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Abstract

Simultaneous confidence intervals (SCI) for multinomial proportions are a corner stone in count data
analysis and a key component in many applications. A variety of schemes were introduced over
the years, mostly focusing on an asymptotic regime (where the sample is large), or a small sample
regime, where the alphabet size is relatively small. In this work we introduce a new SCI frame-
work which considers a large alphabet setup. Our proposed framework utilizes bootstrap sampling
with the Good-Turing probability estimator as a plug-in distribution. We demonstrate the favorable
performance of our proposed method in synthetic and real-world experiments. Importantly, we pro-
vide an exact analytical expression for the bootstraped statistic, which replaces the computationally
costly sampling routine. Our proposed framework is publicly available at the first author’s webpage.

Keywords: Simultaneous Confidence Intervals, Multinomial Distribution, Good-Turing, large Alphabet,

Count Data

1 Introduction

Consider a multinomial distribution p over an
alphabet size m. Let X" £ {X;,...,X,} be a
collection of n independent and identically dis-
tributed samples from p. In this work we study
simultaneous confidence intervals (SCIs) for p.
SCIs for multinomial proportions are a corner
stone of statistical inference. This problem was
extensively studied over the years, with several
notable contributions such as Quesenberry and
Hurst [26], Goodman [12], Fitzpatrick and Scott
[7] and Sison and Glaz [28]. Current methodolo-
gies focus on two basic setups. The first considers
an asymptotic regime, where the sample size is
very large [12, 26]. The second addresses a fixed
sample size, where the alphabet size is relatively

small [28]. In this work we study the comple-
mentary case, where the alphabet size is large,
or at least comparable to the sample size. This
setup is also known as the large alphabet regime.
Large alphabet modeling is of special interest in
many applications such as language processing
and bioinformatics [22]. One of the typical chal-
lenges in this setup is the inference of rare events.
Specifically, the probability of symbols that do
not appear in the sample (unseen symbols). Here,
classical tools tend to underestimate the desired
parameters [21] and more sophisticated schemes
are required.

The problem of estimating p in the large alpha-
bet regime was extensively studied in the context
of point estimation. Probably the first to address
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this problem was Pierre-Simon Laplace [30]. In his
work, Laplace suggested adding a single count to
every symbol in the alphabet. This way, unseen
symbols are inferred as if they have a single count
in the sample. A major milestone to large alpha-
bet point estimation was achieved in the work of
I.J. Good and A.M. Turing during world war II,
while deciphering the Enigma Code [10]. Good
and Turing proposed a surprisingly efficient and
unintuitive framework which assigns symbols with
t appearance a probability proportional to the
number of events that appear ¢+ 1 times. Since its
appearance the Good-Turing (GT) estimator has
gained popularity in a variety of fields. To this day,
GT estimators are perhaps the most commonly
used methods in practical setups [22].

In this paper, we study interval estimation
for the multinomial proportions over large alpha-
bets. We introduce a new approach which applies
bootstrap sampling with the GT estimator as the
plug-in distribution. To the best of our knowl-
edge, our method is the first to directly address
multinomial interval estimation in the large alpha-
bet regime. We demonstrate the performance of
our suggested scheme in a series of synthetic and
real-world experiments. We show it outperforms
popular alternatives, as it attains significantly
smaller SCIs while maintaining the prescribed
coverage rate.

2 Related Work

We distinguish between two setups of interest. The
first, considers the case where n is large (asymp-
totic), compared to the alphabet size, while the
second addresses a fixed n and a relatively small
m. In the first regime, Quesenbeny and Hurst [26]
suggested joint confidence intervals based on large
sample properties of the sample proportions and
the inversion of Pearson’s chi-square goodness-of-
fit test. The intervals control the joint coverage
probability for all possible linear combinations of
the parameters. Therefore, these intervals are nec-
essarily conservative, often wider than necessary,
with larger coverage than required [18]. Goodman
[12] proposed an adaptation for Quesenbeny and
Hurst by using the Bonferroni inequality, making
them less conservative and thus shorter for the
same confidence level. Fitzpatrick and Scott [7]
introduced an adaptation of the binomial distribu-
tion to the multinomial scheme by finding a lower

bound for the simultaneous coverage probability
of all binomial symbols Cls together.

All the methods above are popular and well-
established SCI schemes. Unfortunately, they all
assume an asymptotic regime in their derivation.
Consequently, they perform quite poorly in cases
of small sample size, small number of observed
symbol frequencies or sampling zeros [18].

The second regime focuses on the case where n
is fixed and the alphabet size m is relatively small.
Here, the most popular SCI scheme is arguably
of Sison and Glaz [28]. In their work, Sison and
Glaz (SG) proposed a method that is not based on
large sample properties. They used the relation-
ship between the Poisson, truncated Poisson and
multinomial distributions to derive an alternative
formulation for the joint multinomial probabil-
ity, which is then approximated by Edgeworth
expansions. Through extensive simulations, they
demonstrated their method leads to smaller SCIs
while maintaining a coverage rate closer to the
desired level, compared to known methods at the
time. Unfortunately, the SG algorithm does not
perform well in cases where the expected symbol
counts are disparate [18].

In their review survey, May and Johnson [18]
performed a simulation study and compared dif-
ferent SCIs methods. They recommended the
Goodman intervals for cases where the sample
size supports the large sample theory, m is small
and the expected counts are at least ten per sym-
bol. For cases where the expected symbol counts
are small and nearly equal across all symbols,
they recommended using SG intervals. No method
was uniformly superior for every examined setup.
Moreover, typically one cannot assess the expected
symbol counts prior to the experiment.

It is important to emphasise that SCIs may
also be obtained from a binomial viewpoint, where
each symbol is treated in turn against all other
symbols. That is, one may construct a binomial
CI for each symbol independently (for example,
by using Clopper-Pearson intervals [3]) and cor-
rect for multiplicity (for example, by applying a
Bonferroni correction [4]). Henceforth, the SCIs
are just a collection of binomial Cls (of confidence
level a/m), for every symbol in the alphabet.
Naturally, this approach controls the prescribed
confidence level (for every n and m), but may be
over pessimistic and result in large Cls. Notice
that such an approach also applies for unobserved
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symbols. Specifically, the binomial CI for symbols
with zero counts is obtained by the rule-of-three,
which suggests [0, —log (a/m)/n] as a CI for this
case [6].

Additional SCI methods were proposed more
recently. For example, Hou et al. [14] based their
method on inverting power-divergence statistics.
Chafai and Concordet [2] proposed a method that
consists of the inversion of the covering collection
associated with level-sets of the likelihood. With-
ers and Nadarajah [29] proposed a modification
for the well known Pearson test statistic using a
Laplace correction making it usable also for cases
of unsampled symbols. However, their results are
still based on asymptotic large sample properties.
To the best of our knowledge, no method directly
addresses the construction of SCIs for multinomial
proportions over for large alphabets.

The problem of large alphabet probability esti-
mation is of great interest and was extensively
studied over the years, mostly in the context of
point estimation. One of the major challenges
when dealing with large alphabets is under sam-
pled symbols. This problem is mostly evident in
cases where some symbols are not sampled at
all (for example, consider n < m). Historically,
Laplace [15] was perhaps the first to address this
problem [30]. In his estimation scheme, a single
count is added to every symbol in the alphabet,
followed by maximum likelihood estimation. This
solution guarantees that no symbols are missing
from the sample. Laplace’s scheme was later gen-
eralized to a family of add-constant estimators,
where instead of adding a single count, a constant
number c is added. The add-constant estimators
are very simple and practical. Unfortunately, they
preform quite poorly is cases where the alphabet
size is much larger than the sample [21].

During World War II, in an effort to decipher
the Enigma Code, Good and Turing [10] developed
an alternative method for estimating the propor-
tions of large multinomial distributions. The basic
Good-Turing (GT) framework considers an esti-
mator for symbols that appear t times in the
sample. Formally,

. Y1 t+1

pr= "t (1)
Pt n

where ¢; is the number of symbols appearing ¢

times in the sample. In words, the probability

of the symbols that appear ¢ times in the sam-
ple is proportional to the number of symbols that
appear t + 1 times. Hence, non-sampled proba-
bilities are assigned a probability proportional to
the number of events with a single appearance in
the sample. Notice that as opposed to the add-
constant estimators, the GT estimator is oblivious
to the alphabet size, which makes it more robust.

The GT estimator has gained a great popular-
ity and was applied to a variety of fields. Perhaps
its most common application is in language mod-
eling, where it is used to estimate the probability
distribution of words [22]. On the theoretical side,
interpretations of the GT estimator have been pro-
posed [11, 20] and its favorable properties were
studied [19, 22-25].

In practice, it was shown that the original GT
scheme (1) is sub-optimal for symbols that appear
more frequently [8]. This problem is addressed by
several adaptations. Gale [8] proposed a smoothed
version of the algorithm which utilizes linear
regression to smooth the erratic values. Another
approach is to use an hybrid scheme, which applies
GT for low frequency symbols and maximum like-
lihood for symbols that appear many times [25].
An additional example, which we utilize later in
this paper, was introduced in [22],

t

N - ift > @1
bt = Per1+l 41

(2)

Pt n*

else,

where n* is a normalization factor. Notice that the
term ;41 in the original GT formulation (1) is
replaced with ¢;+1+1 to ensure that every symbol
is assigned a non-zero probability.

3 Problem Statement

Let X be a finite alphabet of size m. Let p =
P1,---,Pm be an unknown probability distribution
over X. Let X ~ p be a random variable taking
values over X. Let X" = {X3,..., X,,} be a collec-
tion of n independent and identically distributed
samples from X. In this work we study rectan-
gular confidence region (RCR) for the probability
distribution p. An RCR of level 100(1 — )% for p
is defined as a region S(X™) such that

PlpeS(X")>1—-a
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where S(X") = S1(X™),S2(X™),...,Sn(X™),
and S;(X"™) = [a;, b;] for i = 1,...,m. Further we
naturally have that, 0 < a; < b; < 1. In other
words, an RCR for p in defined by a collection
SCIs such that,

P(p e S(X")) = P

Nipi € sz(x%}] >1-a

i=1

SCIs are very popular in multinomial inference,
as they are intuitive and easy to interpret. In
fact, almost all the inference schemes discussed
in Section 2 are in fact SCIs. Obviously, there
are many ways to construct SCIs that satisfy the
above (for example, a; = 0,b; = 1 for every 7). We
are interested in minimal volume SClIs that satisfy
the prescribed coverage rate. As mentioned above,
we focus on the large alphabet regime, where m is
relatively large, compared to n.

4 Methodology

Our proposed method utilizes bootstrap sampling
to construct SCIs. Specifically, we focus on the
plug-in principle, with several adaptations that
account for the large alphabet regime. We begin
this section with a brief overview of the bootstrap
paradigm for inference problems.

4.1 Bootstrap Confidence Intervals

Bootstrap sampling is a popular approach for
inference problems, especially in cases where the
underlying distribution is involved or too compli-
cated to analyze. By using the bootstrap principle
we typically avoid the assumptions needed in clas-
sical analytical inference [1]. Bootstrap sampling
was introduced by Efron in the early 1980s [5] and
is considered a favorable framework with many
applications.

Statistical inference problems often involve
estimating a statistic of the underlying probabil-
ity distribution ¢(p). In some cases, the statistic
of interest cannot be estimated directly from the
sample. A typical example is the variance of the
average of a sample, as later discussed. The boot-
strap principle suggests that different statistics
may be estimated by repeated sampling from
the given sample. Specifically, the classical boot-
strap plug-in principle utilizes an estimate p of
the underlying distribution for this purpose. The

plug-in principle suggests the following frame-
work. Given a sample of n observations from p, we
evaluate an estimate p, and repeatedly sample n
observations from it. Then, we numerically evalu-
ate ¢(p) from the bootstrap samples. For example,
assume we are interested in the variance of the
average of a sample. We collect n observations
from p and evaluate p. Then, we draw n obser-
vations from p. We repeat this process B times
and evaluate the average of each drawn sample.
Finally, we compute the variance of these averages
over the B bootstrap samples.

We distinguish between two main bootstrap
schemes. The first is the nonparametric bootstrap,
where a sample of size n is sampled with replace-
ment from the data. Notice that this is equivalent
to sampling n observations from the empirical dis-
tribution (or alternatively, treating the empirical
distribution as a plug-in). The second approach is
the parametric bootstrap. Here, we assume that
the underlying distribution is parametric, with
unknown parameters. We estimate the parame-
ters from the sample and consider the resulting
distribution as a plug-in [1].

In this work we study SCIs for multinomial
proportions. Here, we briefly review several well
known bootstrap schemes for constructing CI of
different parameters. Let p be an unknown distri-
bution and denote 6 as a parameter of interest.
Let x be a drawn sample of n observations from
p (notice we omit the upper-script n for brevity).
Denote p(x) as the empirical distribution of the
sample. Let a* be a bootstrap sample (of size
n) from x. The percentile method is perhaps the
simplest scheme for constructing a bootstrap CI
for . Specifically, for every bootstrap sample
z* we evaluate a corresponding estimate of the
unknown parameter. Then, we evaluate a dis-
tribution of these estimators. Finally, the CI is
defined by the quantiles of this bootstrap distribu-
tion, denoted [92/2, LQ/Q]. The reverse percentile
is a similar approach to the percentile scheme
discussed above, which introduces several favor-
able properties [13]. The reverse percentile utilizes
the bootstrap quantiles to construct the interval
[20 — 07 _o/os 20 — 07, /2] where 0 is an estimate of
0 from the original sample x.

Both the percentile and the reverse percentile
ClIs are easy to implement and generally work
well, but tend to fail in cases where the boot-
strap distribution is asymmetric. To account for



Springer Nature 2021 ETEX template

the asymmetry, Efron proposed the bias-corrected
and accelerated (BCa) method that adjusts for
both the bias and the skewness in the bootstrap
distribution [5].

An additional bootstrap CI scheme is the stu-
dentized bootstrap method, also known as the
bootstrap-t. Bootstrap-t Cls are evaluated simi-
larly to the standard Student’s Cls. They are
formally defined as [0 _tzﬁ17a/2) -Ség, 0 —t’g‘a/z -Ség]
where ¢t} denotes the a percentile of the boot-
strapped Student’s test, t* = (5* — 5)/8%5*, while
" is an estimate of 6 from the bootstrap sam-
ple and S¢y is the estimated standard error of 0 in
the original model [5]. The studentized bootstrap
procedure is a useful generalization of the classi-
cal Student-t CI. However, as stated by Efron [5],
it might result in somewhat erratic results and
can be heavily influenced by a few outlying data
points. On the other hand, the percentile based
methods are considered more reliable [5].

Several variations which consider SCI for mul-
tiple parameters were also considered over the
years. For example, Mandel and Betensky [16]
derived an algorithm which constructs SCI by
assigning ranks to the bootstrap samples and bas-
ing the SCI on the quantiles of the ranks with the
percentile method. It is important to emphasize
this scheme considers an arbitrary set of parame-
ters whereas our problem of interest focuses on a
set of parameters over the unit simplex (multino-
mial parameters).

Constructing bootstrap Cls for multinomial
proportions is not an immediate task. This prob-
lem becomes more complicated in the large alpha-
bet regime, where many symbols are not sampled
at all. Notice that in this case, a naive plug-in
approach would assign zero probability to unob-
served symbols and a corresponding zero length
CI. In this work we introduce a new CI estima-
tion scheme which utilizes a parametric bootstrap
sample, using the GT probability estimation as
the plug-in distribution.

4.2 Good—Turing as a Plug-in

The Good-Turing scheme is perhaps the most
popular approach for estimating large alphabet
probability distributions [22]. Therefore, it is a
natural choice as a bootstrap plug-in distribution.
Specifically, given a sample of n observations from
the multinomial distribution p, we apply the GT

estimator (for example, following (2)) to obtain
par. Then, we sample B bootstrap samples of size
n from per and construct corresponding SCIs fol-
lowing one of the methods discussed above (for
example, the percentile method).

Unfortunately, this somewhat direct approach
fails to obtain the prescribed coverage rate. Specif-
ically, we observe that the obtained SCIs mostly
fail to cover the symbols that do not appear in the
sample. Therefore, we propose a different boot-
strap approach, which allows a special treatment
to the unobserved symbols. Our suggested frame-
work, which we discussed in detail in the following
section, distinguishes between two sets of symbols.
Specifically, we construct two types of Cls. The
first is a bootstrap CI for symbols that do not
appear in the sample. The second is a Bonferroni
corrected (analytical) CI for all the symbols that
do appear in the sample. We show that by control-
ling these ClIs simultaneously, we obtain an RCR
that controls the prescribed coverage rate while
introducing smaller volume than alternatives.

4.3 The Good-Bootstrap Algorithm

As mentioned above, unobserved symbols pose an
inherent challenge. Therefore, we treat these sym-
bols separately from the observed symbols. Let
N;(X™) be the number of appearances of the "
symbol in the sample. Let

pmaa:(Xn) = mle{p(Z) | Nl = O} (3)

be the maximal probability among all unobserved
symbols. Our first goal is to provide a CI for
DPmaxz(X™). Namely, we are interested in T(X")
such that

P(pmaz(X™) <T(X")) 21—, (4)

for a prescribed confidence level §. Unfortunately,
the distribution of Py, (X™) is quite difficult to
analyze. Hence, we turn to a precentile boot-
strap CI, using GT as a plug-in distribution. Our
suggested scheme works as follows. Given a sam-
ple X", we evaluate the GT estimator, pgr. (for
example, following (2)). Then, we sample n sym-
bols from pgr and evaluate pj, .., the maximal
probability over all the unobserved symbols in the
bootstrap sample. We repeat this process B times
and obtain a collection of pJ,,. values. Finally,
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we set the desired CI as [0,T(X™)] where T'(X™)
is the 1 — § percentile of the bootstrapped p}, ...
Notice that the above scheme also applies to other
bootstrap CI methods (as discussed in Section 2).
Here, we focus on the simple percentile method
for simplicity. Next, we proceed to the observed
symbols. Here, we construct a simple binomial CI
(for example, using Clopper-Pearson [3] interval)
for every symbol that appear in the sample.

Finally, we apply a Bonferonni correction to
obtain the desired confidence level simultaneously.
Specifically, let S;(X™) be a binomial CI with a
confidence level of a/(m + 1). For the simplicity
of the derivation, we set S;(X™) = [0, 1] for all the
unobserved symbols as well. Further, let T(X™) be
a (bootstrap) CI for ppqz, with a confidence level
of a/(m + 1). Then,

P{Uidpi € Si(X")}} U{Pmae = T(X™)}) <
)

P(Ui{pi & Si(X™)}) + P(pmaz = T(X™)) <
m N B
m—i—la m+1o¢-o¢.

This means that with probability 1 — «, we simul-
taneously have that

® The parameters of the observed symbols are

covered by their corresponding binomial CI.
® The parameters of the unobserved symbols
are covered by [0,T(X™)].
We denote our suggested scheme as the Good-
Bootstrap SCI. Our proposed scheme is summa-
rized in Algorithm 1 below.

Importantly, we further show that the boot-
strapped T'(X™) may be obtain analytically, with-
out any repeated bootstrap sampling. That is,
given a distribution p and a collection of samples
X™ ~ p, we may obtain an analytical form for
the distribution of P, (X™) and henceforth (4).
The crux of our analysis is that p.,q.(X™) takes
values over a finite set, p. Assume without loss
of generality that the m symbols are sorted in a
ascending order, according to their corresponding
probabilities. Then,

P(pmaz(X") = p(7)) = ()
P(N,L' =0,Njy1 >0,...,N,, > O)

This expression may be evaluated by recursively
applying the Bayes rule, as shown in Appendix A.

Algorithm 1 Good-Bootstrap SCIs
Input: A sample X", alphabet size m and a
confidence level a.
1: Set the GT estimator per(X™).
2: forb=1,...,B do
3: Sample n observations from per(X™) and
evaluate p* . (see (3)).
4: end for
5: Define T(X™) as the 1 — a/(m + 1) percentile
of the collection p}, ., obtained in Step 2.
6: Set [0,T(X™)] as a CI for every unobserved
symbol in X™.
7. Set a Clopper-Pearson binomial CI of level
a/(m + 1), for every observed symbol in X™.

5 Experiments

We now illustrate the performance of our pro-
posed SCI in synthetic and real-world experi-
ments. Figure 1 describes three synthetic example
distributions, which are common benchmarks for
related problems [22]. The Zipf’s law distribution
is a typical benchmark in large alphabet proba-
bility estimation; it is a commonly used heavy-
tailed distribution, mostly for modeling natural
(real-world) quantities in physical and social sci-
ences, linguistics, economics and others fields [27].
The Zipf’s law distribution follows p(i; s,m) =
i7%/ >0 i7* for alphabet size m, where s is a
skewness parameter. In our experiments we con-
sider two different values of s, namely s = 1.01
and s = 1.5. Additional example distributions
are the uniform, p(i) = 1/m, and the step dis-
tribution, with half of the symbols proportional
to 1/2m while the other half are proportional to
3/2m. Our simulations consider alphabet sizes m
in the range of [100,7000] and sample sizes n
within [100,5000] observations. We set a = 0.05
in all of our experiments.

We compare the performance of the Good-
Bootstrap scheme with two alternative methods.
The first is Sison-Glaz (SG) which is discussed
in Section 2. The second is a Bonferroni cor-
rected SCI which utilizes the rule-of-three (ROT)
for unobserved symbols (as described in detail
in Section 2). Although there exist additional
SCI scheme (Section 2), they are omitted from
our report as being non competitive [12, 26] or
computationally infeasible for large alphabets [2].
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and Zipf’s Law with s = 1.5 (lower right)

Figure 1 demonstrates the log-volume of the
examined SCIs for a sample size of n = 500 and an
increasing alphabet size. As we can see, our pro-
posed Good-Bootstrap scheme outperforms both
alternative methods, in all the examined distri-
butions and alphabet sizes. In addition, Figure
2 demonstrates the coverage of the there SCI
schemes. As we can see, both the Good-Bootstrap
and the Bonferroni corrected ROT methods main-
tain the desired confidence level, while SG fails to
do so. This is not quite surprising, as discussed in

Section 2. Additional examination of the SCIs cov-
erage for larger experimental setting is provided
in Appendix B.

Next, we examine the obtained CI for different
symbols in the alphabet. Figure 3 demonstrates
the length of the CI for every symbol in the
Zipt’s Law experiment (s = 1.01). Importantly,
notice that the grayed area corresponds to the
collection of symbols with 95% of the probability
mass. As we can see, the Good-Bootstrap scheme
outperforms both alternatives in this region.
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Finally, we proceed to real-world experiments.
The Biota data-set is a computational biology
sample which considers the forearm skin biota of
six subjects. It contains a total of 1221 clones
consisting of 182 different species-level operational
taxonomic units (SLOTUs) [9]. The Hamlet data-
set is a linguistic collection which considers the
frequency of approximately 5000 distinct words
in the classical Hamlet play. Notice that in these
real-world settings, the true underlying probabil-
ity is unknown. Hence, the underlying distribution

p refers to the total frequency of symbols, in the
full data-set. We examine the three SCI schemes
for different sample sizes. Similarly to the above,
we compare their corresponding confidence region
volumes and evaluate their coverage rate. Figure 4
summarizes the results we achieve. As above, the
Good-Bootstrap scheme demonstrate improved
performance compared to the alternatives.

6 Discussion and Conclusions

In this work we introduce a new SCI scheme
for large alphabet multinomial proportions. The
proposed Good-Bootstrap scheme is based on a
bootstrap statistic, pmar (X™) = max;{p(i) | NV; =
0}, which corresponds to the maximal probabil-
ity over all the symbols that do not appear in
the sample. This statistic is utilized to construct
a CI for all the symbols that do not appear
in the sample, while the remaining symbols are
treated with a Bonferroni corrected binomial CI.
We examine our proposed method on synthetic
and real-world data, showing it outperforms pop-
ular alternatives in large alphabet regimes. We
further show that the Good-Bootstrap scheme
maintains the desired coverage level, as expected.
To the best of our knowledge, our method is the
first to address multinomial intervals estimation
in a large alphabet regime. A Python implemen-
tation of the Good-Bootstrap scheme is publicly
available at [17].

Our proposed algorithm provides a special
treatment to unobserved symbols. However, it
could be generalized to consider symbols that
appear once, twice or more times in the sample,
in a similar manner. This may further reduce the
volume of the obtained SCIs in the studied regime.
An additional improvement may be obtained in
the binomial treatment of the sampled symbols.
Currently, we apply the Clopper-Pearson method,
which is considered conservative. Using a less con-
servative method may result in smaller Cls while
still maintaining the desired confidence level. We
consider these directions for our future work.

Appendix A

Given a sample X" and a distribution p, we
introduce an exact analytical expression for (4).
Assume without loss of generality that the m sym-
bols are sorted in a ascending order, according to
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their corresponding probabilities p(i). Then, we
evaluate the distribution of p,,q.(X™) as follows:

(A1)
(Ni=0,Niy1>0,...,Ny > 0) =
P(NZ ) (Niy1 > 0|N< =0)-
P(Niya > 0|Niys > 0,N; = 0) -
P(Ny, > 0[Ny, 1 > 0,. N,»zO)

P(pmaw(Xn) = p(l)) =

Let us derive each of the terms above. First we

have P(N; = 0) = (1 — p(4))™. Next,
P(N; > 0|N; =0) =1— P(N; = 0|N; = 0) =
o, pG) \"
! (1 1 —p(i)> ’ 42

for every j # i. Similarly, we have

P(Nj > OlNi =0, N; :O> =
1— P(N; = 0|N; = 0, N; = 0) =

N p(j) "
! (1 1—p<z’>—p<t>> - (43)

which we use for our following derivations. Fur-
ther,

P(N, > 0[N; > 0,N; = 0) = (A4)
ZPN > 0|N; > 0,N; = 0,N; = k)-

P(N; =k|N; >0,N; =0) =

~22000 ...
........ o
—23000 - .
@+ Sison-Glaz
Rule of Three \
—24000 - —®— Good Bootstrap °
5(I)0 7;0 10I00 12I50
Sample Size
> P(N, >0|N; =0,N; = k)-
k=1
P(N] > O|NJ = k,NZ = 0)
- P(N; = k|N; = 0) =
P(Nj>0‘Ni:0) ( J | )
1
P(N > 0[N; = 0)
ZPN > 0|N; =0,N; = k)P(N; = k|N; = 0) =

k=1
1

P(N; > 0|N; = 0)
P(N, > 0|N; = 0, N; = 0)P(N;

(P(Ny > 0[N; = 0)—
— 0|N; = 0))

where all the terms that are used in (A4) may
be evaluated according to (A3) and (A2). This
means we may compute each of the terms in (A1)
recursively, one after the other. Specifically,

P(Nt > 0|Nt,1, .. .,Ntfl > O,Ntflfl = O) =

ZP(Nt >0|Ny_1 =k, N2 >0,...,
k=1
Ny >0,Ny_y—1 =0)-

P(Ni—1 =Fk|N;_2>0,.,N;;>0,N;_;_1 =0) =

> PN >0|Nyy =k, Ny2 >0,...,
k=1

Ny >0,N¢_y—1 =0)-

P(Nt_l > O‘Nt_l =k,Ny,_5>0,...,
Ni_i—1=0)



Springer Nature 2021 ETEX template

P(Nt_l = k|Nt_2 >0,...,N;_ ;1= 0)

P(Ntfl > 0|Nt72 > 07 .. .,Ntflfl = 0)
1
P(Nt_l > 0|Nt_2 >0,...,Ny_ 1= O)

> P(N;>0|Ni—y =k, Ny2 >0,...,

k=1
Ni_i—1 =0)
P(Ni—1 =k|N;_2>0,...,Ny_y_1 =0) =

1
P(Nt,1 > 0|Nt,2 >0,.. .7Nt7171 = 0)

(P(Nt > Oth—Q > 0, .. '?Nt—l—l — 0)—
P(N; > 0[N;—1 =0,N;—2 > 0,...,N;—;_1 = 0)-

P(Nt_l = 0|Nt_2 >0,...,Ny_;_1 = 0)> (A5)

where:
L4 P(Nt,1 > 0|Nt,2 > 0,...,Nt,l,1 = 0) is
evaluated according to the previous step.
L4 P(Nt > O‘Nt,1 = O,Nt72 > O,Ntflfl = O)
is similar to the previous expression, but since
we are given that N;_; = 0, the conditional

probability satisfies 1 — (1 - 1_§E?_1)) )

Appendix B
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Fig. B1 Coverage rate of the different methods, out of 100
trials. Alphabet sizes of 100, 500, 1000, 5000, and sample
sizes of 100, 500, 1000, 5000.
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