Influence of different particle size and rock block proportion on microbial solidified soil-rock mixture

Yongshuai Sun (causys666@163.com)
College of Water Resources & Civil Engineering, China Agricultural University

jianguo lv
School of Engineering and Technology, China University of Geosciences, Beijing

Ya Tuo
School of Engineering and Technology, China University of Geosciences, Beijing

Guihe Wang
School of Engineering and Technology, China University of Geosciences, Beijing

Research Article

Keywords: Soil-rock mixture, unconfined compressive strength, soil-rock proportion, stir and mix method, rock block proportion, stone particle size, SEM, EDS, XRD

Posted Date: July 28th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1882715/v1

License: ☺️ ☀️ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

This paper takes soil-rock mixture as the research object, and focuses on the application of mechanical properties of soil-rock mixture improved by microbial mineralization under the influence of different factors. In this paper, the prepared bacterial liquid and cementation reagent are used to mix the bacterial liquid and cementation reagent in the soil-rock mixture under different proportions using the unconfined compressive strength test to find the optimal ratio of soil-rock consolidation, the microbial mineralization and cementation ability and physical and mechanical properties of soil-rock mixture under the influence of rock block proportion and particle size were discussed. The results show that the soil-rock mixture is not a uniform carrier of the medium, and the force on the surface of the sample is not uniform, with the increase of stress load, the stress-strain curve shows a sawtooth upward trend, peak value, etc.; the microbial cemented soil-rock mixture with the particle size of 0.2-0.4cm and 0.4-0.6cm under the rock block proportion of 50%, the unconfined compressive strength of the microbial cemented soil-rock mixture with a rock particle size of 0.6-0.9 cm reaches the highest at 60% rock block proportion; when the stone content is 20%-50%, the unconfined compressive strength decreases with the increase of particle size; when the stone content is 60%, the value of unconfined compressive strength first decreases and then increases with the increase of particle size; both SEM and XRD test results proved that Sporosarcina pasteurii could effectively induce the formation of calcium carbonate, and crystallizes at the pores of the particles to improve the mechanical properties of the soil.

1 Introduction

Soil-rock mixture is a kind of aggregate with gravel or block stone, clay or sand as filler, it is a special geological body with discontinuous, nonlinear and inhomogeneous physical and mechanical properties between soil and rock mass [1]. In recent years, with the rise of various large-scale engineering construction, soil-rock mixture is widely used as an important geotechnical engineering material due to its relatively unique physical and mechanical properties such as wide distribution and good compaction, permeability, shear strength and stability, it is an important material for the construction of slopes [2–4], tunnels [5,6], and subgrade engineering [7–9]. Due to the heterogeneity of the internal structure of the soil-rock mixture, the geological conditions are complex and disasters such as collapses, landslides, and debris flows are prone to occur, which seriously endangers the lives and properties of the surrounding people. Therefore, it is of great significance to take appropriate measures to strengthen the soil-rock mixture to improve its bearing capacity and prevent the occurrence of such disasters.

In recent years, a microbial-induced carbonate precipitation (MICP) soil reinforcement technology has been developed due to its environmental friendliness, simple process, high practical value, and low cost, it can overcome the environmental problems caused by traditional construction technology, and can be used as a future environmentally friendly construction technology, it has attracted extensive attention of scholars in the field of geotechnical engineering. MICP refers to the process of synthesizing calcium carbonate from metabolites of specific bacteria and substances in the surrounding environment [1], the formed calcium carbonate fills the soil pores and connects the soil and stone particles, thereby strengthening the soil. The
basic principle is that certain bacteria can produce urease during their growth, and urease can catalyze the hydrolysis of urea to produce ammonia and carbon dioxide. Ammonia and carbon dioxide can be hydrolyzed into ammonium and carbonate ions in an alkaline environment, and carbonate ions combine with calcium ions in solution to form calcium carbonate precipitates [2–6]. In the field of microbial improvement of geotechnical engineering performance, the use of MICP technology to improve the physical and mechanical properties of geotechnical materials is an important topic of current research by many scholars. After research, the performance of soil engineering treated by MICP was significantly improved, the research includes sand [10], silt [11,12], sandy clayey purple soil [13], yellow soil [14,15], expansive soil [16,17] and mucky soil [18,19] and other types of soil, the unconfined compressive strength and anti-penetration ability of soil are significantly improved, which can be used in engineering practice. Using biomineralization technology and MICP technology to improve the mechanical properties of tailings sand and fix part of the heavy metals carried by it [20–28], it provides a new method for economical, effective and green scientific treatment of heavy metal ions in tailings. Microbial protection and repair technology can effectively compensate for micro-crack repair and improve the durability of concrete structures [29–35], by filling the concrete cracks with sand and bacterial liquid, the concrete cracks are repaired and the compressive strength of the concrete is improved, guarantee the stability and life of the project. The rock and soil anti-seepage plugging technology can significantly improve its permeability. MICP technology is used to conduct rock and soil plugging experiments [36–43], it can be seen that the microbial mineralization technology can form an effective plug, this method makes the geotechnical engineering be strengthened and seepage prevention, guaranteed its stability and durability. The particle size, particle size gradation and relative density of soil are important factors that determine the effect of soil solidification, the academic community has carried out soil column cementation experiments for soils of various particle sizes including kaolin, silt, fine sand, coarse sand and gravel [44–50], the particle size range of effective cementation is obtained, through the measurement of samples with different particle size gradations [51–55], it is found that the sand with coarser grains and good gradation has better curing effect after the improvement of MICP technology, the relationship between the relative density of the soil and the cementation strength was studied [56–61], and it was found that the cementation strength of the soil was positively correlated with its relative density.

Combined with the related research of MICP, the current research focuses on the study of microbial cemented soil, and its solidification effect is often restricted and affected by many factors, however, there is a lack of research on microbial mineralization under the influence of different factors of soil-rock mixture. Based on this, this paper takes soil-rock mixture as the research object, and focuses on the mechanical performance and application prospect of soil-rock mixture improved by microbial mineralization under the influence of different factors. In this paper, the prepared bacterial liquid and cementation reagent are used to mix the bacterial liquid and cementation reagent in the soil-rock mixture under different proportions, using the unconfined compressive strength test to find the optimal ratio of soil-rock consolidation, the microbial mineralization and cementation ability and physical and mechanical properties of mixed soil-rock under the influence of rock content and particle size were discussed.

2 Microbial Improvement Test Of Soil-rock Mixture
Since the 21st century, most researches still focus on the process of bacterial influence of MICP, however, most samples are mineralized by injecting the binding solution into the plexiglass column or syringe through a peristaltic pump to prepare the sample [62–64]. Weaver [65] conducted a series of experiments by injecting a mixed solution of urea-calcium chloride into a syringe. Yasuhara [66] periodically injected urease-solidification samples with urea and calcium chloride solutions to prepare samples for unconfined compressive strength tests. These curing perfusion methods are easy to make the bacteria liquid and cementation liquid react first at the perfusion port, in addition, the sand body or loess near the water inlet is blocked by the calcium carbonate crystals formed earlier, and it is difficult for the subsequent bacterial solution to be injected into the sample, this results in uneven cementation of the bacteria and the resulting calcium carbonate in the sample. Therefore, this experiment also carried out a new exploration of the MICP curing method, using the stirring and mixing method to mix the bacterial liquid, the cementation reagent and the sample, avoid the high-intensity and concentrated injection of bacterial liquid leading to crystal blockage of the injection port, which can make the sample mix more uniform and the sample more fully cemented.

2.1 Bacterial liquid

The test strain is Sporosarcina pasteurii, the glycerol strains of the US National Culture Bank No. (ATCC11859) were inoculated in the sterilized LB liquid culture medium, After the expansion treatment, the cells were cultured in a shaking incubator at 30°C and 200 rpm for 30 h. The OD600 value of the activated and cultured bacterial liquid used in this paper was tested by UV spectrophotometer to 1.25, the original bacterial solution was diluted with physiological saline (0.9% NaCl aqueous solution) to meet the requirements of the experiment. According to the OD600 value of the bacterial solution and the bacterial concentration, referring to the conversion formula proposed by Ramachandran et al [67], the converted bacterial concentration is 11.64×10^7 cells/mL.

2.2 cementation reagent

The cementation reagent is the key to the reaction with the bacterial liquid, and the cementation reagent mainly contains Urea and CaCl₂, among them, urea provides nitrogen and energy sources for microorganisms, and Ca²⁺ in CaCl₂ provides calcium sources for the mineralization of microorganisms, the test cementation reagent used Urea-CaCl₂ mixture, and the molar ratio of Urea and Ca²⁺ was 1:1. The concentration of the cementing solution used in this test is 0.25mol/L, that is, the same volume of 0.25mol/L Urea solution and 0.25mol/L CaCl₂ solution are mixed to prepare 0.25mol/L cementing solution for later use.

2.3 Silt and rocks

In this experiment, silt and rocks were selected as the reinforcement objects of microbial grouting. The soil used for the test was excavated at a construction site in Beijing, and the soil samples were screened by a multi-functional vibrating ballast cleaning machine, the basic physical parameters of the silt are shown in
Table 1. The particle size is 0-0.075 mm and 0.075-0.1 mm, the void ratio e is 0.54, the initial moisture content is 5%, and the plasticity index is 5.98.

<table>
<thead>
<tr>
<th>soil sample name</th>
<th>particle composition mm</th>
<th>void ratio</th>
<th>Moisture content W/%</th>
<th>Liquid limit $W_L/%$</th>
<th>Plastic limit $W_P/%$</th>
<th>Plasticity Index IP</th>
<th>Soil specific gravity G_S</th>
<th>dry density p_d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silt</td>
<td>d ≤ 0.075, 0.075<d ≤ 0.1</td>
<td>0.54</td>
<td>5%</td>
<td>21.52</td>
<td>15.54</td>
<td>5.98</td>
<td>2.7</td>
<td>1.7265</td>
</tr>
</tbody>
</table>

2.4 Test plan

In order to reduce the difference in mineralization caused by the unevenness of the stones, small-grained pebbles of uniform particle size were selected as the stones in the soil-rock mixture. Three kinds of boulders with different particle sizes were selected, 0.2-0.4 cm, 0.4-0.6 cm, 0.6-0.9 cm, respectively, Fig. 1 shows the test silt and rocks. Five different stone content ratios were selected, 20%, 30%, 40%, 50%, 60%, respectively, a total of 15 groups of soil-rock mixing ratio tests were carried out, as shown in Table 2.

Table 2 Mixing ratio scheme of soil and rock

<table>
<thead>
<tr>
<th>Stone content</th>
<th>particle size</th>
<th>20%</th>
<th>30%</th>
<th>40%</th>
<th>50%</th>
<th>60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2-0.4 cm</td>
<td>A1</td>
<td>B1</td>
<td>C1</td>
<td>D1</td>
<td>E1</td>
<td></td>
</tr>
<tr>
<td>0.4-0.6 cm</td>
<td>A2</td>
<td>B2</td>
<td>C2</td>
<td>D2</td>
<td>E2</td>
<td></td>
</tr>
<tr>
<td>0.6-0.9 cm</td>
<td>A3</td>
<td>B3</td>
<td>C3</td>
<td>D3</td>
<td>E3</td>
<td></td>
</tr>
</tbody>
</table>

After the soil sample and the boulders were thoroughly mixed in proportions, the Urea solution 0.25 mol/L, the CaCl$_2$ solution 0.25 mol/L, respectively, were prepared, mix Urea and CaCl$_2$ solution to make 0.25 mol/L cementation reagent. The moisture content of the soil-rock mixture is set to 12%, and the volume ratio of cementitious liquid to bacterial liquid is set to 1:1, pour the cementitious liquid into the soil-rock mixture in proportion, and place it in a moisturizing bag for 6 hours, in order to ensure that the water molecules of the cementing solution diffuse evenly in the soil and rock, to remove the air and seal the tank, after standing for 6 hours, microbial grouting was carried out at room temperature (25 ± 2°C).

The soil-rock mixture sample was prepared using a triaxial saturator, and the sample size was 39.1 mm (diameter) × 80 mm (height). Before sample preparation, a certain soil-rock mixture sample was weighed,
and a certain quality of cementitious liquid was added according to the proportion of moisture content, after stirring evenly, seal it with a fresh-keeping bag and place it in a moisturizing tank for 6 hours to make the calcium ions in the soil distribute as evenly as possible. Before sample preparation, 1.25 mol/L bacterial solution was mixed with the soil and rock body after 6 hours of simmering in the tank. When using a triaxial saturator for sample preparation, apply a small amount of Vaseline in the copper mold, in order to reduce the friction between the sample and the cylinder wall, the sample soil-rock mass will be prepared according to the quality. Each group of three soil-rock mixture samples with the same configuration is prepared, each sample was hammered 30 times, and it was loaded into the mold in 5 layers, the surface of the sample was flattened with a ring knife, and finally the sample was demolded and placed in an ambient temperature of 30°C, 5 days of curing in a constant temperature and humidity curing box of 70 ± 2% ambient humidity. Among them, 30 °C provides the best growth temperature for bacteria, according to the relative humidity of the China Meteorological Science Data Sharing Service Network on the official website of the China Meteorological Administration, a humidity environment of 70 ± 2% was used to simulate the underground soil humidity environment in Beijing.

In this test, manual operation was used, and the soil-rock mixture sample that had been cured for 5 days was put into a strain-type unconfined compression instrument, adjust the instrument to conduct a uniaxial unconfined compressive strength test on the sample at a uniform strain rate and a loading rate of 0.5 mm/s, and record the data. When the sample is damaged, that is, after the inflection point of the test record data appears, continue the test depending on the damage of the sample, the test was stopped when the sample was damaged to a certain extent, and the corresponding data was calculated.

2.5 Microscopic analysis of soil-rock mixture solidified by microorganisms

Microbial mineralization is a biological reaction, and the bacteria itself has the characteristics of small size, large number and rapid response. When the microorganisms act on the soil-rock mixture, the bacterial liquid distribution acts on the gaps between the particles, and the resulting crystals are small in size, strong dispersibility, it is necessary to use scanning electron microscope, SEM and phase analysis of xray diffraction, XRD to conduct microscopic observation of soil-rock mixture, combined with the laws of mechanical properties of the soil-rock mixture after improvement, the energy spectrum analysis and phase analysis of the samples were carried out, explore the material structure, morphology, content, distribution and other laws of microbial mineralization. The SEM was a Zeiss ZEISS GeminiSEM 300 electron microscope, it can be magnified up to 1 million times, very tiny material structures can be observed; The model used by the EDS spectrometer is Smartedx, and the spectrometer uses the different characteristics of X-ray characteristic wavelengths of different elements to analyze the composition of the sample; XRD is a technique for analyzing the structure of materials by utilizing the diffraction effect of X-rays in crystalline materials. Take the broken block in the center of the soil stone column, grind the sample finely, grind the sample to less than 200 mesh, sieve, and test the chemical composition of the crystal in the sample by the tablet method.
3 Test Results And Microscopic Observation Analysis

3.1 Unconfined compressive test results of soil-rock mixture

Figure 2 shows the pictures after the uniaxial unconfined compressive strength test of the microbially cemented soil-rock mixture under different working conditions according to the table. Compression tests under the conditions of 15 groups of different particle sizes and rock block proportion in the figure. Three samples were made for each group of samples, for a total of 45 samples. In order to reduce the data error in the experiment and observe the law more intuitively, the following are the most obvious failure modes and the average value of the experimental data under the same conditions as the basis and data support for the following charts.

By observing the failure pictures under various conditions in Figure 3-3, it is found that the failure forms of the samples are quite different, the crack shapes are different, and the loaded sample is sensitive to disturbance, showing certain fragmentation characteristics. Under the uniaxial unconfined compressive strength test, the failure modes of the soil-rock mixture cemented by bacteria liquid are divided into three types: tension failure, shear failure and composite tension-shear failure. For tensile failure, the failure method is mainly to expand from the top to the bottom, the expansion path is approximately a straight line (eg: D1, A2, E2, A3, C3, E3), For shear failure, the failure mode is mainly a planar split along the top of the soil-rock mixed column, and the failure path basically extends diagonally, the rupture is accompanied by local block shedding, typical shear slip surface characteristics (such as: A1, B1, C1, E1, B2, D2), For the tensile-shear composite failure, there are obvious tension failure surfaces and shear slip surfaces, in addition, the failure crack is accompanied by local sample shedding, which is a typical composite failure mode (such as: C2, D2, D3, B3).

3.2 Influence of rock block proportion on microbial solidified soil-rock mixture

Under the condition that the concentration of bacteria liquid, the concentration of cementation reagent and the ratio of solution remain unchanged, when the stone particle size is 0.2-0.4cm, the stress-strain values of the soil-rock mixture under different rock block proportion are shown in Fig. 3 below, it can be analyzed from Fig. 3 that the peak value of the soil-rock column with a rock block proportion of 50% is the highest, and the bearing capacity reaches the maximum at this time; The stress-strain values of the soil-rock mixture with the stone particle size of 0.4-0.6cm under different rock block proportion are shown in Fig. 4, and the peak value is also at 50% of the rock block proportion; The stress-strain curves of the soil-rock mixture with the stone particle size of 0.6–0.9 cm under different rock block proportion are shown in Fig. 5, and the peak value is at 60% of the rock block proportion. The results show the following:

i. The bearing capacity of the soil-rock mixed column cemented is related to the size of the pores between the soil and rock, due to the small particle size of the silt, it is in close contact with the rock when it is mixed, which increases the rock content and increases the pore space in the sample. Sporosarcina pasteurii are aerobic bacteria that increase pore space, it is conducive to the
combination of bacteria and calcium ions in the cementing solution, and the formation of calcium carbonate crystals on the bacterial surface film, which consolidates the surrounding soil and stones, and increases the strength of the sample.

ii. The bearing strength of the soil-rock mixture is related to the amount of rock block proportion, and the strength and deformation mechanism during shearing are also different with different rock block proportion. For the samples with rock content of 20% and 30%, the content of boulders is low and the content of silt is high. During the loading process, the silt and the boulder are stressed together, and the arrangement of the particles is tight due to the adjustment of the position between the particles, and the macroscopic performance is the shrinkage of the sample volume. As the small particles cohesively break down and move, the sample reaches its peak and completes the test. For the samples with rock block proportion of 50% and 60%, the content of boulder particles is high, the main reason is that large pores will appear in the sample of the block stone particles, in the initial stage of loading, the block stone is first subjected to pressure, and the silt is temporarily "protected" in the pores under the "cover" of the block stone particles. Continue to load and increase the stress, the bonding between particles is destroyed, the pores are reduced, the particles are dislocated, and the sample volume is visually compressed.

iii. In the soil-rock mixture, the silt particles are small. Under the action of loading stress, after the pores are destroyed, the bound water increases due to the shrinkage of the pores, the bond strength between particles is reduced. As the stress increases, the volume shrinks, and the large particles re-contact to increase the bond strength again, so that the sample reaches the peak value quickly, and the axial strain of the sample reaches the peak value is small.

iv. During the stress loading process at the constant rate, the soil-rock mixture is not a uniform carrier of the medium, and the edges and corners of the blocks are first subjected to pressure during the loading process, the stress on the surface of the sample is uneven. With the increase of the stress load, the stress-strain curve shows a jagged upward trend and peak value.

v. It can be observed from Figure 6 that the unconfined compressive strength of the microbially cemented soil-rock mixture with the size of 0.2-0.4cm and 0.4-0.6cm of the boulders reaches the highest, they are 10.3kPa and 9.6kPa respectively, both with a rock block proportion of 50%, the unconfined compressive strength of the microbial cemented soil-rock mixture with a particle size of 0.6-0.9cm reaches the highest unconfined compressive strength of 9.4kPa, with rock block proportion of 60%.

3.3 Influence of stone particle size on microbial-solidified soil-rock mixture

According to the analysis of the above summary, it can be seen that the cementation effect of the soil-rock mixture with 50% and 60% rock block proportion is better, it can carry a large bearing capacity, and the unconfined compressive strength is relatively good. Therefore, the soil-rock samples with stone content of 50% and 60% were observed separately to find out the optimal particle size ratio of the soil-rock mixture, it
provides a reference for subsequent research and engineering applications. The results show the following:

i. Looking at Figures 7, 8 and 9 below, under the condition that the bacterial solution concentration, cementation reagent concentration and solution ratio remain unchanged, when the rock block proportion is 50%, for the soil-rock mixture with a particle size of 0.2-0.4 cm, as the sample is loaded, the stress increases with the increase of the strain, after reaching the peak, the stress gradually decreases, and the loading rate remains unchanged, therefore, the earliest maximum bearing capacity of the three particle sizes is D3-D2-D1, respectively, that is, the sample with a particle size of 0.6-0.9cm shows a peak first, followed by a sample with a particle size of 0.4-0.6cm, and finally a soil-rock mixture sample with a particle size of 0.2-0.4. When the rock block proportion is 60%, the earliest time for the three particle sizes to show the maximum bearing capacity is that D1, D2 and D3 show their peaks at the same time, that is, the sample with a particle size of 0.2-0.4cm reaches the maximum bearing capacity first, and the sample with a particle size of 0.4-0.6cm and a particle size of 0.6-0.9cm basically has the maximum bearing capacity at the same time. The soil-rock mixture mixed with large-sized boulders has a large pore space. When compressed and squeezed, the internal pore space will be destroyed first, and the soil-rock mixture with small-sized boulders will reach the maximum bearing capacity faster than that.

ii. It can be observed in Fig. 9 that under the same loading rate and the same rock block proportion, in the rock block proportion of 20%, 30%, 40% and 50%, under the same proportion of rock, the unconfined compressive strength decreases with the increase of particle size, When the stone content is 60%, the value of unconfined compressive strength first decreases and then increases with the increase of particle size.

iii. When the rock block proportion is low, the difference between the particle size ratio of the stone with small particle size and the soil particle size is relatively small, and it is easier to be cemented with the bacteria liquid to form a block, the compressive strength of the soil-rock mass is enhanced, so the unconfined compressive strength of the soil-rock mixture containing small-diameter stones is higher than that of the soil-rock mixture containing large-diameter stones under the same conditions, In the case of high rock block proportion, the large particle size of the stone and the soil particle size gap is large, and the pore space is large, giving the bacteria liquid more space for cementation and the required oxygen, at the same time, under the consolidation pressure of irregular boulders, the stones with larger particle size have more particle contact points than those with smaller particle size, under the loading speed of the same rate, the soil-rock mixture with large particle size is more easily broken due to the contact point, forming a stronger particle structure, and its unconfined compressive strength is greater than that of the soil-rock mixture with smaller particles.

3.4 Microscopic observation

In order to better explore the mechanism of microbial mineralization in soil-rock mixture, and to feel the cementation products of microbial mineralization more intuitively, a set of blank controls was set up. In the blank control group, deionized water was used to replace the cementation reagent and bacterial liquid.
Under the condition that other conditions remain unchanged, the samples were dried and then microscopically observed. D1, B3 and blank control group were selected for microstructure and phase analysis.

Observing Fig. 10, it can be observed that calcium carbonate crystals are attached to the surface of the sample, which strengthens the bonding of particles at the voids. Observing Fig. 13(a), the atomic energy percentage of calcium ions in sample D1, it can be found that the percentage content of calcium ions in this sample is 0.54%, which is very small. Observing Fig. 11, there are spot-like crystals on the surface of B3, which aggregate on the surface of the silt, connecting the two parts of the silt and the stone. 13(b), the atomic energy percentage of calcium ions in sample B3 is 0.5%, compared with the atomic energy percentage of calcium ions in sample D1, under the same mass, the calcium ion content of B3 is less than that of D1. It can be observed from Fig. 12 that the surface of the sample is powdery, and there is no crystal at the connection, there is an obvious fracture failure surface in the sample, the failure contact surface is smooth, and there is no "rough feeling" as shown in Fig. 10 and Fig. 11. Combined with Fig. 13(c), the calcium ions in the blank control group accounted for 38%, which was less than the percentage of calcium ions in D1 and B3, it is proved that the mineralization of microorganisms can indeed precipitate calcium ions between particles, which provides a theoretical basis for the mineralization of microorganisms.

From the detection results of XRD (Fig. 14, Table 3), it can be observed that the three groups of samples have the highest dolomite content, and the dolomite content of D1, B3 and blank control group is 46.3%, 30% and 18.7%, respectively; The calcite content is 2.9%, 3.1% and 3.7%, respectively. Calcium ion is an important constituent element of dolomite and calcite, both of which exist in the form of calcium carbonate, the sum of the content of the two phases can also be regarded as the total content of calcium carbonate crystals generated under the action of microbial mineralization. According to Table 3, the calcium carbonate content of the three groups of samples under the action of cementation is as follows: D1 > B3 > blank control group, combined with the EDS composition analysis results of D1 and B3, the percentage of calcium ions in the sample D1 > B3, it is proved that in the whole process of microbial mineralization, D1 produces more calcium carbonate than B3, with better cementation performance, filling the pores between particles, the compressive capacity of the soil-rock mixture sample is stronger, which is consistent with the mechanical test results. At the same time, it also shows that calcium carbonate is indeed generated under the action of bacterial liquid and cementation reagent, which strengthens the internal connection between soil and stone, fills pores, and strengthens the strength of the sample.
Table 3
Analysis results of various substances in MICP-treated samples

<table>
<thead>
<tr>
<th>Phase name</th>
<th>chemical formula</th>
<th>B3</th>
<th>D1</th>
<th>blank</th>
</tr>
</thead>
<tbody>
<tr>
<td>illite</td>
<td>KAl2Si3AlO10(OH)2</td>
<td>8.8%</td>
<td>7.6%</td>
<td>8.3%</td>
</tr>
<tr>
<td>Kaolinite</td>
<td>Al4(OH)8Si4O10</td>
<td>0.9%</td>
<td>0.6%</td>
<td>0.6%</td>
</tr>
<tr>
<td>quartz</td>
<td>SiO2</td>
<td>33.0%</td>
<td>20.3%</td>
<td>30.2%</td>
</tr>
<tr>
<td>microcline feldspar</td>
<td>KAlSi3O8</td>
<td>5.8%</td>
<td>4.0%</td>
<td>6.0%</td>
</tr>
<tr>
<td>albite</td>
<td>NaAlSi3O8</td>
<td>11.4%</td>
<td>13.9%</td>
<td>20.0%</td>
</tr>
<tr>
<td>chlorite</td>
<td>(MgFe)6(SiAl)4O10(OH)8</td>
<td>6.2%</td>
<td>3.2%</td>
<td>8.9%</td>
</tr>
<tr>
<td>calcite</td>
<td>CaCO3</td>
<td>3.1%</td>
<td>2.9%</td>
<td>3.7%</td>
</tr>
<tr>
<td>dolomite</td>
<td>CaMgCO3</td>
<td>30.0%</td>
<td>46.3%</td>
<td>18.7%</td>
</tr>
<tr>
<td>amphibole</td>
<td>Al3.2 Ca3.4 Fe4.02 K0.6 Mg6 Na Si12.8 O44 (OH)4</td>
<td>0.8%</td>
<td>1.2%</td>
<td>3.6%</td>
</tr>
</tbody>
</table>

Conclusion

In this paper, a new exploration of the MICP curing method is carried out, the soil and stone with different rock block proportion and different stone particle sizes are proportioned, and the bacteria liquid and the cementing liquid are directly mixed by stirring and mixing method, the samples were prepared by stirring in the soil and rock, and then the unconfined compressive strength mechanical test was carried out on the samples to test the optimal proportion of soil-rock mixture consolidation, the mineralization and cementation ability and physical and mechanical properties of soil-rock mixture under the influence of rock content and particle size were discussed. The main conclusions are as follows:

- The soil-rock mixture is not a uniform carrier of the medium, and the stress on the surface of the sample is uneven. With the increase of the stress load, the stress-strain curve shows a zigzag upward trend and peak value.
- The cementing ability of soil and rock is related to the pore size between soil and rock. Under the same stone particle size, the higher the rock block proportion, the more pores between soil and rock particles, it is conducive to microbial cementation and mineralization, resulting in calcium carbonate crystals, consolidation of surrounding soil and stones, and increase of sample strength. When the stone content is low, the difference between the particle size ratio of the stone with small particle size and the soil particle size is relatively small, and it is easier to be cemented with the bacteria liquid to form a block, which enhances the compressive ability of the soil and rock mass; When the stone content rate is high, the difference between the particle size of large-sized stone and soil particles is large, the pore space is large, and the oxygen is sufficient, which is conducive to microbial
mineralization, at the same time, under the consolidation pressure, the stone with a large particle size has more particle contact points than the stone with a small particle size, which is easier to break, the grain structure is strong, and its unconfined compressive strength is greater than that of the soil-rock mixture with small grains. Under the same rock content, the pore space of the soil-rock mixture mixed with large-diameter boulders is larger than that of the soil-rock mixture containing small particle size, when the sample is compressed, the pore space inside the sample mixed with large-sized boulders is destroyed first, and the soil-rock mixture with small-sized boulders reaches the maximum bearing capacity faster than that.

- When the stone content is 20%-50%, the unconfined compressive strength decreases with the increase of particle size; When the rock block proportion is 60%, the value of unconfined compressive strength first decreases and then increases with the increase of particle size. In the samples with low rock block proportion, the silt content is high, and the overall force is more inclined to the properties of silt during the loading and stressing process. During the compression process, the pores between the particles are destroyed, the bound water increases due to the shrinkage of the pores, and the bonding strength between the particles decreases, making it easier to be destroyed.

- Among the soil-rock mixture samples, the unconfined compressive strength of the microbially cemented soil-rock mixture with the particle size of 0.2-0.4cm and 0.4-0.6cm reaches the highest at 50% rock block proportion; The unconfined compressive strength of the microbially cemented soil-rock mixture with a rock particle size of 0.6–0.9 cm reaches the highest at 60% rock block proportion.

- Microbial mineralization technology can effectively strengthen the adhesion between soil and rock particles, both SEM and XRD test results proved that Sporosarcina pasteurii could effectively induce the formation of calcium carbonate, and crystals are formed at the pores of the particles to improve the mechanical properties of the soil. Small particles of rocks are combined with silt, and the cementation effect is better under the action of microbial mineralization, and the content of calcium carbonate crystals generated is higher than the crystals generated by large particles and silt under the action of mineralization.

Declarations

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the present study.

Funding Statement: This work is supported by the Beijing Natural Science Foundation (8214060), National Natural Science Foundation of China (42107164).

Acknowledgments: This work is supported by the Beijing Natural Science Foundation (8214060), National Natural Science Foundation of China (42107164).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.
References

63. Whiffin Victoria S. Microbial CaCO3 precipitation for the production of biocement[J].

Figures
Figure 1

Test silt and rocks
Figure 2

Results of unconfined compression test of soil-rock mixture
Figure 3

Stress-strain curves of particle size 0.2-0.4cm
Figure 4

Stress-strain curves of particle sizes 0.4-0.6 cm
Figure 5

Stress-strain curves of particle sizes of 0.6-0.9cm
Figure 6

Unconfined compressive strength under different rock block proportion
Figure 7

Stress-strain curve of 50% rock block proportion
Figure 8

Stress-strain curve of 60% rock block proportion
Figure 9

Unconfined compressive strength of different stone sizes

Figure 10

SEM micrographs of D1 at different magnifications

Figure 11

SEM micrographs of B3 at different magnifications

Figure 12

SEM micrographs of blank control group at different magnifications
Figure 13

Element distribution of different soil-rock mixture columns
Figure 14

XRD pattern of the sample