In Silico and Experimental Outcomes of the Expression of miR508-5p and miR-635 in Tumor Compared with Non-Tumor Adjacent Tissues of Patients with Breast Cancer

Fatemeh Zeinali Sehrig
Ahar Branch Islamic Azad University

Mohammad Zaefizadeh (✉ mzaefi@gmail.com)
Islamic Azad University

Changiz Ahmadizadeh
Ahar Branch Islamic Azad University

Mohammad Reza Alivand
Tabriz University of Medical Sciences

Saeid Ghorbian
Ahar Branch Islamic Azad University

Research Article

Keywords: Gene expression omnibus (GEO), Microarray dataset, Breast cancer, MicroRNA

Posted Date: August 1st, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1897756/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

**Background:** Breast cancer (BC) is a malignant tumor that occurs in the epithelial tissue of the breast gland and has become the most common malignancy in women. Various studies have reported the effect of epigenetic changes, including DNA methylation and microRNAs, on breast carcinogenesis. microRNAs play an important role in the post-transcriptional regulation of genes and are important regulators of oncogenic pathways. Studying microRNAs in BC facilitates the development of targeted therapies and early detection of this cancer. This study aimed to evaluate the expression level of miR-508-5p and miR-635 in BC tumor tissues compared to healthy marginal tissues.

**Methods and Materials:** *In silico* analysis confirmed microarray datasets (GSE40525, GSE44124 and GSE45666) downloaded from the GEO database. The analysis was defined using the Affy packages in R software to screen remarkably dysregulated miRNAs attended by utilized to predict the potential biological processes and molecular pathways of miR-508-5p and miR-635. Experimental statistical significance of differences in miRNA relative expression results was analyzed by pair-wise fixed reallocation randomization test as a statistical model included in the REST (relative expression software tool).

**Result** GEO microarray data set, similar to qPCR results, showed that miR-508-5p was downregulated in the sample group by a mean factor of 0.327 (S.E.M range is 0.031-2.000). Moreover, miR-635 was upregulated in the sample group by a mean factor of 2.361 (S.E.M range is 0.250-16.000).

**Conclusion:** MiR-508-5p was downregulated, while miR-635 was upregulated in BC tissues. They may be proposed as diagnostic and therapeutic biomarkers for patients with BC.

Introduction

Breast cancer (BC) is the second most common cancer and a major women's health problem worldwide, affecting approximately one in eight women (1, 2). It affects 2.1 million women annually and accounts for 14% of all cancer-related deaths and 23% of all cancer cases (3). Despite widespread advances in diagnosis and treatment (including radiotherapy, chemotherapy, hormone therapy, and targeted therapies), BC remains a major cause of death among women with cancer (4–6).

Various environmental, genetic and epigenetic factors influence the pathogenesis of BC. Various studies have reported the effect of epigenetic changes, including DNA methylation and microRNAs, on breast carcinogenesis (7). These changes are transmissible and reversible, affecting gene expression without altering the gene sequence. Studies have shown that subtypes of BC are epigenetic different from healthy cells. Expanding the study of various changes in proteins, mRNAs, and microRNAs in BC allows the development of targeted therapies and early detection of this cancer (5, 8). miRNAs are small non-coding RNAs (21–23 nucleotides) that play an important role in the post-transcriptional regulation of genes and are important regulators of oncogenic pathways. According to previous reports, miRNAs are involved in the regulation of approximately 60% of genes (9). The influence of miRNAs on cancer pathogenesis has been well established. Some studies demonstrated the linkage between the pathological features of BC and the expression of miRNAs (10). Impaired expression of miRNAs is associated with various biological processes such as cell apoptosis (11), proliferation (12), and metastasis (13) in BC (14). Thus, miRNAs may be used as important biomarkers for diagnosis, prognosis and a promising treatment for BC (8, 14).

miR-635 is involved as a tumor suppressor in inhibiting solid tumors (15). A previous study showed that miR-508-5p was downregulated in cancers, and overexpression of miR-508-5p reversed multidrug resistance (MDR) most efficiently (16). Currently, the highest number of therapeutic targets and tumor biomarkers are related to coding genes, while non-coding sequences constitute 98% of the genome and produce a large number of regulatory non-coding RNAs (17). Therefore, miRNAs can be used as important non-invasive biomarkers in the early detection of cancers (18). This study aimed to evaluate the expression level of miR-508-5p and miR-635 in BC tumor tissues compared to healthy marginal tissues.

Methods And Materials

*In silico* methods (Data gathering, process and build networks)

Gene Expression Omnibus (GEO), a high-throughput genomic database, was investigated for miRNAs expression profiles in BC. The keywords were as follows: ("breast cancer") or Tumor) and [(healthy) or control or "non tumor") or adjacent]) and "Homo sapiens" Filters: Non-coding RNA profiling by array. The criteria for selecting the qualified datasets consisted of datasets with miRNAs platforms that concomitantly comprised BC tissues and healthy (or adjacent non-tumor samples). regarding the quality of raw data, three datasets, including GSE40525, GSE44124, and GSE45666, were chosen for the rest of the study. The GSE 40525 was used to study 64 patients with primary BC, comprising 56 matched tumor and adjacent peritumor BC tissues, five tumor tissues and three peritumor unmatched tissues. The miRNA microarray datasets GSE44124 which included 53 samples were analyzed. Fifty tumor samples and three pools of normal tissue (10 normal samples for each pool)
were used. The GSE45666 included 101 BC and 15 adjacent breast normal tissue samples. All raw expression data files were subjected to
background correction and quantile normalization using Robust Multi-Array Analysis (RMA) from bioconductor package. The “limma” R
package was used to identify differentially expressed items between tumor and normal samples. Among multitude of miRNAs, miR-508-5p and
miR-635 were selected since these miRNAs were confirmed in recent studies and dysregulated in several cancers.

**Clinical Patients and Samples**

**Ethics statement**

Institutional guidelines, including ethical approval and informed consent, were followed by the Ethics Committee of Tabriz Azad University,
Tabriz, Iran (Ethics code: IR.IAU.TABRIZ.REC.1401.063).

**Sampling**

In this study, the tissues of 100 patients with BC and the tissues of 100 healthy women were collected from Noor Nejat Hospital in Tabriz and
stored at -80 °C. The basis characteristics of the patients with BC included: 1) Tumor grade (Grade 3 = 5%, Grade 2 = 87.5%, Grade 1 = 7.5%), 2)
Lymph node (Yes = 87.5%, No = 12.5%), 3) Family cancer history (Yes = 47.5%, No = 41.3%, Unknown = 11.2%), and 4) Abortion history (Yes =
36.2%).

**Experimental protocol**

**Tissue Processing, Total RNA isolation, complementary DNA (cDNA) synthesis and quantitative real-time PCR (QRT-PCR) analysis**

For RNA extraction, we used liquid nitrogen for homogenizing tissue samples and extracted by Trizol reagent and for quality and quantity of
extracted RNAs, we used a NanoDrop spectrometer (Thermo Scientific, USA). After extraction, obtained RNAs were eluted in 50 μL of RNase-free
water and stored at -80 °C (19).

In this study, cDNA of the miR-508-5p, miR-635, and RNU6 were synthesized using reverse transcriptase enzyme, dNTP (KIAGENE, FANAVAR),
and their unique stem-loop-primers. For this purpose, three specific stem-loop primers were designed for miR-508-5p, miR-635, and also RNU6
(for normalization) were employed and the conditions of PCR machines were 25 min at 10 °C, 47 min at 60 °C, and 5 min at 85 °C. for
conducting Real-time PCR reaction, SYBR Green master mix (SMOBIO) and miR-508-5p, miR-635, specific primers were used. These reactions
were performed by Corbett RG6000 R010756 PCR biomolecular system in two steps as follows: for miR-508-5p: 10 min at 95 °C, 45 cycles of
15 s at 95 °C and 60 s at 60 °C. For miR-635: 10 min at 95 °C, 40 cycles of 15 s at 95 °C and 60 s at 58 °C. Then, for RNU6 amplification: 10 min
at 95 °C, 40 cycles in 15 s at 95 °C and 60 s at 56 °C. The Oligonucleotide sequences in the present study are shown in Table 1.

Table 1
Sequences of the primers for non-coding RNAs
<table>
<thead>
<tr>
<th>accession numbers</th>
<th>Sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>MiR-508-5p(STL)NIMAT0004778</td>
<td>5'-GTCGTATCCAGTGAGGATTTGGCATGACGTTAGTCCAGGTCGAGGTATTCGCACTGGATACGACCATGAGTGACGCCCTCTGGAGTA-3'</td>
</tr>
<tr>
<td>MiR-635(STL)NIMAT0003305</td>
<td>5'-GTCGTATCCAGTGAGGATTTGGCATGACGTTAGTCCAGGTCGAGGTATTCGCACTGGATACGACGGACATTGTTTCAGTGCCCAAGT-3'</td>
</tr>
<tr>
<td>RNU6(STL)</td>
<td>5'-GTCGTATCCAGTGAGGATTTGGCATGACGTTAGTCCAGGTCGAGGTATTCGCACTGGATACGACGACTCAAAATAT3'</td>
</tr>
<tr>
<td>F(miR-5085p)</td>
<td>5'-GGCTTCAGAGGGCGTCA-3'</td>
</tr>
<tr>
<td>Common(R)</td>
<td>5'-GTGCAGGGTCCGAGGT-3'</td>
</tr>
<tr>
<td>F(miR-635)</td>
<td>5'-CTTGGGCACTGAAACAATGTCCG-3'</td>
</tr>
<tr>
<td>Common(R)</td>
<td>5'-GTGCAGGGTCCGAGGT-3'</td>
</tr>
<tr>
<td>RNU6 (F):</td>
<td>5'-GCTTCGGCAGCACATATACTAAAAT-3'</td>
</tr>
</tbody>
</table>

### Statistical Analysis

Most of the *in silico* statistical analyses were performed using the bioinformatic tools mentioned above. The threshold values for differentially expressed miRNAs (DEmiRs) were set to |logFC|>-0.05 and adjacent *p*-value <0.05. Cut-off criteria between normal and tumor samples and volcano plots for the results of differential expression analysis were depicted using R software ggplot2 packages. Experimental statistical significance of differences in miRNA relative expression results was analyzed by pair-wise fixed reallocation randomization test as a statistical model included in the REST (relative expression software tool). *P*-values of less than 0.05 were considered statistically significant.

### Results

**MiR-508-5p was downregulated, while iR-635 was upregulated in BC tissues**

Based on miRTarBase, miRDB, and Target Scan Human 7.2, as miR-related databases, miR-508-5p and miR-635 were selected as potential miRNAs that might play a significant role in BC tissues. To determine the roles of miR-508-5p and miR-635 in human BC, we compared the relative expressions of both miRNAs in BC tissues and their normal adjacent tissues.

**In silico analysis**

Considering |log2FC|>-0.05 and *p* < 0.05 as the cut-off, we revealed that miR-508-5p was significantly downregulated in GSE44124 (logFC=-0.4), GSE4566 (logFC=-0.07), whereas miR-3163 was significantly upregulated in only one array datasets, GSE40525 (logFC = 0.02), that they were in accordance with our experimental findings in Fig. 1. There are 634 and 339 predicted targets for hsa-miR-508-5p and hsa-miR-635 extracted from the miRDB database in Fig. 2, Table 2, Table 3, Table 4, and Table 5.
### Table 2

#### Enriched GO categories (Top 10 categories) mir-508-5p

<table>
<thead>
<tr>
<th>GO ID</th>
<th>GO Name</th>
<th>C</th>
<th>O</th>
<th>Raw P-value</th>
<th>Adjusted P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>GO:0032482</td>
<td>Rab protein signal transduction</td>
<td>48</td>
<td>6</td>
<td>0</td>
<td>0.1794</td>
</tr>
<tr>
<td>GO:0006686</td>
<td>Intracellular protein transport</td>
<td>581</td>
<td>18</td>
<td>0.0001</td>
<td>0.3135</td>
</tr>
<tr>
<td>GO:0046907</td>
<td>Intracellular transport</td>
<td>923</td>
<td>22</td>
<td>0.0003</td>
<td>1</td>
</tr>
<tr>
<td>GO:0071702</td>
<td>Nitrogen compound transport</td>
<td>980</td>
<td>22</td>
<td>0.0008</td>
<td>1</td>
</tr>
<tr>
<td>GO:0071705</td>
<td>Organic substance transport</td>
<td>1070</td>
<td>23</td>
<td>0.001</td>
<td>1</td>
</tr>
<tr>
<td>GO:0051649</td>
<td>Establishment of localization in cell</td>
<td>1019</td>
<td>22</td>
<td>0.0013</td>
<td>1</td>
</tr>
<tr>
<td>GO:0015031</td>
<td>Protein transport</td>
<td>907</td>
<td>20</td>
<td>0.0018</td>
<td>1</td>
</tr>
<tr>
<td>GO:0090070</td>
<td>Positive regulation of ribosome biogenesis</td>
<td>6</td>
<td>2</td>
<td>0.0019</td>
<td>1</td>
</tr>
<tr>
<td>GO:2000234</td>
<td>Positive regulation of rRNA processing</td>
<td>6</td>
<td>2</td>
<td>0.0019</td>
<td>1</td>
</tr>
<tr>
<td>GO:0070727</td>
<td>Cellular macromolecule localization</td>
<td>909</td>
<td>20</td>
<td>0.0019</td>
<td>1</td>
</tr>
</tbody>
</table>

### Table 3

#### Enriched GO categories (Top 10 categories) mir-635

<table>
<thead>
<tr>
<th>GO ID</th>
<th>GO Name</th>
<th>C</th>
<th>O</th>
<th>Raw P-value</th>
<th>Adjusted P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>GO:0018193</td>
<td>Peptidyl-amino acid modification</td>
<td>483</td>
<td>13</td>
<td>0</td>
<td>0.346</td>
</tr>
<tr>
<td>GO:0035556</td>
<td>Intracellular signal transduction</td>
<td>1017</td>
<td>18</td>
<td>0.0001</td>
<td>0.58</td>
</tr>
<tr>
<td>GO:0051094</td>
<td>Positive regulation of developmental process</td>
<td>432</td>
<td>11</td>
<td>0.0002</td>
<td>0.58</td>
</tr>
<tr>
<td>GO:0006836</td>
<td>Neurotransmitter transport</td>
<td>80</td>
<td>5</td>
<td>0.0003</td>
<td>0.58</td>
</tr>
<tr>
<td>GO:0035864</td>
<td>Response to potassium ion</td>
<td>4</td>
<td>2</td>
<td>0.0003</td>
<td>0.58</td>
</tr>
<tr>
<td>GO:0035865</td>
<td>Cellular response to potassium ion</td>
<td>4</td>
<td>2</td>
<td>0.0003</td>
<td>0.58</td>
</tr>
<tr>
<td>GO:0033554</td>
<td>Cellular response to stress</td>
<td>810</td>
<td>15</td>
<td>0.0004</td>
<td>0.58</td>
</tr>
<tr>
<td>GO:0007268</td>
<td>Chemical synaptic transmission</td>
<td>191</td>
<td>7</td>
<td>0.0005</td>
<td>0.58</td>
</tr>
<tr>
<td>GO:0098916</td>
<td>Anterograde trans-synaptic signaling</td>
<td>191</td>
<td>7</td>
<td>0.0005</td>
<td>0.58</td>
</tr>
<tr>
<td>GO:0099537</td>
<td>Trans-synaptic signaling</td>
<td>192</td>
<td>7</td>
<td>0.0005</td>
<td>0.58</td>
</tr>
</tbody>
</table>

### Table 4

#### Pathways that are enriched among target genes of miRNA-508-5p

<table>
<thead>
<tr>
<th>Gene Set</th>
<th>pathway</th>
<th>Size</th>
<th>Expect</th>
<th>Ratio</th>
<th>P-value</th>
<th>FDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>hsa04714</td>
<td>Thermogenesis</td>
<td>229</td>
<td>5.8553</td>
<td>2.0494</td>
<td>0.01449</td>
<td>0.94412</td>
</tr>
<tr>
<td>hsa04211</td>
<td>Longevity regulating pathway</td>
<td>89</td>
<td>2.2757</td>
<td>2.6366</td>
<td>0.02617</td>
<td>1</td>
</tr>
<tr>
<td>hsa04152</td>
<td>AMPK signaling pathway</td>
<td>120</td>
<td>3.0683</td>
<td>2.6073</td>
<td>0.01169</td>
<td>0.914</td>
</tr>
<tr>
<td>hsa04115</td>
<td>p53 signaling pathway</td>
<td>72</td>
<td>1.841</td>
<td>3.2591</td>
<td>0.01004</td>
<td>0.914</td>
</tr>
<tr>
<td>hsa04070</td>
<td>Phosphatidylinositol signaling system</td>
<td>99</td>
<td>2.5313</td>
<td>3.1604</td>
<td>0.00375</td>
<td>0.48891</td>
</tr>
<tr>
<td>hsa04068</td>
<td>FoxO signaling pathway</td>
<td>132</td>
<td>3.3751</td>
<td>2.9629</td>
<td>0.00201</td>
<td>0.39284</td>
</tr>
<tr>
<td>hsa00900</td>
<td>Terpenoid backbone biosynthesis</td>
<td>22</td>
<td>0.56252</td>
<td>5.3331</td>
<td>0.01775</td>
<td>0.97908</td>
</tr>
<tr>
<td>hsa00532</td>
<td>Glycosaminoglycan biosynthesis</td>
<td>20</td>
<td>0.51138</td>
<td>7.8219</td>
<td>0.00146</td>
<td>0.39284</td>
</tr>
<tr>
<td>hsa00340</td>
<td>Histidine metabolism</td>
<td>23</td>
<td>0.58809</td>
<td>5.1013</td>
<td>0.02003</td>
<td>0.97908</td>
</tr>
<tr>
<td>104300</td>
<td>Alzheimer disease</td>
<td>11</td>
<td>0.28126</td>
<td>7.1108</td>
<td>0.03075</td>
<td>1</td>
</tr>
</tbody>
</table>
### Table 5

Pathways that are enriched among target genes of miRNA-635

<table>
<thead>
<tr>
<th>Gene Set</th>
<th>Pathway</th>
<th>Size</th>
<th>Expect</th>
<th>Ratio</th>
<th>P-value</th>
<th>FDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>hsa04727</td>
<td>GABAergic synapse,</td>
<td>88</td>
<td>1.2336</td>
<td>4.8638</td>
<td>0.00143</td>
<td>0.55821</td>
</tr>
<tr>
<td>613659</td>
<td>gastric cancer, intestinal cancer</td>
<td>8</td>
<td>0.11215</td>
<td>17.834</td>
<td>0.00517</td>
<td>0.6293</td>
</tr>
<tr>
<td>hsa04724</td>
<td>Glutamatergic synapse</td>
<td>114</td>
<td>1.5981</td>
<td>3.7545</td>
<td>0.00523</td>
<td>0.6293</td>
</tr>
<tr>
<td>hsa00072</td>
<td>Synthesis and degradation of ketone bodies</td>
<td>10</td>
<td>0.14018</td>
<td>14.267</td>
<td>0.00815</td>
<td>0.6293</td>
</tr>
<tr>
<td>hsa04010</td>
<td>MAPK signaling pathway</td>
<td>295</td>
<td>4.1354</td>
<td>2.4182</td>
<td>0.00837</td>
<td>0.6293</td>
</tr>
<tr>
<td>hsa05162</td>
<td>Measles</td>
<td>132</td>
<td>1.8504</td>
<td>3.2425</td>
<td>0.01049</td>
<td>0.6293</td>
</tr>
<tr>
<td>hsa05168</td>
<td>Herpes simplex infection</td>
<td>185</td>
<td>2.5934</td>
<td>2.6992</td>
<td>0.01513</td>
<td>0.6293</td>
</tr>
<tr>
<td>hsa04520</td>
<td>Adherents junction</td>
<td>72</td>
<td>1.0093</td>
<td>3.9631</td>
<td>0.0182</td>
<td>0.6293</td>
</tr>
<tr>
<td>hsa05412</td>
<td>Arrhythmogenic right ventricular cardiomyopathy (ARVC)</td>
<td>72</td>
<td>1.0093</td>
<td>3.9631</td>
<td>0.0182</td>
<td>0.6293</td>
</tr>
<tr>
<td>hsa05212</td>
<td>Pancreatic cancer</td>
<td>75</td>
<td>1.0514</td>
<td>3.8046</td>
<td>0.02083</td>
<td>0.6293</td>
</tr>
</tbody>
</table>

### Experimental analysis

**MiR-508-5p and MiR-635**

The findings of paired T-test indicated that relative expression of miR-508-5p was significantly downregulated in the human BC tissues compared to the normal adjacent tissues (Table 6 and Fig. 3). miR-508-5p was downregulated in the sample group (in comparison to the control group) by a mean factor of 0.327 (S.E.M range is 0.031–2.000). miR-635 was upregulated in the sample group (in comparison to the control group) by a mean factor of 2.361 (S.E.M range is 0.250–16.000). The findings of paired T-test showed that relative expression of miR-635 was significantly upregulated in the human BC tissues compared to the normal adjacent tissues (Table 6 and Fig. 3).

<table>
<thead>
<tr>
<th>Gene</th>
<th>Type</th>
<th>Reaction Efficiency</th>
<th>Expression</th>
<th>Std. Error</th>
<th>95% C.I.</th>
<th>P(H1)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>miR-508-5p</td>
<td>TRG  1</td>
<td>0.327</td>
<td>0.031–2.000</td>
<td>0.008–16.000</td>
<td>0.000</td>
<td>Down</td>
<td></td>
</tr>
<tr>
<td>miR-635</td>
<td>TRG  1</td>
<td>2.361</td>
<td>0.250–16.000</td>
<td>0.031–128.000</td>
<td>0.000</td>
<td>Up</td>
<td></td>
</tr>
<tr>
<td>U6</td>
<td>REF  1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

miR-508-5p sample group is different from the control group. P(H1) = 0.000

miR-635 sample group is different from the control group. P(H1) = 0.000

### Discussion

According to studies performed on miRNAs, deregulation of miRNAs, change the expression of tumor suppressors, oncogenes and other genes (20). Given that the expression profile of miRNAs in BC cells differs from those in non-cancerous cells (21), they can be used as biomarkers in BC diagnosis and prognosis (19, 22). Changes in the miRNA expression profile induce metastasis, tissue invasion, apoptosis deregulation, and drug resistance in BC (5, 23, 24). Due to the high prevalence of BC (25), many studies have focused on identifying potential biomarkers that can effectively prevent complications through early detection. Bioinformatics studies have revealed the role of miRNA-635 and miRNA-508-5p in various intracellular processes. Therefore, in this study, we analyzed the expression levels of miRNA-635 and miRNA-508-5p in BC tissues compared to non-cancerous marginal tissues.

Previous studies showed that the expression level of miR-635 decreased in several tumors (26). Zhang et al. reported that miR-635 expression decreased in non-small cell lung cancer (NSCLC) and acted as a tumor suppressor. Moreover, miR-635 inhibits tumorigenesis in NSCLC by targeting Ying Yang 1 (YY1) (15). Tian et al. reported that miR-635, as a tumor suppressor, is involved in the inhibition of osteosarcoma tumor (27) and may also act as an essential mediator in various cancers (15). Zhu et al. demonstrated a negative relationship between miR-635 and PART1 expression in which the expression level of miR-635 decreased, while the expression level of PART1 increased in NSCLC. According to their results, miR-635, as a miRNA, is a target for PART1 gene. The Janus kinase-signal transducer and activator of transcription (JAK-STAT)
signaling pathway plays essential roles in the regulation of cytokine receptors (28). Binding of ligands such as cytokines to receptors at the cell surface via dimerization of receptors activates receptor-associated JAKs. Then JAKs activated by phosphorylation of the tyrosine residues. Subsequently, JAKs activate STATs by phosphorylation of the tyrosine subunit. Thus activated STATs participate in regulating tumor progression (28). Therefore, JAK1-STAT3 messaging inhibitors have anti-tumor activity (29). Reports have shown that JAKs are involved in the pathogenesis of immune-related and inflammatory abnormalities, and malignant tumors (30–32). JAKs have an important relationship with cytokine receptors, including IL-2, IL-4, IL-10, and IFNγ (33, 34) and have important inflammation and immunologic roles (28, 35).

They introduced JAK1 and JAK3 as key targets for miR-635 using the luciferase dual reporter assay (36). The effect of PART1/miR-635 on the JAK-STAT pathway depends on the genes (TIMP-1, JAK1, JAK3, STAT3, p-JAK1, P-JAK3, p-STAT3, Pim-1) (36). Yuan et al. demonstrated that miR-635 could inhibit the expression of these genes and inactivate JAK-STAT pathway (37). Also, the clinical significance of JAKs in BC has been reported abundantly. For example, JAK1 expression level is reversely related to lymph node status, tumor size, and TNM of patients with BC (38). Also, somatic mutations of JAKs (such as JAK1, and JAK2, and JAK3) are commonly observed in BC and have potential features for clinical management (39–41). TYK2 plays a prominent function in metastasis and growth of BC (42, 43). Various JAK inhibitors, including Lestaurtinib (multikinase target), CP-690,550 (JAK3 target), and AZ-01/AZ-60 (JAK2 target) are being developed to potentially treat hematological malignancies and autoimmune diseases (44–46).

In contrast to previous studies, our findings showed significant overexpression of miR-635 in BC tissues compared to normal adjacent tissues (P < 0.05) in which BC tumor cells showed high expression of miR-635 in bioinformatics studies of the GEO microarray dataset. The miR-635 is involved in different molecular signaling pathways and is affected by different molecules, clarifying the difference observed in the present study with other studies. Further studies on various molecular signaling pathways and evaluation of other molecules on miR-635 are needed to better understand this issue and find more accurate results. According to qPCR results and bioinformatics studies performed on miR-635, it can be said that miR-635 may play an important role in the incidence and spread of BC. The miR-508-5p acts as a tumor inhibitor in various types of cancers. Liu et al. reported the miR-508-5p, as an important prognostic biomarker in glioma, which could suppress migration and cell proliferation (47). One study demonstrated that miR-508-5p was an important suppressor of gastric cancer. Downregulation of miR-508-5p is associated with progression and malignancy in gastric cancer, and overexpression of miR-508-5p results in apoptosis, reduced invasion and migration of gastric tumor cells, and the cell cycle arrest in G0/G1 phase by targeting S-Phase Kinase Associated Protein 2 (SKP2) (48).

The SKP2 is a significant factor for cell cycle transition from G phase to the S phase, which is involved in cell cycle progression at the G1/S and G2/M phases through the ubiquitin-dependent P27 pathway (49). Therefore, SKP2 can induce cell proliferation and tumorigenesis by degrading ubiquitin in various types of proteins (50). The SKP2 can act as an oncprotein in the progression of various types of cancers (51). The level of miR-508-5p in metastatic gastric cancer reduce (52) and causes multidrug resistance in cancer chemotherapy. The high expression of miR-508-5p in gastric cancer leads to loss of or inhibition of multidrug resistance to chemotherapy drugs in gastric cancer and sensitization of cancer cells to chemotherapy drugs (53). The miR-27 is associated with drug resistance. The function of miR-27 is similar to miR-508-5p, leading to multidrug resistance in gastric cancer (54). The P53 protein is a tumor suppressor protein regulated by miRNAs (55). In MDR of gastric cancer cells, low expression of miR-27b increases the level of CCNG1, which suppresses P53, and low level of P53 directly suppresses miR-508-5p. Consequently, inappropriate expression of P53 directly affects the expression of miR-508-5p. Thus, the miR-27b/CCNG1/P53/miR-508-5p axis is involved in MDR of gastric cancer cells (54).

The miR-508-5p directly targets MESDC1 and increases the expression of miR-508-5p in HepG2 cells, which decreases the level of MESDC1 protein per se. The MESDC1 is an oncogenic factor involved in induction of cell migration, cancer cell survival, invasion and inhibition of apoptosis in bladder cancer (56). LOC102724163 may affect miR-508-5p. Downstream target genes of miR-508-5p are identified using TargetscanHuman7.2 studies, among which MUC19 had the highest score. The expression of MUC19 in BC is very high and has a positive relation with LOC102724163. The LOC102724163 increases the expression of MUC19 in BC by affecting miR-508-5p. The MUC19 is mainly expressed in mucosal cells of the salivary glands (57) and is involved in the pathogenesis of Sjögren’s disease (58). The MUC19 is significantly upregulated in BC (59) and increases proliferation, cell invasion, whereas it decreases apoptosis (60).

In this study, corresponding to previous studies, the expression level of miR-508-5p was significantly reduced in tumor cells compared to healthy cells (P > 0.05). In bioinformatics studies, GEO microarray data set, similar to qPCR results, showed a decrease in expression of miR-508-5p in BC tissues. Further, miR-508-5p plays a role in different molecular pathways and expression of miR-508-5p is affected by various molecules and proteins, which dysregulation of miR-508-5p may change cellular mechanisms and subsequently, cause disease with different severities and MDR in cancer chemotherapy. Therefore, the study of miR-508-5p axis may help us obtain important information, which is important to propose effective treatments for various diseases. It can also be used as an important diagnostic and therapeutic biomarker in BC and other cancers.

**Conclusion**
In general, it can be said that miR-635 may show different expression patterns in different types of cancer. Hence, miR-635 has tumor suppressor activity and oncogenic function in various cancers. In addition, some important molecular pathways changed by miR-635 make cells susceptible to tumorigenesis. Although the tumor suppressor activity of miR-508-5p has been identified in several common cancers, it can change the expression of various genes, which have an important role in cell cycle regulation and increases the incidence of cancers. According to these results and other studies, these miRNAs can be proposed as diagnostic and therapeutic biomarkers; however, further investigation is needed to shed light on different molecular pathways.

**Declarations**

**Consent to publish**

Not applicable.

**Availability of data and material**

Please get in touch with the corresponding author for data requests.

**Competing interests**

The authors declare no competing interests.

**Funding/Support**

This research received no specific grant, funding, equipment or supplies from any funding agency in the public, commercial, or not-for-profit sectors.

**Authors’ contributions**

FZS conceived the study and drafted the first manuscript; CA, MRA, SG contributed to data collection, analysis and interpretation; MZ supervised the study and revised the manuscript. All authors read and approved the manuscript. FZS critically revised the manuscript for important intellectual contents.

**Ethics approval and consent to participate**

Institutional guidelines, including ethical approval and informed consent, were followed by the Ethics Committee of Tabriz Azad University, Tabriz, Iran (Ethics code: IR.IAU.TABRIZ.REC.1401.063).

**Acknowledgements**

We are thankful to Farhad Seif who helped us revise the final manuscript conceptually.

**References**


Figures

Figure 1

Volcano plots of GSE44124, GSE4566 (MiR-508-5p), GSE40525(MiR-635) are shown.
hsa-miR-508-5p and hsa-miR-635 are illustrated.

Figure 3

Relative Expression level (2^(-ΔΔct))
a) The expression of miR-508-5p in tumor tissues and normal adjacent tissues. b) The expression of miR-635 in tumor tissues and normal adjacent tissues.