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Abstract

In recent works, convolutional neural networks (CNN) have been used
in the non-invasive examination of the cardiac region for estimating
pulmonary artery wedge pressure (PAWP) from chest radiographs. More-
over, because CNNs are able to output activated regions, physicians
can estimate PAWP along with reasons. However, when new patient
radiograph data are fed into the CNN, there is a possibility that acti-
vated regions that contain areas other than the cardiac appear. In this
case, although we expect a large estimation error, it is not well known.
Therefore, we verify this hypothesis by distance theory and statistic
approaches. In particular, we build the probability distributions for the
cardiac region and the regression activation map (RAM) and measure the
similarity between these distributions by Wasserstein distance (WSD).
When the CNN estimates PAWP from areas other than the cardiac
region, the WSD value is high. Therefore, WSD is a reliability met-
rics for explainable CNN. We created two groups, normal and anomaly
classes, based on WSD values. Chest radiographs which had a high WSD
were assigned to the anomaly class, and those with a low WSD were
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assigned to the normal class. By comparing the normal and anomaly
classes based on the PAWP estimation error, we confirmed that the errors
from the anomaly class were higher than those of the normal class. There-
fore, physicians need to be aware that there might be large estimation
errors when activated regions contain areas other than the cardiac.

1 Introduction

Pulmonary artery wedge pressure (PAWP) is an index for representing the
cardiac state and is related to heart failure. In general, PAWP is measured by
right heart catheterization (RHC) [1]. Because RHC presents various compli-
cation risks to patients [2], it is important to develop non-invasive methods
for estimating PAWP [1]. PAWP is related to chest radiograph [3]; hence, in
general, physicians interpret PAWP by examining X-ray images of patients
[4]. However, this method is subjective and depends on the physician’s skill
level. Therefore, an objective method, convolutional neural network (CNN),
has been reported for estimating PAWP from chest radiograph. For example,
Hirata et al. [5] developed a classification CNN to detect PAWP over 18 mmHg,
and Saito et al. [6] developed a regression CNN to quantitatively estimate
PAWP from chest radiographs. Because these CNNs output a class activation
map (CAM) [7] or regression activation map (RAM) [8], physicians can detect
PAWP and estimate the activated regions, non-invasively.

There are many applications of deep learning within the medical field,
such as lung nodule classification [9], skin lesion classification [10], prostate
cancer detection [11], glaucoma detection [12], COVID-19 detection [13], and
Alzheimer’s disease recognition [14], among others. Previous research has also
estimated the cardiac state using deep learning, as in the following cases: left
cardiac chamber enlargement detection [15], cardiomegaly detection [16], and
heart failure detection [17, 18]. Moreover, there are extensive reviews on the
techniques and results of inputting chest X-ray images into a CNN [19, 20].
Some of these have the function outputting activated regions as reason of
estimation [12–15, 17].

As we can see in these examples, it is important to develop a CNN that
can output RAM or CAM. We verified that the RAMs outputted from the
CNN developed by Saito et al. [6] contained the cardiac region by estimating
PAWP (see Appendix section). However, when inputting chest radiographs
taken from new patients into CNN, there is a possibility that activated regions
contain not only the cardiac, but other areas. In this case, although we expect
large estimation error, there is insufficient analysis regarding this.

Therefore, we built and verified the following hypothesis: when an activated
region contains areas other than the cardiac, the estimation errors are higher
than when only the cardiac region is activated. To resolve this, we propose a
reliability metrics of an explainable CNN for cardiac evaluation, i.e., an index
representing the degree of the activated region containing areas other than the
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cardiac. Using this index, we assigned RAMs to the normal or anomaly class.
The normal class is the activated region that only contains cardiac, whereas
the anomaly class is the activated region that contains other areas as well. We
compared the normal and anomaly classes by the estimation error.

2 Developed R-CNN

In this section, we describe the regression CNN (R-CNN) developed by Saito
et al. [6], which estimates PAWP from chest radiographs. The model structure
is shown in Fig. 1. By inputting a chest radiograph of size 256 × 256, the
R-CNN outputs PAWP, quantitatively. Inputted images are convoluted by
VGG16[21]-based convolutional layers, and the convoluted data are flattened
by the global average pooling layer (GAP layer) [22]. The model was trained
by cross validating 748 samples. The scatter plots representing the reliability
of R-CNN are shown in Fig. 2. The ground truth PAWP measured by RHC is
on the horizontal axis, and the PAWP estimated by R-CNN is on the vertical
axis. For the training samples (748 patients), the correlation coefficient was
0.762 and the mean absolute error (MAE) was 3.34 mmHg. For test samples
(188 patients), the correlation coefficient was 0.624 and the MAE was 3.97
mmHg. Because many samples gathered on the diagonal line, we considered
developing an R-CNN with a certain reliability. Moreover, the model had the
task of outputting RAM. The size of the RAM was 8 × 8, and was resized
to 256 × 256 (input image size). The details of other training conditions are
explained in [6].

In this study, an all-analysis procedure, we used this R-CNN and the same
dataset from [6]. We confirmed almost all RAMs generated by the R-CNN
contained the cardiac region (see Appendix section) using the k-means cluster-
ing approach. However, some of RAMs contained areas other than the cardiac
region. We expected such samples would result in large estimation error. To
verify the hypothesis, we proposed an index to automatically detect such
samples, which is explained in Section 3.

Fig. 1 R-CNN for estimating PAWP from chest radiographs [6]. The model outputs the
activated region of estimation by RAM.
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Fig. 2 Relationship between ground truth PAWP and estimated PAWP. We create them
by modifying Fig. 3 in [6].

3 Reliability metrics of an explainable CNN for
cardiac evaluation

To assign samples to the normal or anomaly class, it is necessary to develop
the index for representing the degree where the activated region contains areas
other than the cardiac. Therefore, we preparedQ′′, the probability distribution
for representing the region of the cardiac, and Z ′′, the probability distribu-
tion of RAM at estimating PAWP. These distributions are shown in Fig. 3.
Subsequently, we calculating the similarity between Q′′ and Z ′′. When Z ′′ is
similar to Q′′, the activated region for estimating PAWP by R-CNN did not
contain areas other than the cardiac. In contrast, when the similarity was low,
we determined that the activated region contained not only the cardiac region,
but other areas. In this section, we explain the definitions of two distribu-
tions (Q′′ and Z ′′) and the index of similarity between them. As mentioned
in Section 2, the input image size was 256× 256, and the RAM size was 8× 8.
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Fig. 3 Discrete probability distributions Q′′ and Z′′. The distribution Q′′ is developed
using only the training dataset, and the distribution Z′′ is made from R-CNN by inputting
a new patient’s chest radiograph.

However, to increase abstraction, we represented si×si as the input image size
and so × so as the RAM size.

In this study, for simple representation, we used the following abbreviations:

A
∑

a=1

B
∑

b=1

g(a, b)
def
=

A,B
∑

a,b

g(a, b). (1)

3.1 Discrete probability distribution for the cardiac
region

Herein, we developed Q′′, the discrete probability distribution for representing
the cardiac region. Let a two-dimensional Gaussian distribution on coordinate
x, y be denoted as

q(x, y) = N (x, y; µ,σ),

µ = [µx µy]
⊤, σ =

[

σ2
x σxy

σxy σ2
y,

]

, (2)

where µ,σ represent the mean vector and variance-covariance matrix, respec-
tively; these are parameters of the Gaussian distribution. Next, we denote the
matrix Q, which consists of q(x, y), as

Q = [q(x, y)] ∈ R
si×si
≥0 ,

R≥0 = {a ∈ R | a ≥ 0}, (3)

where the matrix size is the input image, i.e., si × si.
When adopting the parameters µ and σ of the Gaussian distribution, such

as when the probabilities of the cardiac region are high, we can regard Q as a
one-channel image as the values of the cardiac region are high. In particular,
when the cardiac region on a chest radiograph is stored in a bounding box
of (x0, y0), (x0, y1), (x1, y0), (x1, y1), we adopted µ′, σ′ leading to the sum of
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probabilities of this region as βth. In other words, we adopted

µ′,σ′ = argmin
µ,σ

(

y1
∑

y=y0

x1
∑

x=x0

q(x, y)− βth

)2

,

s.t. σxy = 0 (4)

as the parameters of Gaussian distribution for Q. Because we defined the
rectangle bounding box as the cardiac region, we regarded σxy as zero.

Next, we compressed the matrix Q from si × si to so × so by bi-linear
interpolation. Let the matrix calculated by this process be denoted as

Q′ = [q′(x, y)] ∈ R
so×so
≥0 . (5)

Because of
∑

x,y q
′(x, y) ̸= 1, Q′ does not satisfy the condition of the

probability distribution. Therefore, we define

Q′′ = [q′′(x, y)]

=
Q′

∑

x,y q
′(x, y)

∈ R
so×so
≥0 , i.e.,

so,so
∑

x,y

q′′(x, y) = 1. (6)

Although Q′′ is the matrix, because the sum value is 1 and each value adds a
real number, we can regard it as the discrete probability distribution. Q′′ has
a feature such that the values are high when the coordinates x, y are near the
cardiac region because of the optimization problem defined by Equation (4).

3.2 Discrete probability distribution for representing the
activated region

Here, we explain the definition of Z ′′, which represents the activated region at
estimating PAWP. Let the set of feature maps just before the GAP layer at
input of a chest radiograph into the R-CNN be denoted as

F = {fk | 1 ≤ k ≤ K, k ∈ N},

fk = [fk(x, y)] ∈ R
so×so , (7)

where K is the number of feature maps. We define the value of the coordinates
x, y of the feature map k as fk(x, y). In this case, the K-dimensional feature
vector by the GAP layer at input of a chest radiograph is

v = [v(k)]

=

[

1

(so)2

so,so
∑

x,y

fk(x, y)

]

∈ R
K . (8)
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In other words, v(k) is an average value of the k-th feature map fk. Moreover,
we define the PAWP estimated by R-CNN as

yest. = w⊤v + b,

w = [w(k)] ∈ R
K , (9)

where w and b are parameters obtained by learning the R-CNN. Because the
parameter w(k) is the weight of v(k), let the impact of the k-th feature map
fk on estimation be denoted as

Zk = w(k)[fk(x, y)] ∈ R
so×so . (10)

By adding them all, we obtain RAM, which is defined by

Z = [z(x, y)]

=

K
∑

k

Zk ∈ R
so×so . (11)

This is the matrix that represents the impact of each coordinate of the feature
maps’ set F on the estimated PAWP yest..

However, because of Z ∈ R
so×so and

∑so,so
x,y z(x, y) ̸= 1, Z does not satisfy

the definition of the discrete probability distribution. Therefore, to satisfy the
condition of the discrete probability distribution, we define the standardized
matrix as

Z ′ = [z′(x, y)]

= Z − [zmin] ∈ R
so×so
≥0 ,

where, zmin = min
x,y

{z(x, y) | 1 ≤ x, y ≤ so}. (12)

Moreover, with 1 as the summing value, we define

Z ′′ = [z′′(x, y)]

=
Z ′

∑so,so
x,y z′(x, y)

∈ R
so×so
≥0 , i.e.,

so,so
∑

x,y

z′′(x, y) = 1. (13)

By these equation transformations, Z ′′ is the activated region that estimates
PAWP using R-CNN and satisfies the condition of the discrete probability
distribution.
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Fig. 4 Average chest radiograph image stacking all training data (748 samples). The red
dashed line box is the cardiac region drawn by a cardiovascular physician. The coordinates
and βth appear in Equation (4).

3.3 Definitions of a reliability metrics and assigning
samples to normal and anomaly classes

In this study, we adopted 2-Wasserstein distance (WSD) [23, 24] to represent
the similarity metrics between the discrete probability distributions Q′′ and
Z ′′. The WSD between Z ′′ and Q′′ is defined by

Dws(Z
′′,Q′′) = (⟨C,T ∗⟩)1/2, (14)

where ⟨C,T ∗⟩ indicates the minimum transportation cost from Z ′′ to Q′′, and
⟨·, ·⟩ indicates the Frobenius inner product, i.e.,

⟨C,T ∗⟩ =

s2
o
,s2

o
∑

i,j

c(i, j)t∗(i, j). (15)

Moreover, indices i and j represent the index of flattened vectors of Z ′′ to Q′′

and are defined by

Z ′′
flat = [z′′flat(i)] ∈ R

s2
o

≥0, (16)

Q′′
flat = [q′′flat(j)] ∈ R

s2
o

≥0. (17)

In other words,

C = [c(i, j)] ∈ R
s2
o
×s2

o

≥0 , c(i, j) = ∥mi −mj∥2,

mi,mj ∈ {[x y]⊤ ∈ N
2 | 1 ≤ x, y ≤ so}. (18)



Springer Nature 2021 LATEX template

Reliability Metrics of Explainable CNN based on Wasserstein Distance 9

The vectors mi and mj represent the coordinates on the distributions Z ′′

and Q′′ that correspond to z′′flat(i) and q′′flat(j), respectively. In other words, C
indicates the matrix representing the Euclid distance from mi on Z ′′ to mj

on Q′′. Moreover, T ∗ = [t∗(i, j)] ∈ R
s2
o
×s2

o

≥0 is the optimal solution of a linear
programming problem. This is expressed by

T ∗ =argmin
T

⟨C,T ⟩,

s.t. T1 = Z ′′
flat, T⊤

1 = Q′′
flat, T ≥ 0, (19)

where 1 and 0 represent the s2o-dimensional vector of ones and the zero matrix
of s2o × s2o size, respectively.

Z ′′ represents the activated region at estimating PAWP by R-CNN, andQ′′

is the distribution for the cardiac region. Therefore, Dws(Z
′′,Q′′) is the relia-

bility metrics of explainable CNN for cardiac evaluation. When Dws(Z
′′,Q′′)

is a small value, we can regard the activated region as containing only the car-
diac (normal class). In contrast, when Dws(Z

′′,Q′′) is a large value, we can
regard the activated region as containing not only the cardiac region but other
areas as well (anomaly class). In other words, let the class of the l-th patient’s
chest radiograph be denoted as

cl =

{

Cnormal, Dws(Z
′′ = Z ′′

l Q
′′) ≤ αth

Canomaly, Dws(Z
′′ = Z ′′

l ,Q
′′) > αth

, (20)

where Z ′′
l represents the l-th patient’s RAM, and αth indicates the threshold.

Cnormal represents the normal class, and Canomaly represents the anomaly class.

4 Experiment

4.1 Dataset and ethics approval

We used the same dataset described in Saito et al. [6]. The study was approved
by the ethics committee of Nihon University Itabashi Hospital (RK-210112-
09) and was performed in accordance with the principles outlined in the
Declaration of Helsinki.

4.2 Parameters setting

To calculate Dws(Z
′′,Q′′), it is required to decide the parameters βth and αth.

Therefore, we created an average chest radiograph by stacking all images of
the training data (748 samples). The averaged image is shown in Fig. 4. The
bounding box of the red dashed line represents the cardiac region, and it is
drawn by a cardiovascular physician . Based on the bounding box, we designed
the discrete probability distribution Q′′.

In particular, we adopted the parameters such that the probability of the
cardiac region is 90%; in other words, we solved the optimization problem
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Fig. 5 Histogram Dws(Z′′,Q′′) of 188 samples in the test dataset. The left side of αth

represents the normal class and the right side of αth represents the anomaly class.

Fig. 6 RAMs assigned to the normal class Cnormal, i.e., Dws(Z′′,Q′′) ≤ αth.

represented in Equation (4). As a result,

βth = 0.90 ⇒

µ′ = [152.5 150.0]⊤, σ′ =

[

24.02 0
0 27.52

]

(21)

were adopted.
Next, we decided the parameter αth, which is the threshold for splitting

data into the normal or anomaly class. Therefore, Dws(Z
′′,Q′′) of all the test

data (188 samples) were calculated.
The histogram is shown in Fig. 5. We can confirm that the distribution’s

right side is long. To detect anomaly data, the average value E[Dws(Z
′′,Q′′)]
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Fig. 7 RAMs assigned to the anomaly class, i.e., Dws(Z′′,Q′′) > αth.

and the variance V [Dws(Z
′′,Q′′)] were calculated. Using them, we adopted

αth = E[Dws(Z
′′,Q′′)] +

1

2

√

V [Dws(Z ′′,Q′′)]

= 1.752 +
0.248

2
= 1.876 (22)

as the threshold defined in Equation (20). This value is αth in Fig. 5. Samples
of the left side were assigned to the normal class Cnormal, whereas samples
of the right side were assigned to the anomaly class Canomaly. The number of
samples in the normal class was 149, and the number in the anomaly class was
39 samples.

RAMs assigned to the normal class are shown in Fig. 6. In cases belonging
to the normal class, we can check that the activated region that is estimating
PAWP by R-CNN contains only the cardiac region (or near there). Next, RAMs
assigned to the anomaly class are shown in Fig. 7. In cases belonging to the
anomaly class, the activated regions that estimate PAWP contained not only
the cardiac region but other areas. Therefore, we consider the proposed index
Dws(Z

′′,Q′′) is reliable.

4.3 Comparison with estimated PAWP errors of normal
and anomaly classes

Here, we verify whether the PAWP estimation errors of the anomaly class are
larger than those of the normal class. The average and median of absolute
errors of the normal and anomaly classes were calculated, and these are shown
in Table 1. We ensured that the absolute error of the anomaly class was larger
than that of the normal class.
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Table 1 Absolute error of estimated PAWP of the normal and anomaly classes. Using the
test dataset, these errors represent the generalization scores.

Absolute error [mmHg]
Normal class Anomaly class diff.

Cnormal Canomaly

(n = 149) (n = 39)
Average 3.60 5.37 +1.77
Median 2.68 5.07 +2.39
Std. 3.85 4.35 -

Next, we described whether the results were statistically significant or not.
First, we tested whether the absolute error followed the Gaussian distribution
using the Shapiro–Wilk test. Because we examined p < .01, we carried out
the two–sided Mann–Whitney U test as the non-parametric hypothesis test.
Hence, we verified that the difference between the absolute errors of the nor-
mal and anomaly classes was statistically significant (p < .05). Therefore, we
considered the estimation error of the anomaly class to be higher than that of
the normal class. In other words, in the case where RAM contains not only
the cardiac region, but other areas, we must consider the possibility of a large
estimation error.

Next, we carried out a questionnaire survey on 23 cardiology physicians
who have medical licenses in Japan. Personal information such as name, age,
and gender were not answered as it was an anonymous survey. The question
presented was “When using the PAWP estimation system by the CNN, how
much estimation error do you allow?”. The answer ranged from 0 to 10 mmHg.
Thus, the average allowable error was 4.04±1.08 mmHg. As indicated in Table
1, the average and median absolute errors of the anomaly class were over the
allowable error. By contrast, the average and median absolute errors of the
normal class were less than the allowable error. This result indicates that when
physicians use the R-CNN to detect a patient’s PAWP, it is important to check
the RAM and proposed index Dws(Z

′′,Q′′).

5 Conclusions, limitations, and future works

In this study, we proposed an index for representing the degree in which the
activated region at estimating PAWP by R-CNN contains not only the cardiac
region but other areas. Moreover, we showed a large estimation error when
the activated region contained areas other than the cardiac. In conclusion, it
is important for physicians to examine RAM.

This study had the following limitations, which leads us to future research.

• We used the dataset described in a previous study [6]. The data were col-
lected via a single center study. In applying deep learning to medicine, it
is desirable to use dataset collected from multiple centers such as [25–28].
Therefore, as one of our future works, we plan to collect chest radiographs
from various medical centers.
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• We designed and used Q′′ as the probability distribution of the cardiac
region indicated in Fig. 4. This is an average cardiac region. However,
each patient’s cardiac region and the average cardiac region may differ.
There exist some studies on the segmentation of the cardiac region [29, 30].
These studies are desirable for using the segmentation model to design the
probability Q′′.

• In this study, we indicated the large error, when the activated region con-
tained areas other than the cardiac. Therefore, it is important to develop
an R-CNN, which outputs RAMs containing only the cardiac region. As for
future works, we plan to develop such an R-CNN by improving the previous
model [6].
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Fig. 8 Relationship between the number of clusters k and WCSS.

Fig. 9 Centroids of six clusters calculated from the test dataset (188 samples)

Appendix

Tendencies and features of RAMs outputted from R-CNN

Herein, we indicate the tendencies and features of RAMs outputted from R-
CNN described in [6]. Therefore, we obtained RAMs of the test dataset (188
samples) by inputting chest radiographs into the R-CNN. Because the size
of the RAM was 8 × 8, we transformed it into a 64-dimensional vector. Sub-
sequently, we clustered the RAM using the k-means method. To decide the
number of clusters k, we carried out the elbow method based on within cluster
sum of squares (WCSS) [31]. The relationship between clusters k and WCSS is
shown in Fig. 8. We can see that WCSS rapidly decreases to k = 6. Therefore,
we adopted k = 6 as the number of clusters.

The centroid RAMs of each cluster are shown in Fig. 9. The upper side
numbers represent the cluster id and sample size (the total number is 188
samples). We can see that R-CNN estimates PAWP from the cardiac region.
However, there are centroids in which the activated regions contain not only
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the cardiac but others, as in cluster 2 or 5. These are the features of RAM
outputted from R-CNN developed by previous research [6].
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