Efficacy and Safety of Specific Immunotherapy with Aeroallergens in the Management of Atopic Dermatitis: A Systematic Review and Meta-analysis

Cita Rosita Sigit Prakoeswa (cita-rosita@fk.unair.ac.id)
Universitas Airlangga Fakultas Kedokteran

Sylvia Anggraeni
Universitas Airlangga Fakultas Kedokteran

Damayanti Damayanti
Universitas Airlangga Fakultas Kedokteran

Menul Ayu Umborowati
Universitas Airlangga Fakultas Kedokteran

Cintya Dipta Riswanto
Universitas Airlangga Fakultas Kedokteran

Sholahuddin Rhatomy
Gadjah Mada University Faculty of Medicine: Universitas Gadjah Mada Fakultas Kedokteran Kesehatan Masyarakat dan Keperawatan

Hari Basuki Notobroto
Universitas Airlangga

Anang Endaryanto
Universitas Airlangga Fakultas Kedokteran

Isaak Effendy
Bielefeld Central Hospital: Klinikum Bielefeld Mitte

Research article

Keywords: Atopic dermatitis, inhalation allergy, specific immunotherapy, aeroallergens, SCORAD, DLQI

Posted Date: February 11th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-192958/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Specific immunotherapy with standardized aeroallergens can reduce symptoms and increase the quality of life for related allergy patients. This therapy is still controversial for atopic dermatitis (AD). Hence, a meta-analysis to assess efficacy and safety of specific immunotherapy with aeroallergens on patients with AD could provide a clear oversight on advantages and limitations of such treatment.

Methods: We systematically searched PubMed, DOAJ, and Cochrane Central Register of Controlled Trials databases for relevant studies published Randomized controlled trials (RCTs) up to October 2020. Studies involving all ages and gender with AD who treated with specific immunotherapy employing aeroallergens compared with placebo/control.

Results: Seven studies RCTs were identified with 832 participants. Significantly decreased of SCORAD values favoring immunotherapy were observed (MD: -5.42; 95% CI - 10.31, -0.52; p=0.03). VAS score was significantly decrease (MD: -1.21; 95% CI -2.10, -0.31; p=0.008). However, immunotherapy showed no significant local and systemic adverse events ((RR 1.77; 95% CI 0.98, 3.19, p=0.06); (RR 0.69; 95% CI 0.16, 3.01, p=0.62)) and IgG4 \textit{Dermatophagoides farinae} (MD: 92.36, 95% CI -89.14,273.87; p=0.32).

Conclusion: Our five years meta-analysis included small number studies, indicated moderate-level evidence for immunotherapy with standardized extract of aeroallergens is effective and safe for AD patients.

Introduction

Allergic diseases in the world including Indonesia are increasing. One allergic disease is Atopic Dermatitis (AD) which is a serious condition that disrupts the quality of life of affected individuals and can interfere with the growth and development of children. AD is a chronic inflammatory skin disease, that involves relapsing symptoms, whose onset is generally related to a patient's or family's atopic history such as asthma and allergic rhinitis. This disease is often associated with impaired skin barrier function, allergen sensitization, and recurrent skin infections.\(^{(1,2)}\) Prevalence of AD in children ranges from 0.2–24.6% and AD in adults about 1–3%.\(^{(3)}\) Other studies reported in the Dermatology and Venereology outpatient clinic at Dr. Soetomo General Hospital Surabaya shows the prevalence of AD in children has increased in 2007–2011.\(^{(4)}\) Yolanda \textit{et al.} reported women are the most common patients with AD and the most chief complaint are pruritus.\(^{(5)}\)

Several AD therapeutic approaches have been established, which include promoting skin hydration, emollients, allergen avoidance, and the use of antihistamines or corticosteroids during the exacerbation phase. However, while these therapies can relieve symptoms, their use is often not effective enough, and the recurrence rate is still high. Some AD patients require long-term systemic treatment that can cause side effects.\(^{(6)}\) At present, there has been increased information about the use of immunotherapy in AD. Allergen immunotherapy has been used for more than a century to reduce the pain of AD patients which is caused by aeroallergens. Successful specific immunotherapy induces an established order of long-term medical tolerance towards allergens, by ensuing a gradual reduction of signs and symptoms and reducing the need for pharmacotherapy.\(^{(7)}\)

Specific immunotherapy works by desensitizing mast cells and basophils, which initially induces Treg cells which will release Interleukin – 10 (IL-10) and tumor growth factor- beta (TGF-\(\beta\)). These can suppress effector cells which cause allergic inflammation such as mast cells, basophils, and eosinophils. Besides, IL-10 and TGF-\(\beta\) produce IgG4 and IgA. IgG4 indirectly limits the activation of IgE. For specific long-term effects, immunotherapy can reduce the IgE-to-IgG4 ratio and number of mast cells and eosinophils.\(^{(8)}\) In AD patients also can increase serum IgE but if it does not increase or is normal it cannot improve the diagnosis of AD since IgE is one of the minor criteria proposed by Hanifin-Rajka. Elevated IgE levels can be due to parasitic or other non-allergic infections.\(^{(9,10)}\) Desensitization is defined as the rapid administration of an increased dose of an allergen or drug in which effector cells are made less reactive or unreactive to the IgE-mediated immune response. Based on several studies on dust mite immunotherapy, allergen immunotherapy may be considered in
certain patients with sensitive AD and suggested to be the only etiologic treatment. This study aimed to evaluate the efficacy and safety of specific immunotherapy for treating AD.

Methods

Literature selection

Literature searches were undertaken in Cochrane Central Register of Controlled Trials, PubMed, and Directory of Open Access Journals (DOAJ) databases from inception to October 10, 2020 for all relevant randomized controlled trials (RCTs) on specific immunotherapy with aeroallergens. Particularly, all relevant studies were addressed by using keyword “atopic dermatitis” and “immunotherapy”. The search was limited to original research with full text available in English. All eligible studies were addressed by testing the strategies. We also assessed all the citations of any relevant articles to broaden our search. Study searches included the participants who were diagnosed with dermatitis/eczema and were not restricted by genders and age.

Data extraction and quality assessment

Relevant information including the first author, year of publication, study design, number of populations, atopic dermatitis prevalence, and specific immunotherapy treated were identified and extracted. We included all published RCTs with intervention using immunotherapy with standardized extracts of aeroallergens for single or mixed allergens by the sublingual, subcutaneous, intradermal, compared with placebo and evaluating the effect of specific immunotherapy in AD treatment. For this study, the participants of all genders and ages were diagnosed by doctors with AD. We excluded literature with other specific dermatitis such as irritant contact dermatitis. Outcomes were as follows: Scoring Atopic Dermatitis (SCORAD), Visual Analog Score (VAS), Serum IgG4 Dermatophagoides farinae, specific IgE Dermatophagoides farinae, and Adverse Events. Five reviewers (CRSP, D, SA, MAU, CDR) independently extracted data by titles, abstract, and full texts. The available clinical characteristics data were extracted and tabled. The risk of bias was assessed by the Cochrane Risk of Bias tools. Disagreement was resolved by discussion until a consensus was reached.

Data synthesis and statistical analysis

For continuous data, we calculated individual and pooled statistics as mean differences (MD) where studies used the same outcome measure, reported with 95% confidence interval (CI), where possible. Forest plots were created to present the prevalence and the corresponding 95% CI of mean differences and clinical characteristics, respectively. We used I^2 statistics to assess heterogeneity among the studies. I^2 values from 0–50% indicated low heterogeneity, I^2 between 50% and 75% indicated moderate heterogeneity, and I^2 more than 75% indicated high heterogeneity. If $I^2 < 50\%$, we used the fixed benefit model to pool the data. Contrarily, when $I^2 > 50\%$, we used the random effect model. The threshold of statistical significance was set to be $p < 0.05$. We used a funnel plot to test publication bias. All analyses and plots were performed and created with Review Manager (version 5.3).

Results

Search results, characteristics of the included studies, and methodological quality

We initially identified 446 articles by our search, including 414 from PubMed, 83 from Directory of Open Access Journals (DOAJ), and 16 from Cochrane Central Register of Controlled Trials. After removing the duplicates, 572 articles remained. From titles and abstract screening, 392 were excluded. 16 potentially eligible articles were assessed by full-text review. Of these 16 studies, 5 review articles, 3 non RCTs, and 1 non-English full-text articles, were further excluded. 7 studies met our
selection criteria and included the data we needed to investigate. A total number of 832 patients were included in these chosen studies. The main characteristics of patients and studies included are described in Table 1. The included articles consisted of 7 RCTs studies. One study was from the USA, two from China, and four from Europe. (Table 1 near here)
<table>
<thead>
<tr>
<th>Trial</th>
<th>Methods</th>
<th>Participant</th>
<th>Intervention (n)</th>
<th>Comparison (n)</th>
<th>Primary outcome</th>
<th>Secondary outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liu, 2019</td>
<td>DB, RCT</td>
<td>239 patients, 18–60 years old, 10 < SCORAD < 40, positive SPT results to DF stimulation</td>
<td>DF drops (SLIT): 36 weeks</td>
<td>Placebo group (n = 60)</td>
<td>SCORAD</td>
<td>Skin lesion area</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>High Dose treatment (n = 60)</td>
<td></td>
<td>Pharmacotherapy medication score</td>
<td>DLQI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Medium Dose treatment (n = 60)</td>
<td></td>
<td>Safety assessment (adverse drug reaction)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low Dose treatment (n = 59)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Werfel, 2006</td>
<td>DB, RCT</td>
<td>89 patients, 18–55 years old with chronic AD, allergic sensitization HDM, SCORAD > 40</td>
<td>SCIT DF : 12 months</td>
<td>Constant dose of 20 SQ-U (active placebo group) n = 28</td>
<td>SCORAD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Increasing dose</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 2 : 20SQ-U to maintenance dose 2000 SQ-U (n = 28)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 3: 20.000 SQ-U (n = 33)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pajno, 2007</td>
<td>DB, RCT</td>
<td>56 patients, Children age 5–16 years with atopic dermatitis (SCORAD > 7), sensitization to dust mites</td>
<td>SLIT DP and DF 18months (n = 28)</td>
<td>Placebo (n = 28)</td>
<td>SCORAD</td>
<td>Adverse event</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VAS</td>
<td></td>
</tr>
<tr>
<td>Qin, 2013</td>
<td>RCT</td>
<td>107 patients, with chronic AD, 18–46 years of age, moderate AD, sensitization to DF</td>
<td>12 months SLIT DF (n = 58)</td>
<td>Only pharmacotherapy (n = 49)</td>
<td>SCORAD</td>
<td>Patients compliance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Daily drug scores</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VAS score</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IgG4 level</td>
<td></td>
</tr>
<tr>
<td>Novak, 2012</td>
<td>DB, RCT</td>
<td>168 patients, 18–66 years of age, moderate – to severe AD, positive SPT DP and DF</td>
<td>SCIT (n = 112) 18 months</td>
<td>Placebo (n = 56)</td>
<td>SCORAD</td>
<td>DLQI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IgE and IgG</td>
<td>Adverse reaction</td>
</tr>
</tbody>
</table>

AD, Atopic dermatitis; HDM, House dust mite; SPT, skin prick test; SCORAD, SCORing Atopic Dermatitis; SCIT, subcutaneous immunotherapy; SLIT, Sublingual immunotherapy; DP, Dermatophagoides pteronyssinus; DF, Dermatophagoides farinae; VAS, visual analog scale; DB, Double-blind; RCT, Randomized controlled trial; OL, Open label.
Trial Methods Participant Intervention (n) Comparison (n) Primary outcome Secondary outcome

<table>
<thead>
<tr>
<th>Trial</th>
<th>Methods</th>
<th>Participant</th>
<th>Intervention (n)</th>
<th>Comparison (n)</th>
<th>Primary outcome</th>
<th>Secondary outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>JM Sanchez, 2012</td>
<td>RCT</td>
<td>60 patients, 3–25 years of age, Clinical history of AD > 2 years, IgE sensitization to DF and DP; SCORAD > 15</td>
<td>SCIT + pharmacotherapy (n = 31)</td>
<td>Pharmacotherapy (n = 29)</td>
<td>SCORAD</td>
<td>Total IgE and specific IgE and IgG4 Levels</td>
</tr>
<tr>
<td>Di Rienzo, 2014</td>
<td>OL, RCT</td>
<td>57 patients, 5–18 years of age, clinical history of chronic mild to moderate AD, not requiring regular use of inhaled corticosteroids, sensitization to DP and/or DF (SPT), positive patch test HDM, SCORAD 8–40</td>
<td>SLIT HDM (72 weeks) standardized extracts + Pharmacologic topical and/or systemic treatment 72 weeks (n = 30)</td>
<td>Pharmacologic topical and/or systemic treatment (n = 27)</td>
<td>SCORAD</td>
<td>Cutaneous symptoms (VAS)</td>
</tr>
</tbody>
</table>

AD, Atopic dermatitis; HDM, House dust mite; SPT, skin prick test; SCORAD, SCORing Atopic Dermatitis; SCIT, subcutaneous immunotherapy; SLIT, Sublingual immunotherapy; DP, Dermatophagoides pteronyssinus; DF, Dermatophagoides farinae; VAS, visual analog scale; DB, Double-blind; RCT, Randomized controlled trial; OL, Open label.

Risk of bias

Five researchers independently assessed the risk of bias of included studies by Cochrane Collaboration's Risk of Bias tool. In our meta-analysis, the risk of bias mostly was moderate. We assessed the risk of bias during random sequence generation, allocation concealment, blinding of participants and personnel, blinding of outcome assessment, analysis of incomplete outcome data, selective reporting, and other bias (Fig. 2. near hear).

SCORAD

A meta-analysis of five studies (12–16) comprising a total of 355 patients reported a significant effect between SCORAD and AD patients who were treated with specific immunotherapy in random-effects model pooling in that result (MD: -5.42; 95% CI: -10.31-0.52). The heterogeneity was high ($I^2 = 96\%$), hence the random-effect model was applied for these outcomes (Fig. 3. near here).

VAS (Visual analog scale)

Two studies (12,17) with 141 participants reported this outcome. A meta-analysis of VAS scores showed significant improvement in end-of-treatment of specific immunotherapy (MD: -1.21; 95% CI: -2.10, -0.31, $I^2 = 0\%$) (Fig. 4. near here).

Serum IgG4 Dermatophagoides farinae

A meta-analysis of three studies (13,17) with 141 participants found no significant increase in serum IgG4 Dermatophagoides farinae (MD: 157.62, 95% CI -153.76, 469.0, $I^2 = 99\%$) (Fig. 5. near here).

IgE Dermatophagoides farinae
IgE *Dermatophagoides farinae* were reported in two studies \((14,18)\) and were measured before and after treatment. The results of a study conducted by Novak *et al.* shown there is a significant difference in *Der. p* specific and *Der. f* specific \((p < 0.01\) and \(p \leq 0.01\)), however Sanchez *et al.* showed there was no significant difference in total and specific *Der. p* and *Der. f*.

Local adverse events

Six studies \((12–15,17,19)\) comprising a total of 651 patients reported the local adverse event in specific immunotherapy. The heterogeneity was moderate \((I^2 = 54\%)\), hence the random-effect model was applied for these outcomes. A meta-analysis showed there were no significant local adverse events in AD patients who were treated with immunotherapy \((RR 1.77; 95\% CI: 0.98, 3.19, I^2 = 54\%)\) (Fig. 6. near here).

Systemic adverse events

We found no significant for systemic adverse events for trials of specific immunotherapy. In six studies \((12–15,17,19)\) with 651 participants reported systemic adverse events \((RR 0.69; 95\% CI: 0.16, 3.01, I^2 = 35\%)\) (Fig. 7. near here).

DLQI (Dermatology Life Quality Index)

Liu (19) reported that specific immunotherapy and placebo groups had a decrease in DLQI. We did not find the data of standard deviation. Another report by Novak (14) showed no difference between treatment groups.

Discussion

Our meta-analysis result found that specific immunotherapy with standardized extract of aeroallergens in AD patient can significantly reduce the SCORAD. From the number of total populations included in our study, we are confident that our result represents the global population. Besides, studies that include also from various countries. In some studies, reduction of SCORAD will be seen after nine months of therapy using specific immunotherapy.(20) Another study showed that the specific immunotherapy treated group with AD saw a statistically significant improvement over the control group in SCORAD. Since the study by Pajno *et al.* of SLIT was in children, and Novak *et al.* of SCIT was in adults, it is difficult to make comparisons.(13,20,21) Some studies showed SCORAD in adults was more variate than children, which was due to population factor, ages, race, genetic, diet, and sample size.(22,23) Clinical manifestations can be calculated by the SCORAD but that is not always correlated with total IgE level.(24) A recent meta-analysis also showed a significant reduction in SCORAD, which our study included in the latest study.(25) SCORAD and Eczema Area and Severity Index (EASI) are some of the recommended results of the assessment signs for AD patients.(26)

We also investigated changes in the VAS score. VAS score for measured pruritus was the dominant symptom of AD patients.(27) Our study showed that VAS significantly reduced. Our meta-analysis was limited due to only two studies reporting this outcome and minimal population. But evidence from another study showed improvement in VAS.(28) The VAS score based on neurobiophysics and physiology was used to assess the patients’ subjective symptoms. This score can be a subjective evaluation reflecting the quality of life of the patient.(20) The first few studies reported symptomatic skin improvement after active therapy and significant improvement.(29,30) Irwanto *et al.* reported severity of AD was related with sleep problems, that could decrease the quality of life the patients, their cognitive function and behavioral patterns.(31) The decreased SCORAD and VAS values after the use of specific immunotherapy therapy are evidence of their efficacy in improving the quality of life for AD patients. The new study by Liu *et al.* showed significant decreased in DLQI of AD patients.(19) Previous study reported the positive correlation between the severity of AD in children evaluated with SCORAD which was assessed with IDQLI, and this study showed severity of AD can improve parents’ QOL which was assessed by FDLQI.(32–34)

The increase in IgG4 *Dermatophagoides farinae* was not significant in the findings of our meta-analysis. The data from Sanchez *et al.* and Qin *et al.* showed significant results whereas Novak *et al.* showed no significant results.(13,14,17) One
study in this systematic review showed no significant difference in the decrease of specific IgE while another study reported significant difference in the decrease before and after treatment.(13,14) The study by Endaryanto et al. showed SLIT could decrease serum IgE, eosinophil count, and TH2 cytokines’ level.(35) The different results could be depending on the heterogeneity and small study size, treatment protocols in types and doses of allergen, and duration of therapy. Some studies show an increase in IgG4 seen since the first month of therapy, while another study showed that after 70 days of specific immunotherapy will increase specific IgA, IgG1, and IgG4 and the increase in IgG4 concentration from 10 to 100fold.(8,37,38) There is no guideline concerning slgG4 as a biomarker to predict clinical effect of immunotherapy treatment.(39)

The increased slgE and total IgE is one of the standards for a confirmatory diagnosis of allergy and are frequently elevated in AD.(40) In therapy with specific immunotherapy, there will be an increase in the initial few months followed by a decrease in slgE after 6 to 12 months of therapy. Several studies have shown that long-term specific immunotherapy therapy for 2 to 3 years reduces slgE.(41,42) Increases of IgG4 levels are associated with Interferon-gamma (IFN-γ), IL-10 and TGF-β.(43,44) In another study, the IgE/IgG ratio can be used as biomarkers for the efficacy of specific immunotherapy.(8) However, You et al. reported the serological biomarkers did not correlate with clinical improvement of AD patients.(45) Future trials could investigate the level of slgG4 and slgE at 2 or 3 years after specific immunotherapy, with larger sample size, same concentrations, to find the correlation with clinical responses.

Apart from slgE and IgG4, several aspects that affect AD are age and race. One study showed that children with AD had lower levels of CLA + IFN-γ TH1 T cells than adults, whereas adults with AD had elevated IL-22.(46) In our meta-analysis, there was a wide distribution of age in the subject populations of the included studies, and accordingly it is possible that the immune responses could be different in the outcome. AD sufferers are also affected by race, and research showed that African-American children with AD have a 1.7-fold higher risk of those with European-American children, while Tackett et al. stated that people of color have a 3.37 higher risk of being moderate to severe AD, followed by the Latino race with 0.64 times and Caucasians with 0.6 times higher risk.(47,48)

One of genes that affects race is the FLG (Filaggrin) gene. FLG gene loss-of-function mutations are the most widely studied genetic link to AD across ethnic groups, and some studies show it is mostly in European followed by Asian AD cases.(49) On histologic appearance, Asians with AD appear more psoriasiform, leading to increased epidermal hyperplasia and more parakeratosis. Psoriasiform dermatitis in Asian patients with AD is due to IL-9 and IL-22. The difference in appearance is because of the epidermal gene expression between Asians, Caucasians, and colored people.(50,51)

Local and systemic adverse events showed no significant differences with specific immunotherapy in our study. The reactions shown were dizziness, swelling of the mouth, face, itching of the lips, rhinitis, erythema, and some reactions will recover without treatment. The systemic reaction shown included flare-ups of eczematous, urticarial lesion, and asthma. (14,52) Cardona et al. reported the risk factor of systematic reaction was the age of patients under 20 years while another study found there was no fatality due to specific immunotherapy after more than 25 years of clinical use.(18,53)

Several limitations were noted in our study including heterogeneity of patients with eternal allergy, geographic variation in allergen exposure and differences in standards in doses.(54)

Conclusion

Our present meta-analysis showed that specific immunotherapy with standardized extract of Aeroallergens may have the potential to decrease SCORAD values and VAS score in atopic dermatitis patients. Adverse events of the specific immunotherapy were minimal and there was no fatality report in the included studies. However, there were certain limitations in our study because heterogeneity, and the lacking of studies from the last five years.
Declarations

Ethics approval and consent to participate: -

Consent for publication: -

Availability of data and materials: -

Competing interests:
The authors declare that they have no competing interests

Funding:
Universitas Airlangga grant

Authors’ contributions:
CRSP, D, SA, MAU, CDR extracted data by titles, abstract, and full texts. CRSP, D, SA, MAU, CDR, HBN analyzed and interpreted the data. All authors were a major contributor in writing the manuscript, read and approved the final manuscript.

Acknowledgment:
We gratefully thank to the Universitas Airlangga grant for funding and supporting this research and staff of Language Clinic (Klinik Bahasa) for help during manuscript preparation.

Disclosure statement:
No potential conflict of interest was reported by the author(s)

References

5. Yolanda, Prabowo GI, Damayanti. The Systemic Therapy of Atopic Dermatitis in Outpatient Clinic Division of Allergy and Immunology at Dr. Soetomo General Hospital in 2013. SM Allergy Ther. 2018;1(1).

Figures
Figure 1

Flow diagram of study selection

Figure 2

Risk of bias in included studies

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Immunotherapy Mean</th>
<th>SD</th>
<th>Total</th>
<th>No Immunotherapy Mean</th>
<th>SD</th>
<th>Total</th>
<th>Weight</th>
<th>Mean Difference IV, Random, 95% CI</th>
<th>Mean Difference IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Di Rienzo 2014</td>
<td>-11.9</td>
<td>22.9</td>
<td>30</td>
<td>-2.78</td>
<td>15.44</td>
<td>27</td>
<td>11.0%</td>
<td>-3.12 [-13.02, 0.76]</td>
<td></td>
</tr>
<tr>
<td>JM Sanchez 2012</td>
<td>-16</td>
<td>5</td>
<td>31</td>
<td>-12</td>
<td>4</td>
<td>26</td>
<td>21.6%</td>
<td>-4.00 [-6.46, -1.52]</td>
<td></td>
</tr>
<tr>
<td>Liu 2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Novak 2012</td>
<td>-4</td>
<td>4.34</td>
<td>98</td>
<td>-5.29</td>
<td>4.50</td>
<td>48</td>
<td>22.3%</td>
<td>1.23 [0.26, 2.24]</td>
<td></td>
</tr>
<tr>
<td>Pajo 2007</td>
<td>-12</td>
<td>3.8</td>
<td>26</td>
<td>-4</td>
<td>3.6</td>
<td>22</td>
<td>21.0%</td>
<td>-8.00 [-10.10, -5.90]</td>
<td></td>
</tr>
<tr>
<td>Werfel 2006</td>
<td>-19</td>
<td>3</td>
<td>27</td>
<td>-10</td>
<td>3</td>
<td>26</td>
<td>22.3%</td>
<td>-9.00 [-10.82, -7.18]</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>212</td>
<td>143</td>
</tr>
<tr>
<td>Heterogeneity: Tau² = 27.25; Chi² = 94.75, df= 4 (P < 0.00001); P = 98%</td>
<td>Test for overall effect: Z = 2.17 (P = 0.03)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3

Forest plots of participants with atopic dermatitis showing end of treatment differences in SCORAD.
Figure 4
Forest plots of participants with atopic dermatitis showing changed VAS.

Figure 5
Forest plots of participants with improvement of serum IgG4 Dermatophagoides farinae

Figure 6
Forest plots of participants with atopic dermatitis showing local adverse events.

Figure 7
Forest plots of participants with atopic dermatitis showing systemic adverse events.