ageing-dependent glial activation under a chronic subthreshold dose of LPS. The interaction between *LRRK2* G2019S, ageing, and low-grade systemic inflammation promoted PD-like features: (i) TH+ neuron loss in the SNpc and a marked reduction in DA striatal innervation; ii) motor deficits, and (iii) the up-regulation of several key proteins involved in mDAα dysfunction/death.

PD is a complex disorder that affects the central as well as the peripheral nervous system leading to a variety of motor and non-motor clinical symptoms. While the underlying causes remain unknown, converging evidence suggests a key role for gene/environment interactions in the initiation of the neurodegenerative events. Ageing and inflammation are among the key factors that may promote neuronal dysfunction and degeneration. Notably, ageing, as a multistep chronic physiological process affecting central and peripheral organ and tissue homeostasis relies on highly integrated interactions, especially neuroendocrine-immune crosstalks, both at central and peripheral levels, that may turn into a pathological setting, as a result of dysfunctional genetic/epigenetic regulatory networks, as observed in PD.

Significantly, *LRRK2*, the most frequent genetic cause of familial PD, intersects the pivotal environmental hallmarks for PD, being involved in the regulation of several ageing-related pathways including α-syn pathology, mitochondrial dysfunction as well as immune pathways and glia physiopathology. Importantly, *LRRK2* kinase activity is significantly increased in SN DA neuron and microglia in postmortem brain tissue from patients with idiopathic PD, indicating that *LRRK2* can play a role in sporadic age-dependent PD. Several rodent models have been used to study *LRRK2* biology and *LRRK2* PD. *LRRK2* transgenic mice generally exhibit mild phenotypes without a significant nigrostriatal degeneration nor motor deficits. Overexpression (OE) of pathogenic *LRRK2* mutants, such as G2019S, R1441C, or R1441G, induces PD-like phenotypes, including age-dependent DA neuronal loss, disruption of dopamine homeostasis, L-DOPA responsive locomotor defects, and pathological accumulations of tau and α-syn. While OE models enable the investigation of PD neurodegenerative features, they are limited by potential overexpression-related artifacts. Previous studies have also examined the combined effect of ageing, environmental toxicity, and *LRRK2*-related genetic vulnerability. Chronic treatment of *LRRK2* R1441G knockin mice with the DA-specific environmental toxin rotenone causes increased locomotor deficits in mutant mice in the absence of significant nigrostriatal degeneration. These findings suggest that additional factors may interact with ageing and genetic vulnerability to trigger PD. One such factor could be inflammation.

To study the interaction between *LRRK2* genetic vulnerability, ageing, and low-grade inflammation, we treated hemizygous *LRRK2* G2019S mice with low-dose systemic LPS. We selected two previously well-characterized temporal windows- young-adult and middle-aged. Middle age is recognized as a critical temporal window, whereby mDAαs
progressively become more vulnerable, and the microenvironmental SNpc milieu slowly shifts towards an “harmful” phenotype characterized by increased glial reactivity, oxidative stress, and the gradual loss of dopamine-mediated mitigation of inflammation. Based on our previously published findings and literature reports, coupled with pilot studies, we herein selected a very low, sub-threshold dose of 0.1 mg Kg⁻¹, which induces a mild inflammatory response in young adult (3 M-old) as opposed to the exaggerated inflammatory response of aged (≥ 20 M-old) mice. This dose did not induce sickness behavior (assessed by changes in body weight, food and fluid intake, and locomotor activity) when compared to NaCl injected mice. Such an LPS chronic regimen did not alter general health parameters studied nor life span.

Here, we show that chronic treatment of middle age LRRK2 G2019S mice with low-dose LPS results in a significant recruitment of peripheral monocytes to the SNpc as well as CD4⁺ cells to the colon crypts. Interestingly, both age and chronic low-dose LPS synergistically induced LRRK2 expression in the SNpc and the spleen, a main reservoir of T lymphocytes, with a more significant effect in G2019S mice. These data would be in line with a role of LRRK2 in sporadic PD. G2019S mice showed a significant infiltration of CD3⁺ cells within the SNpc as well as exacerbated astrocytosis and microgliosis both in the SNpc and the Str. Interestingly, key pro-oxidant and pro-inflammatory markers involved in SNpc DA degeneration were upregulated within the VM of G2019S mice, both at the mRNA and protein levels. This was accompanied by increased accumulation of α-syn, pS129α-syn, and pTau, which, in turn, could enhance immune responses and mDAn degeneration. Importantly, we show that peripheral immune activation precedes brain inflammation, macrophage/monocyte infiltration, and mDAn degeneration. Specifically, LPS treatment induced a proinflammatory phenotype in spleen macrophages and a significant dysregulation of peripheral cytokines, which was more prominent in G2019S mice. Furthermore, we show an enhanced CD4⁺ T-cell infiltration and α-syn aggregation in the colon of LPS-treated G2019S mice from 6 M on. These data suggest that the LRRK2 genotype is associated with an age dependent gut immune cell infiltration and α-syn aggregation.

The present study does not establish a direct link between gut inflammation and proteinopathy with central inflammation and nigrostriatal degeneration. However, one hypothesis could be that LRRK2 G2019S combined with a moderate chronic systemic inflammation triggers an age-dependent dysfunctional crosstalk of the gut-brain-axis, favoring the infiltration of pro-inflammatory CCR2⁺ peripheral monocytes overexpressing LRRK2 into the SNpc. Infiltrating cells and the peripheral immune cascade would interact and activate resident astrocytes and microglia. Studies are in progress to unveil whether and how gut α-syn pathology contributes to the progression of mDAn degeneration observed in this model.

The current findings suggest that genetic susceptibility promotes gut inflammation and α-syn aggregation that act as a driver of PD pathology. Several lines of evidence point to the impairment of the intestinal barrier function and colonic α-syn as a prodromal event in PD. i) the majority of patients experience non-motor symptoms involving the GI tract, such as chronic constipation and impairment of GI transit, several years before the onset of motor symptoms; ii) a-syn pathology is observed in the enteric nervous system of patients up to 20 years prior to diagnosis; and iii) increased intestinal permeability has been described in patients. Furthermore, changes in GI permeability and dysbiosis associated to a lowered serum LPS-binding protein in PD. Interestingly, in the study of Kelly and coll. 2014, a single, systemic high dose of 2.5 mg Kg⁻¹ of LPS in young adult mice caused sequential increases in phosphorylated serine 129-α-syn and increased intestinal permeability in the colon starting 4 M after the acute LPS challenge, returning to baseline levels at 5 M. However, no nigrostriatal degeneration was observed.
Interestingly, we found a significant downregulation of the DA transcription factors Nurr1 and FOXA2 as well as a decrease of TH and DAT in G2019S VM under NaCl and/or LPS regimen, compared to their WT counterparts, suggesting increased vulnerability of G2019S mDAbs. Nurr1 and FOXA2 are necessary for acquiring the mature DA phenotype and also contribute to mDA maintenance, protection, α-syn expression, and immunomodulation. The significant reduction of Drd2 levels in the VM of ageing G2019S mice under LPS, as compared to their WT counterparts, suggests increased vulnerability of G2019S mDAbs. Nurr1 and FOXA2 are necessary for acquiring the mature DA phenotype and they also contribute to mDA maintenance, protection, α-syn expression, and immunomodulation. The selective ablation of Drd2, but not Drd4, in the intestinal epithelium causes a more severe loss of mDAbs following MPTP challenge that is associated with a dysfunction of the gut microbiota. Future studies will address whether intestinal Drd2 contribute to the inflammatory intestinal milieu in the G2019S-ageing-inflammatory model.

With regards to the astrocytic response, middle-age was confirmed as the most vulnerable age-group in both genotypes, with LRRK2 G2019S mice showing an enhanced astrocytic response. While astrocytes play key neuroprotective roles, with age, they become dysfunctional and can contribute to the increased mDA vulnerability. Hence, hyper-active astrocytes and increased expression of inflammatory cytokines and other toxic mediators are prominent features of PD. Several abnormalities of astrocyte function were recently reported in G2019S astrocytes, including defects in the clearance of α-syn. However, the contribution of astrocytes to LRRK2 PD pathophysiology in vivo is still unknown. In our study, LPS-treated WT mice displayed healthier TH neuronal cell bodies and longer TH+ neurites with close interactions with GFAP+ astrocytic processes. On the contrary, G2019S mice showed TH+ neuron atrophy associated to poor contact with GFAP+ astrocytes. These data would suggest that WT astrocytes might contribute to support the vulnerable mDA upon a subthreshold inflammatory trigger, while G2019S astrocytes likely shift towards a reactive harmful phenotype. In experimental models of multiple sclerosis, inflammatory cytokines mediate local astrocyte-dependent mechanisms of immune cell trafficking within the CNS. Recent work shows that the degree of inflammatory activity in MS patients at disease onset induces a reactive state in astrocytes that triggers neuronal damage. Our data suggest that local astrocyte-macrophage/monocyte interactions in LRRK2 G2019S mice promote astrocyte-dependent mechanisms of immune cell trafficking within the CNS during ageing and low-grade inflammation. However, further studies carried out in PD-specific brain regions, peripheral tissues and blood are clearly needed to explore in this LRRK2-inflammatory model, “in situ” cell-cell interactions and novel signaling mechanisms that might be useful to develop ageing-specific therapeutic targets.
With regard to microglia, both in vitro and in vivo studies show that LRRK2 modulate microglia inflammatory responses. Recent studies suggest that LRRK2 levels in microglia may not have a direct effect on neuroinflammation in PD, as in vivo injection of a high acute dose of LPS failed to increase microglia LRRK2 protein levels in R1441C and G2019S young adult mice. Similar results have been observed ex vivo, with neither LPS or priming with a-syn pre-formed fibrils increasing LRRK2 protein expression in cultured murine microglia. Recent findings from Langston and co, implicated a genetically-mediated cell-type and region-specific effect of LRRK2 in microglia. Our results strongly indicate that both ageing and a sub-threshold chronic inflammation in conjunction with LRRK2 genetic vulnerability promote peripheral and central immune dysregulation.

In rodent models of PD, peripheral immune cells interact with resident immune cells in diseased brain to promote TH neuron loss. For example, peripheral monocyte entry is required for α-syn induced inflammation and neurodegeneration, and reciprocally, pathological α-syn was shown to recruit LRRK2 expressing pro-inflammatory monocytes to the brain. LRRK2 is highly expressed in circulating and tissue immune cells and it is upregulated following recognition of microbial structures. However, it has been reported that acute endotoxemia in 3 M-old LRRK2 mutant and WT mice does not trigger T-cell infiltration in the brain. In contrast, we show that a low-dose chronic inflammation in ageing LRRK2 mice triggers a massive monocyte/macrophage infiltration associated to a robust microglia activation. Both gene expression and protein analyses revealed the up-regulation levels of inflammatory and oxidative stress markers within the VM of LRRK2 G2019S mice. This was paralleled by an increase of α-syn phosphorylated at Ser-129, which is the dominant pathological modification of α-syn both in familial and sporadic PD, then supporting exacerbated expression of harmful molecules in this aged inflammatory-LRRK2 mouse model.

Brain-engrafting pro-inflammatory monocytes have been implicated in DA neurodegeneration in PD models. Remarkably, in 6M-old mice, we did not find CD3+ T cell brain infiltration in none of the genotypes under low-grade inflammation, whereas CD3+ cells were clearly stained in spleen sections of the same age and treatment group. Starting at 10 M on, we observed a significant increase in CD3+/LRRK2+ cells in G2019S SNpc compared to WT counterparts. Moreover, LRRK2 G2019S synergized with LPS and IFN-γ in SPMs to promote greater levels of TNF-α and IL-6 release starting at 6 M. Given the recently recognized role of the brain-spleen axis, these data would suggest a potential early role of the peripheral immune system in LRRK2-related neurodegeneration. In line with these data, we found a significant increase in the serum levels of IL-6, IFN-γ, IL1-beta, IL-2, IL-4 and IL-17 in G2019S LPS-treated mice at 6 M. These results indicate an overactivation of the peripheral immune system in G2019S mice subjected to low-grade inflammation during ageing. Peripheral cytokines could activate brain endothelial cells and increase the blood-brain barrier permeability, which in turn facilitates immune cell infiltration into the brain parenchyma. Furthermore, given that TLR4 is present in the circumventricular organs that lack the blood brain barrier, in perivascular macrophages, microglia, astrocytes, and in trigeminal and nodose ganglia, these processes could amplify peripheral LPS effects in the brain.

CONCLUSION

We established a novel translational model of LRRK2 PD, showing an interaction between the most crucial risk factors involved in both idiopathic and familial PD. We show that low-dose inflammation during middle-age triggers mDA neuron degeneration in LRRK2 G2019S mice, accompanied by astro- and microgliosis as well as macrophage/monocyte CNS infiltration. Brain inflammation and degeneration are preceded by the dysregulation of peripheral cytokines as well as
increased CD4+ T-cell infiltration and α-syn aggregation in the colon. LRRK2 G2019S exacerbates the recruitment of peripheral monocytes and CD3+ T cells to the brain in response to low-grade inflammation and ageing, likely driving astrocyte and microglial activation and accumulation of pathological forms of α-syn (Figure 10). Importantly, these results suggest an early role of the peripheral immune system, including the gut, in PD pathogenesis. This novel preclinical model of LRRK2 PD will enable the identification of key players involved in mDA loss degeneration, both at the central and peripheral level, and it will be useful to explore age- and immune-related biomarkers and targets with therapeutical relevance for both sporadic and LRRK2 PD.

METHODS
The detailed methods for cell culture conditions, Western blot analysis, enzyme-linked immunosorbent assay (ELISA), quantitative-polymerase chain reaction (q-PCR), list of probes, and primary antibodies are available in the Supplemental Materials.

Animals
Males C57BL/6J wild type (WT) and C57BL/6J LRRK2*G2019S 2AMjjf/J transgenic (TG-G2019S) (stock 018785) mice purchased from Jackson Laboratory (Bar Harbor, ME, USA) at 8-12 weeks of age were housed at the animal facilities unit (C.A.Pi.R. Via Santa Sofia 97, Catania 13/2017-UT) and maintained on a 12:12-h light/dark cycle with ad libitum food and water. The animals were given 3 weeks to acclimate to the housing conditions prior to study commencement. The research project (authorization n. 345/2019-PR released by the Italian Ministry of Health 06-05-2019) and all experimental procedures were approved by the University Institutional Animal Experimentation and Ethical Committee (OPBA, University of Catania) and performed in accordance with NIH Guide for the Care and Use of Laboratory Animals. Experiments were carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki) for animal experiments.

Experimental Design
WT and TG-G2019S mice were exposed to intraperitoneal (ip) injections of a low dose of lipopolysaccharide LPS (0,1 mg kg\(^{-1}\) Escherichia coli serotype O111:B4) (Sigma-Aldrich), administrated twice a week for 12 weeks (Supplementary Figure 1). Treatments were performed in two different age groups, 3M (young adult) and 7M (at the start of middle-age). The dose of LPS was selected based upon previous research, including our own, demonstrating only a transient, mild inflammatory response in young adult (3M-old) as opposed to the exaggerated inflammatory response observed in aged (≥ 20 M-old) mice.\(^{65-68,75}\) WT and TG mice exposed to ip injections of 0.9% sterile NaCl were used as controls. Mice (n = 20/experimental group) were randomly assigned to one of seven experimental conditions for each genotype: 1. 3 M Basal (no injections, T=0); 2. 6 M NaCl (NaCl injections started at 3 M); 3. 6 M-LPS (LPS injections started at 3 M); 4.10 M-NaCl (NaCl injections started at 7 M); 5.10 M-LPS (injections started at 7M); 6. 16 M NaCl (injections started at 7 M); 7. 16 M LPS (injections started at 7 M). Clinical evaluation (body weight, mantel status, lethargy, reluctance to move, grooming behavior) was carried out weekly until sacrifice.
Motor behaviour Analysis with the Rotarod

To test motor performance, we used the accelerated Rotarod (five-lane accelerating rotarod; Ugo Basile, Comerio, Italy), a motor behavioral test widely used to assess motor deficit in neurodegenerative disease models in rodents. Mice have to keep their balance on a horizontal rotating rod (diameter, 3 cm) and rotation speed is progressively increased every 30 sec by 4 rpm. To start the trials, the mice (five mice are tested at the same time) are placed on a rotating rod; when the mice fall down or when 5 min are completed, a switch is activated that automatically stops a timer. On the day of testing, the mice perform 5 trials, separated by an interval of 30 min between each trial. Before the test, WT and G2019S within the different treatment groups were housed five per cage and acclimated to a 12h shift in light/dark cycle so that the exercise occurred during the animal normal wake period. The Rotarod performance was assessed at day -7, 0 days, and during NaCl/LPS injection paradigm, at monthly intervals, for the determination of motor deficit (Supplementary Figure 1).

Tissue Handling

For immunohistochemistry, mice (5-6 mice/genotype/age-group/treatment) were anesthetized and transcardially perfused with 0.9% NaCl, followed by 4 % paraformaldehyde in phosphate buffer (pH 7.2 at 4°C), the brains and peripheral tissues carefully removed and processed for immunofluorescent staining as described. Blood was collected into EDTA-treated tubes and serum was separated by centrifugation and stored at -20C. For gene expression and protein analysis, animals were sacrificed by cervical dislocation, the brains and peripheral tissues were quickly isolated and then stored at -80°C until assayed.

Immunohistochemistry and Image Analysis

For brain tissue analysis, serial coronal sections (14 µm-thick), encompassing the striatum (Bregma 1.54 to bregma -0.46) and the SNpc (Bregma -2.92 to bregma -3.8 mm) according to Franklin and Paxinos (1997) were collected, mounted on poly-L-lysine-coated slides, and processed as previously described. TH immunoreactivity was also detected using biotinylated secondary antibodies (Vector Laboratories) and diaminobenzidine (DAB, Vector Laboratories) as the developing agent. Cresyl violet was used to visualize Nissl substance. DA neuronal counts were performed by serial section analysis of the total number of TH+ neurons in the right and left SNpc through the entire extent of the SNpc using DAPI or PI as nuclear markers, as previously described. TH+ cells were counted through the entire rostro-caudal axis of the murine SNpc (bregma coordinates: 2.92, 3.08, 3.16, 3.20, 3.40, and 3.52) according to Franklin and Paxinos (1997) as described. Striatal TH- and dopamine transporter (DAT)-immunofluorescent (IF) fiber staining was assessed in n = 3 coronal sections at three levels (bregma coordinates: + 0.5, + 0.86, and 1.1 mm, respectively) of caudate-putamen (CPu), in n 5-6 mice/group/time. Cell counts were obtained for IBA1+/Dapi+ or Mac-1+/Dapi+ reactive microglial cells and GFAP+/Dapi+ astrocytes, averaged for each animal and the mean number of cells per mm² per animal was estimated. A comparable countable area ranging from 1.90 mm² to 2.00 mm³ was analyzed in the different groups. Results are expressed as % of saline-injected controls. For intestine analysis, the tissue was fixed in 1% paraformaldehyde for 2 hours, washed with 50 mmol/L NH4Cl, and cryoprotected in 30% sucrose (w/v) at 4°C overnight. Tissue was then embedded in OCT medium, snap-frozen, and stored at −80°C. Gut slices were rehydrated with PBS and blocked with 0.3% Triton X- in PBS and 10% of Normal Goat Serum for 1 h at room temperature. Samples were then incubated overnight with primary antibodies in 0.3% Triton X- in PBS and 1% of Normal Goat Serum. Samples were then washed with PBS and incubated for 1 h with phallolidin-iFluor-594 (1:500, Abcam) and with the appropriate secondary antibody (Invitrogen). After washing with...
PBS, samples were incubated for 5 minutes at room temperature with DAPI to stain nuclei (1:10000 in PBS). Images were acquired using a Leica TCS SP8 confocal microscope (Leica, Germany) equipped with a 63 ×/1.4 numerical aperture oil-immersion objective and analyzed with ImageJ. For each mouse, 6–8 fields, each containing approximately 0.1 mm² of epithelial-covered villus mucosa, were analyzed by a blinded observer. Number of positive stained cells per villi section per mm was calculated from at least 10 high power fields/section. For quantification of aggregated a-syn -specific signal, 8-10 pictures covering the whole gut section were taken using 10X objective, and a threshold was set where only the aggregate-specific signals were visible. The same threshold was applied to all images. The mean fluorescence intensity (MFI) of the selected aggregate signals was quantified using ImageJ software. Signals were normalized to the total surface area of each slice detected using the DAPI staining. Antibodies are listed in Supplementary Table 1.

Ex Vivo cultures of Spleen Macrophages

Spleens were dissected from abdominal cavity and filtered through a 40-μm nylon strainer. Red cell lysis buffer was used to remove red cells. A single splenic cell suspension was obtained. Cells were cultured in Roswell Park Memorial Institute (RPMI) medium 1640 RPMI 1640 (BioConcept 1-41F01-I) supplemented with 10% FBS, 2mM L-Glutamine and antimicrobials (Penicillin-Streptomycin Pen 10'000 IU/ml Strep 10 mg/ml and amphotericin B (250 μg/ml BioConcept). Mouse microglia BV2 cells from Elabscience (No.: EP-CL-0493) were cultured in parallel for each spleen culture preparation and served as controls. Spleen macrophages (SPMs) differentiate into the M1 phenotype after stimulation with LPS (100 ng/ml) ± IFN-γ (10 ng/ml). To monitor M1 status, of SPMs and BV2 cells, TNF-α (MTA00B) and IL-6 (M6000B) levels were determined using enzyme-linked immunosorbent assay (ELISA) kits (ELISA Development System; R&D Systems, McKinley Place, MN, USA) following the manufacturer’s protocol.

Luminex-Based Multiplex Cytokine Analysis

Cytokines from murine plasma samples, including IFN-γ, IL-1β, IL-2, IL-4, IL-6, IL-10, IL-17A, and TNF-α were measured simultaneously using the multiplexed kit "Mouse High Sensitivity T Cell Magnetic Bead Panel" (MHSTCMAG-70K, MILLIPLEX, EMD Millipore Corp., Billerica, MA, USA). The assay was performed according to the manufacturer's instructions with an overnight incubation step (17 hours) at 4 °C. Samples were analyzed as single values and two controls with corresponding acceptance ranges, provided with the kit, were used for quality control purposes. The readout was performed on a FLEXMAP 3D® instrument (Luminex Corp., Austin, TX, USA). Data were acquired using Luminex xPONENT® software (version 4.3) and mean fluorescence intensity (MFI) was determined. Bio-Plex Manager™ software (version 6.2) (Bio-Rad, Hercules, CA, USA) was used for back-calculation of unknown cytokine concentrations.

Gene Expression Analysis

Real-time quantitative PCR was performed using Taqman™Assay Reagents using the Step One Detection System (Applied Biosystems), according to manufactures protocol. The assay IDs are reported in Supplemental Table 2. Quantification of the abundance of target gene expression was determined relative to β-actin with respect to the control group by using the delta delta Ct (2ΔΔCt) comparative method, the results expressed as arbitrary units (AU). Relative fold changes over WT are indicated.
Western Blot Analysis

Protein extracts were prepared as previously described. Tissues were homogenized in lysis buffer (0.33 M sucrose/8 mM Hepes, pH 7.4 and protease inhibitors) and quantified using the BCA protein determination method (Bio-Rad, Hercules, CA). Protein samples were diluted to equivalent volumes containing 20 µg of protein and boiled in an equal volume of Laemli SDS boiling buffer (Sigma) for 10 min. Samples were loaded into a 9-12% SDS-polyacrilamide gel and separated by electrophoresis for 3 h at 100 V. Proteins were transferred to polyvinylidene difluoride membrane (Amersham Biosciences, Piscataway, NJ) for 1.5 hr at 300 mA. After blocking of nonspecific binding with 5% non-fat dry milk in TBST, the membranes were probed with primary antibodies and processed as described (Supplementary Table 1). Densitometric analysis was performed using ImageQuantity One. Data were normalized to β-actin, values of phosphorylated GSK-3β (pTyr216 GSK-3β); phosphorylated α-syn (pSer129 α-syn) and phosphorylated tau (pSer396 tau) were normalized to total GSK-3β, α-syn, and tau, respectively, before statistical analysis of variance and values expressed as percent changes (%) of WT controls.

Dashed lines (in white) indicate discontinuous bands (nonsequential lanes) taken from the same blot, at the same molecular weight (mass – kDa) in order to better represent the mean signal from all values (5-6 individual blots/genotype/treatment) for that particular group. Corresponding control bands (loading controls) match experimental bands.

Statistical Analyses

Statistics was carried out using GraphPad Prism Software Version 9 (GraphPad Software, San Diego, California, USA). Significance was calculated using the unpaired, two-tailed Student’s t-test; Two-way or Three-way ANOVA, with Tukey’s multiple comparison or Bonferroni-post hoc test, as appropriate. Graphs displayed the mean ± SEM. *P <0.05, **P < 0.01 ***P < 0.001, ****P < 0.0001.

REFERENCES

168. Marchetti, B. *et al.* Exposure to a Dysfunctional Glucocorticoid Receptor from Early Embryonic Life Programs the Resistance to Experimental Autoimmune Encephalomyelitis Via Nitric Oxide-Induced Immunosuppression. *J. Immunol.* 168, 5848–5859 (2002).

DATA AVAILABILITY

All data that support the findings in this study are available from the corresponding author upon reasonable request.

AUTHOR CONTRIBUTIONS:
All authors have contributed to the conception and design. All authors have contributed to Material preparation, data collection and analyses were performed by Bianca Marchetti, Michela Deleidi, Carmela Giachino, and Cataldo Tirolo. The first draft of the Manuscript was written by Bianca Marchetti and Michela Deleidi and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE
All animal experiments were performed in strict accordance with the Guidelines for the Care and Use of Laboratory Animals (NIH Publication, revised 2011), which were also approved by the Animal Care and Use Committee of OPBA of the University of Catania.

COMPETING INTERESTS
The authors declare no competing interests.

FIGURE LEGENDS

Figure 1. G2019S interacts with ageing and chronic low-grade inflammation to drive nigrostriatal dopaminergic neurodegeneration. A. Representative confocal images of the SNpc and the Str of WT and G2019S mice from 3- to 16 months (M) of age under NaCl (A) or a low dose of LPS (0.1 mg Kg⁻¹, twice weekly, i.p.) administrated for 12 consecutive weeks (B). Tissues were immunostained with TH (green) and the nuclear marker DAPI (blue). Scale bars, SNpc, 300 µm; Str, 100 µm. C. Total number of TH⁺ neurons (mean ± SEM, 5-6 mice/age-group/treatment/genotype) counted in the right and left SNp and striatal TH-IF at 3, 6, 10 and 16 M under NaCl or LPS exposure. A significant decrease in the total number of TH⁺ neurons was measured by 16 M in both WT (§ < 0.05 vs WT 3 M) and G2019S mice (§§ P < 0.01 vs TG 3 M). G2019S, low-grade inflammation and ageing robustly reduced TH⁺ neuron numbers and Str-IF in G2019S vs WT mice (P < 0.0001). D. Expression levels of the indicated genes measured in the SNpc of WT and G2019S mice treated with NaCl or LPS at 10 M of age. Data were normalized over WT untreated and expressed as mean ± SEM; n: 5-6 mice/age-group/treatment/genotype; Significance analyzed by ANOVA followed Tukey’s *P < 0.05, ** P < 0.01, *** P < 0.001; **** P < 0.0001 vs WT within the same treatment group; § P < 0.05, §§ P < 0.01, §§§ P < 0.001; §§§§ P < 0.0001 vs NaCl within each genotype.

Figure 2. Low-grade inflammation induces LRRK2, active pGSK-3β, α-syn, and Tau levels in aged G2019S VM. A. Triple immunofluorescent staining of midbrain sections with LRRK2 (red), the dopamine transporter (DAT, green), and DAPI (blue), showing increased LRRK2-IF reaction colocalizing in SNpc DAT⁺ neurons of 10 M-old NaCl G2019S mice, vs WT counterparts. LPS further magnified LRRK2-IF localized to both DAT-positive neurons (arrows) and DAT-negative neurons (arrowheads) in G2019S mutant mice. Scale bars, 25 µm. B. Triple immunofluorescent staining with DAT (green), phosphorylated (p) α-syn (in red) and DAPI (blue), and α-syn (boxed) showing a greater pα-syn and α-syn IF signals in SNpc DAT⁺ and some DAT⁻ neurons of 10 M-old G2019S- vs WT-LPS. Scale bars, 40 µm. C. Representative Western blots showing proteins levels of LRRK2, TH, Nurr1, pTyr²¹⁶-GSK-3β, GSK-3β, p-S396-Tau, Tau, α-syn, p-and α-syn-S129 in 10 M-old WT and G2019 mice under NaCl or LPS treatment. Quantification of protein levels relative to the loading control is shown, values of phosphorylated GSK-3β (pTyr²¹⁶ GSK-3β); phosphorylated α-syn (pSer¹²⁹ α-syn) and phosphorylated tau (pSer³⁹⁶ tau) were normalized for each respective control (total GSK-3β, α-syn, and tau, respectively). Data represent the mean % ± SEM of 5-6 mice/age-group/treatment/genotype. Statistical significance analyzed by ANOVA followed Tukey’s *P < 0.05, ** P < 0.01, ***
P < 0.001; **** P < 0.0001 vs WT within the same treatment group; § P < 0.05, §§ P < 0.01, §§§ P < 0.001; §§ §§§ P < 0.0001 vs NaCl within each genotype.

Figure 3. LRRK2 G2019S combined with low-grade inflammation and ageing exacerbates astrocyte hypertrophy in the VM. A. Quantification of GFAP+/Dapi+ astrocytes in SNpc of 3 to 16 M WT and G2019S mice under NaCl/LPS regimen. No changes in GFAP+/Dapi+ astrocytes under NaCl in both genotypes were observed until 6 M, whereas from 10 M on, NaCl-treated G2019S mice displayed a greater number of astrocytes (P ≤ 0.01) vs the 3 M age group, and much greater vs NaCl-treated WT counterparts (P < 0.05). G2019S, ageing, and LPS further increase (P ≤ 0.001) cell number of G2019S vs WT by 16 M. B. Representative confocal images of triple immunofluorescent staining with TH (green), GFAP (red) and DAPI (blue) in SNpc at 6, 10 and 16 M, under LPS, showing enhanced astrocytosis and reduced TH+ neurons at 10 and 16 M in G2019S vs WT counterparts. Scale bars, 300 µm. C-D. Representative confocal images of triple TH+/GFAP+/Dapi+ cells in SNpc of WT (C, Scale bars 100 µm, boxed images, 25 µm) and G2019S (D, Scale bars 100 µm, boxed images, 50 µm) mice under LPS, showing increased TH+ neurite extension and healthier TH neuronal cell bodies with closed interactions with GFAP+ astrocyte processes of WT (C) vs G2019S (detailed in text) (D). E-F: qRT-PCR and WB analysis showing higher expression of GFAP transcript and protein levels in G2019S mice both under NaCl and LPS regimen vs WT counterparts. Data (GFAP/β-actin ratio relative to controls), represent the mean % ± SEM of 5-6 mice/age-group/treatment/genotype. Significance analyzed by ANOVA followed Tukey’s *P< 0.05, ** P < 0.01, *** P < 0.001; **** P < 0.0001 vs WT within the same treatment group; § P < 0.05, §§ P < 0.01, §§§ P < 0.001; §§ §§§ P < 0.0001 vs NaCl within each genotype.

Figure 4. LRRK2 G2019S, low-grade inflammation, and ageing exacerbate microglia inflammatory reactions in the VM. A. Quantification of IBA1+/Dapi+ cells in SNpc sections of WT and G2019S mice upon LPS or NaCl treatment at the indicated timepoints. B-C. Representative confocal images of triple immunofluorescent staining for DAT (green), IBA1 (red), and DAPI (blue) in SNpc sections of WT and G2019S mice upon LPS or NaCl treatment at the indicated timepoints. Scale bars; 300 µm, boxed areas 50 µm. D. qRT-PCR in SNpc tissues performed at 10 M of age showing up-regulation of major inflammatory and pro-oxidant transcripts in G2019S mice. E. Representative western blots of IBA1, NF-κB, iNos, gp91PHOX, IL-1β protein, and caspase-1 in G2019S VM, as compared to WT counterparts. Quantification of protein levels relative to the loading control is shown. Mean ± SEM of 5-6 mice/age-group/treatment/genotype. Significances analysed by ANOVA followed Tukey’s *P< 0.05, ** P < 0.01, *** P < 0.001; **** P < 0.0001 vs WT within the same treatment group; § P < 0.05, §§ P < 0.01, §§§ P < 0.001; §§ §§§ P < 0.0001 vs NaCl within each genotype.

Figure 5. LRRK2 G2019S synergizes with low-grade inflammation to promote macrophage and CD3+ T cell recruitment to the brain in aged mice. A. Quantification of CCR2+/IBA1+ cells in the SNpc in 3 to 16 M-old WT and G2019S mice under NaCl/LPS. B-C. Triple immunostaining of IBA1 (red), CCR2 (green), and DAPI (blue) at 6 M (B, Scale bar 50 µm) and 10 M (C, Scale bar, 50 µm) in WT and G2019S mice under LPS. D-E: Representative immunostaining of CD3 T-cell marker (green), LRRK2 (red), and DAPI (blue) in the SNpc of 6 M (D, Scale bar, 40 µm) and 10 M (E, Scale bar, 20 µm) WT and G2019S mice under LPS. F-G. Immunostaining of CD3+ cells expressing LRRK2 in spleen sections of 6 M and 10 M-old WT and G2019S mice under NaCl/LPS (Scale bar, 100 µm). H. Representative Western blot of LRRK2 in the spleen of WT and G2019S mice under NaCl/LPS at 6 M showing significantly up-regulated LRRK2 protein level in G2019S vs WT counterparts. Quantification of protein levels relative to the loading control is shown. Mean ± SEM of 5-6 mice/age-group/treatment/genotype. Significances analysed by ANOVA followed Tukey’s *P< 0.05, ** P < 0.01, *** P < 0.001; **** P < 0.0001 vs WT within the same treatment group; § P < 0.05, §§ P < 0.01, §§§ P < 0.001; §§ §§§ P < 0.0001 vs NaCl within each genotype.
Figure 6. LRRK2 G2019S and low-grade inflammation exacerbate the response of spleen macrophages to LPS and IFN-γ. A. Schematic illustration of the experimental protocol performed in WT and G2019S mice treated with NaCl or LPS for 12 weeks. Ex vivo individual primary cultures of spleen macrophages (SPMs) established from WT and G2019S mice of different age-groups were differentiated into the M1 phenotype after stimulation with LPS (100 ng/ml) ± IFN-γ (10 ng/ml). B-C. The response of SPMs to LPS at 6 and 16 M was assessed in untreated individual mice. BV2 microglial cells were used as controls. TNF-α and IL-6 release measured in the conditioned media (CM) indicated no difference between G2019S and WT SPMs in the release of TNF-α and IL-6 from 6 to 16 M of age. D. M1-polarized SPMs from LPS-treated G2019S mice expressed higher amounts of TNF-α and IL-6 starting at 6 M. Note that IL-6 is significantly higher in G2019S vs WT, both before (P < 0.001) and after LPS. LRRK2 G2019S synergized with LPS and IFN-γ to promote higher TNF-α and IL-6 release in G2019S mice compared to WT SPMs derived from WT counterparts of the same age and treatment. Mean ± SEM of 5-6 mice/age-group/treatment/genotype. Significances analysed by ANOVA followed Tukey’s *P<0.05, *** P < 0.001; **** P < 0.0001 vs WT within the same treatment group; §§§ P < 0.0001 vs NaCl within each genotype.

Figure 7. (A) Cytokines profile in the serum of WT and LRRK2 G2019S mice at the baseline (3 M) and 6-16 M. Mean ± SEM, n=6. §§§§, p <0.0001; §§§, p <0.001, §§, p <0.01, §, p <0.05, LPS-treated vs NaCl-treated ; **** p <0.0001, *** p <0.001, ** p <0.01, * p <0.05, LRRK2 G2019S vs LRRK2 WT, vs group indicated on the graph, two-way ANOVA with Bonferroni post hoc test; n=5 independent experiments. Data are expressed as pg/mL. (B) Intestinal cryosections stained against CD4 or CD68 (green), phalloidin (red), and DAPI (blue) from WT and LRRK2 G2019S mice treated with LPS or NaCl at the indicated time-points. Scale bar = 100 µm. (C) Analysis of CD4+ and CD68+ cells within colonic sections. Mean ± SEM; §§§§, p <0.0001; §§§, p <0.001, LPS-treated vs NaCl-treated controls; **** p <0.0001, *** p <0.001, ** p <0.01, * p <0.05, LRRK2 G2019S vs WT mice, two-way ANOVA with Bonferroni post hoc test; n=6. Cells counted from at least 10 high power fields (100X)/mouse.

Figure 8. (A) Intestinal cryosections stained for aggregated α-syn (MJF-14, green), TH (red), phalloidin (magenta), and DAPI (blue) from WT and G2019S mice treated with LPS or NaCl at the indicated time-points. Scale bar = 100 µm. (B) Quantification of MJF-14 mean intensity within colonic sections. Mean ± SEM; §§§§, p <0.0001; §§§, p <0.001, LPS-treated vs NaCl -treated controls; **** p <0.0001, *** p <0.001, ** p <0.01, * p <0.05, LRRK2 G2019S vs WT mice, two-way ANOVA with Bonferroni post hoc test. Data were acquired from at least 10 high power fields (100X)/mouse, n=6.

Figure 9. (A) Intestinal cryosections stained against HuD+HuC (red), β-TubIII (green), phalloidin (magenta), and DAPI (blue) from WT and G2019S mice treated with LPS or NaCl at the indicated time-points. Scale bar = 100 µm. (B) Quantification of HuD+HuC positive cells within colonic sections. Mean ± SEM; §§§§, p <0.0001; §§§, p <0.001, LPS-treated vs NaCl -treated controls; **** p <0.0001, *** p <0.001, ** p <0.01, * p <0.05, LRRK2 G2019S vs WT mice, two-way ANOVA with Bonferroni post hoc test. Data were acquired from at least 10 high power fields (100X)/mouse, n=6.

Figure 10. LRRK2 G2019S interacts with low-grade inflammation and ageing to promote peripheral inflammation and dopaminergic neuron degeneration. Schematic drawing showing the mechanisms involved in LRRK2 G2019S-mediated midbrain neuron (mDAn) degeneration in the ageing brain. 1. LRRK2 G2019S interacts with low-grade inflammation (subthreshold dose of LPS) promoting early CD4+ T cell infiltration and α-syn aggregation in the gut as well as 2. dysregulation of the peripheral immune system (changes in peripheral cytokines and activation of spleen macrophages). 3. Peripheral immune changes may promote macrophage/monocyte infiltration in the CNS, astro-
/microgliosis, and CD3+ cell infiltration; 4. LRRK2 G2019S synergizes with ageing and low-grade chronic inflammation to promote the up-regulation of several key factors involved in mDA neuron dysfunction/death.

ORCIDs

Carmela Giachino: 0000-0003-3650-8677
Cataldo Tirolo: 0000-0003-1747-8134
Salvatore Caniglia: 0000-0002-9416-8458
Francesca L’Episcopo: 0000-0003-3292-9677
Maria Francesca Serapide: 0000-0003-3292-9677
Federico Bertoli: 0000-0001-5600-1190
Nicole Schneiderhan-Marra: 0000-0001-6785-181X
Bianca Marchetti: 0000-0002-9287-8448
Michela Deleidi: 0000-0003-0357-0124
G2019S interacts with ageing and chronic low-grade inflammation to drive nigrostriatal dopaminergic neurodegeneration. A. Representative confocal images of the SNpc and the Str of WT and G2019S mice from 3- to 16 months (M) of age under NaCl (A) or a low dose of LPS (0.1 mg Kg-1, twice weekly, i.p.)
administrated for 12 consecutive weeks (B). Tissues were immunostained with TH (green) and the nuclear marker DAPI (blue). Scale bars, SNpc, 300 μm; Str, 100 μm. C. Total number of TH+ neurons (mean ± SEM, 5-6 mice/age-group/treatment/genotype) counted in the right and left SNpc and striatal TH-IF at 3, 6, 10 and 16 M under NaCl or LPS exposure. A significant decrease in the total number of TH+ neurons was measured by 16 M in both WT (§ < 0.05 vs WT 3 M) and G2019S mice (§§P < 0.01 vs TG 3 M). G2019S, low-grade inflammation and ageing robustly reduced TH+ neuron numbers and Str-IF in G2019S vs WT mice (P< 0.0001). D. Expression levels of the indicated genes measured in the SNpc of WT and G2019S mice treated with NaCl or LPS at 10 M of age. Data were normalized over WT untreated and expressed as mean ± SEM; n: 5-6 mice/age-group/treatment/genotype; Significance analyzed by ANOVA followed Tukey’s *P< 0.05, ** P < 0.01, *** P < 0.001; **** P < 0.0001 vs WT within the same treatment group; §P< 0.05, §§ P < 0.01, §§§ P < 0.001; §§§§ P < 0.0001 vs NaCl within each genotype.
Low-grade inflammation induces LRRK2, active pGSK-3β, α-syn, and Tau levels in aged G2019S VM. A. Triple immunofluorescent staining of midbrain sections with LRRK2 (red), the dopamine transporter (DAT, green), and DAPI (blue), showing increased LRRK2-IF reaction colocalizing in SNpc DAT+ neurons of 10 M-old NaCl G2019S mice, vs WT counterparts. LPS further magnified LRRK2-IF localized to both DAT-positive neurons (arrows) and DAT-negative neurons (arrowheads) in G2019S mutant mice. Scale bars,
25 μm. B. Triple immunofluorescent staining with DAT (green), phosphorylated (p) α-syn (in red) and DAPI (blue), and α-syn (boxed) showing a greater pα-syn and α-syn IF signals in SNpc DAT+ and some DAT-neurons of 10 M-old G2019S- vs WT-LPS. Scale bars, 40 μm. C. Representative Western blots showing proteins levels of LRRK2, TH, Nurr1, pTyr216-GSK-3β, GSK-3β, P-S396-Tau, Tau, α-syn, p-and α-syn-S129 in 10 M-old WT and G2019 mice under NaCl or LPS treatment. Quantification of protein levels relative to the loading control is shown, values of phosphorylated GSK-3β (pTyr216 GSK-3β); phosphorylated α-syn (pSer129 α-syn) and phosphorylated tau (pSer396 tau) were normalized for each respective control (total GSK-3β, α-syn, and tau, respectively). Data represent the mean % ± SEM of 5-6 mice/age-group/treatment/genotype. Statistical significance analyzed by ANOVA followed Tukey’s *P< 0.05, ** P < 0.01, *** 26 P < 0.001; **** P < 0.0001 vs WT within the same treatment group; §P< 0.05, §§ P < 0.01, §§§ P < 0.001; §§§§ P < 0.0001 vs NaCl within each genotype.
LRRK2 G2019S combined with low-grade inflammation and ageing exacerbates astrocyte hypertrophy in the VM. A. Quantification of GFAP+/Dapi+ astrocytes in SNpc of 3 to 16 M WT and G2019S mice under NaCl/LPS regimen. No changes in GFAP+/Dapi+ astrocytes under NaCl in both genotypes were observed until 6 M, whereas from 10 M on, NaCl-treated G2019S mice displayed a greater number of astrocytes (P ≤ 0.01) vs the 3 M age group, and much greater vs NaCl-treated WT counterparts (P < 0.05). G2019S,
ageing, and LPS further increase (P ≤ 0.001) cell number of G2019S vs WT by 16 M. B. Representative confocal images of triple immunofluorescent staining with TH (green), GFAP (red) and DAPI (blue) in SNpc at 6, 10 and 16 M, under LPS, showing enhanced astrocytosis and reduced TH+ neurons at 10 and 16 M in G2019S vs WT counterparts. Scale bars, 300 μm. C-D. Representative confocal images of triple TH+/GFAP+/Dapi+ cells in SNpc of WT (C, Scale bars 100 μm, boxed images, 25 μm) and G2019S (D, Scale bars 100 μm, boxed images, 50 μm) mice under LPS, showing increased TH+ neurite extension and healthier TH neuronal cell bodies with closed interactions with GFAP+ astrocyte processes of WT (C) vs G2019S (detailed in text) (D). E-F: qRT-PCR and WB analysis showing higher expression of GFAP transcript and protein levels in G2019S mice both under NaCl and LPS regimen vs WT counterparts. Data (GFAP/β-actin ratio relative to controls), represent the mean % ± SEM of 5-6 mice/age-group/treatment/genotype. Significance analyzed by ANOVA followed Tukey’s *P< 0.05, ** P < 0.01, *** P < 0.001; **** P < 0.0001 vs WT within the same treatment group; §P< 0.05, §§ P < 0.01, §§§ P < 0.001; §§§§ P < 0.0001 vs NaCl within each genotype.
LRRK2 G2019S, low-grade inflammation, and ageing exacerbate microglial inflammatory reactions in the VM. A. Quantification of IBA1+/Dapi+ cells in SNpc sections of WT and G2019S mice upon LPS or NaCl treatment at the indicated timepoints. B-C. Representative confocal images of triple immunofluorescent staining for DAT (green), IBA1 (red), and DAPI (blue) in SNpc sections of WT and G2019S mice upon LPS or NaCl treatment at the indicated timepoints. Scale bars; 300 μm, boxed areas 50 μm. D. qRT-PCR in
SNpc tissues performed at 10 M of age showing up-regulation of major inflammatory and pro-oxidant transcripts in G2019S mice. E. Representative western blots of IBA1, NF-κB, iNOS, gp91PHOX, IL-1β protein, and caspase-1 in G2019S VM, as compared to WT counterparts. Quantification of protein levels relative to the loading control is shown. Mean ± SEM of 5-6 mice/age-group/treatment/genotype. Significances analysed by ANOVA followed Tukey’s *P< 0.05, ** P < 0.01, *** P < 0.001; **** P < 0.0001 vs WT within the same treatment group; §P< 0.05, §§ P < 0.01, §§§ P < 0.001; §§§§ P < 0.0001 vs NaCl within each genotype.
LRRK2 G2019S synergizes with low-grade inflammation to promote macrophage and CD3+ T cell recruitment to the brain in aged mice. A. Quantification of CCR2+/IBA1- cells in the SNpc in 3 to 16 M-old WT and G2019S mice under NaCl/LPS. B,C. Triple immunostaining of IBA1 (red), CCR2 (green), and DAPI (blue) at 6 M (B, Scale bar 50 μm) and 10 M (C, Scale bar, 50 μm) in WT and G2019S mice under LPS. D-E: Representative immunostaining of CD3 T-cell marker (green), LRRK2 (red), and DAPI (blue) in the SNpc of 6 M (D, Scale bar, 40 μm) and 10 M (E, Scale bar, 20 μm) WT and G2019S mice under LPS. F,G. Immunostaining of CD3+ cells expressing LRRK2 in spleen sections of 6 M and 10 M-old WT and G2019S mice under NaCl/LPS (Scale bar, 100 μm). H. Representative Western blot of LRRK2 in the spleen of WT and G2019S mice under NaCl/LPS at 6 M showing significantly up-regulated LRRK2 protein level in G2019S vs WT counterparts. Quantification of protein levels relative to the loading control is shown. Mean ± SEM of 5-6 mice/age-group/treatment/genotype. Significances analysed by ANOVA followed Tukey's *P< 0.05, ** P < 0.01, *** P < 0.001; **** P < 0.0001 vs WT within the same treatment group; §P< 0.05, §§ P < 0.01, §§§ P < 0.001; §§§§ P < 0.0001 vs NaCl within each genotype.
LRRK2 G2019S and low-grade inflammation exacerbate the response of spleen macrophages to LPS and IFN-γ. A. Schematic illustration of the experimental protocol performed in WT and G2019S mice treated with NaCl or LPS for 12 weeks. Ex vivo individual primary cultures of spleen macrophages (SPMs) established from WT and G2019S mice of different age-groups were differentiated into the M1 phenotype after stimulation with LPS (100 ng/ml) ± IFN-γ (10 ng/ml). B-C. The response of SPMs to LPS at 6 and 16
M was assessed in untreated individual mice. BV2 microglial cells were used as controls. TNF-α and IL-6 release measured in the conditioned media (CM) indicated no difference between G2019S and WT SPMs in the release of TNF-α and IL-6 from 6 to 16 M of age. D. M1-polarized SPMs from LPS-treated G2019S mice expressed higher amounts of TNF-α and IL-6 starting at 6 M. Note that IL-6 is significantly higher in G2019S vs WT, both before (P < 0.001) and after LPS. LRRK2 G2019S synergized with LPS and IFN-γ to promote higher TNF-α and IL-6 release in G2019S mice compared to WT SPMs derived from WT counterparts of the same age and treatment. Mean ± SEM of 5-6 mice/age-group/treatment/genotype. Significances analysed by ANOVA followed Tukey’s *P < 0.05, *** P < 0.001; **** P < 0.0001 vs WT within the same treatment group; §§§§ P < 0.0001 vs NaCl within each genotype.
Figure 7

(A) Cytokines profile in the serum of WT and LRRK2 G2019S mice at the baseline (3 M) and 6-16 M. Mean ± SEM, n = 6. §§§§, p <0.0001; §§§, p <0.001, §§, p <0.001, §, p <0.05, LPS-treated vs NaCl-treated; **** p <0.0001, *** p <0.001, ** p <0.01, * p <0.05, LRRK2 G2019S vs LRRK2 WT, vs group indicated on the graph, two-way ANOVA with Bonferroni post hoc test; n=5 independent experiments. Data are expressed as pg/mL. (B) Intestinal cryosections stained against CD4 or CD68 (green), phalloidin (red), and DAPI
(blue) from WT and LRRK2 G2019S mice treated with LPS or NaCl at the indicated time-points. Scale bar = 100 μm. (C) Analysis of CD4+ and CD68+ cells within colonic sections. Mean ± SEM; §§§§, p <0.0001; §§§, p <0.001, LPS-treated vs NaCl-treated controls; **** p <0.0001, *** p <0.001, ** p <0.01, * p <0.05, LRRK2 G2019S vs WT mice, two-way ANOVA with Bonferroni post hoc test; n=6. Cells counted from at least 10 high power fields (100X)/mouse.
(A) Intestinal cryosections stained for aggregated α-syn (MJF-14, green), TH (red), phalloidin (magenta), and DAPI (blue) from WT and G2019S mice treated with LPS or NaCl at the indicated time-points. Scale bar = 100 μm. (B) Quantification of MJF-14 mean intensity within colonic sections. Mean ± SEM; §§§§, p <0.0001; §§§, p <0.00, LPS-treated vs NaCl -treated controls; **** p <0.0001, *** p <0.001, ** p <0.01, * p <0.05, LRRK2 G2019S vs WT mice, two-way ANOVA with Bonferroni post hoc test. Data were acquired from at least 10 high power fields (100X)/mouse, n=6.
Figure 9

(A) Intestinal cryosections stained against HuD+HuC (red), ß-TubIII (green), phalloidin (magenta), and DAPI (blue) from WT and G2019S mice treated with LPS or NaCl at the indicated time-points. Scale bar = 100 μm. (B) Quantification of HuD+HuC positive cells within colonic sections. Mean ± SEM; §§§§, p <0.0001; §§§, p <0.00, LPS-treated vs NaCl-treated controls; **** p <0.0001, *** p <0.001, ** p <0.01, * p <0.05, LRRK2 vs WT mice, two-way ANOVA with Bonferroni post hoc test. Data were acquired from at least 10 high power fields (100X)/mouse, n=6.
LRRK2 G2019S interacts with low-grade inflammation and ageing to promote peripheral inflammation and dopaminergic neuron degeneration. Schematic drawing showing the mechanisms involved in LRRK2 G2019S-mediated midbrain neuron (mDAn) degeneration in the ageing brain. 1. LRRK2 G2019S interacts with low-grade inflammation (subthreshold dose of LPS) promoting early CD4+ T cell infiltration and α-syn aggregation in the gut as well as 2. dysregulation of the peripheral immune system (changes in

Figure 10
Peripheral cytokines and activation of spleen macrophages). 3. Peripheral immune changes may promote macrophage/monocyte infiltration in the CNS, astro-
28/microgliosis, and CD3+ cell infiltration; 4. LRRK2 G2019S synergizes with ageing and low-grade chronic inflammation to promote the up-regulation of several key factors involved in mDA
dysfunction/death.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- [080922SupplementarymaterialGiachinoetal.pdf](#)