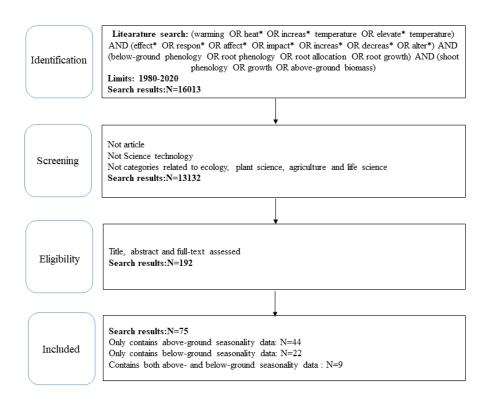
| 1  | Supporting information                                                             |  |  |  |
|----|------------------------------------------------------------------------------------|--|--|--|
| 2  | Phenological mismatches between above- and below-ground plant responses to climate |  |  |  |
| 3  | warming: a global synthesis                                                        |  |  |  |
|    |                                                                                    |  |  |  |
| 4  | Content:                                                                           |  |  |  |
| 5  | Table S1 Weighted effect size of different phenological parameters among           |  |  |  |
| 6  | herbaceous and woody plants.                                                       |  |  |  |
| 7  | Table S2. Egger's regression and Fail-Safe Analysis were used to test the          |  |  |  |
| 8  | publication bias.                                                                  |  |  |  |
| 9  | Table S3 Literatures included in the dataset for the meta-analysis.                |  |  |  |
| 10 | Figure S1. Article selection process using Preferred Reporting Items for           |  |  |  |
| 11 | Systematic Reviews (PRISMA) guidelines.                                            |  |  |  |
| 12 |                                                                                    |  |  |  |
| 13 |                                                                                    |  |  |  |
| 14 |                                                                                    |  |  |  |

**Table S1** Weighted effect size of different phenological parameters among herbaceous and woody plants.

|                                       | Estimate (CI)        | N   | Р      |
|---------------------------------------|----------------------|-----|--------|
| Herbaceous plants                     |                      |     |        |
| Start of above-ground growing season  | -2.88 (-1.85~-3.91)  | 112 | <0.001 |
| End of above-ground growing season    | -5.06 (-2.85~-7.26)  | 112 | <0.001 |
| Length of above-ground growing season | -2.18 (-0.46~-3.91)  | 112 | < 0.05 |
| Start of below-ground growing season  | -0.41 (-2.78~1.96)   | 56  | 0.74   |
| End of below-ground growing season    | -0.66 (-3.46~2.15)   | 56  | 0.65   |
| Length of below-ground growing season | -0.25 (-3.60~3.10)   | 56  | 0.88   |
| Woody plants                          |                      |     |        |
| Start of above-ground growing season  | -2.11 (-0.34~-3.88)  | 70  | < 0.05 |
| End of above-ground growing season    | -1.01 (-3.24~1.22)   | 70  | 0.38   |
| Length of above-ground growing season | 1.10 (-0.99~3.20)    | 70  | 0.30   |
| Start of below-ground growing season  | -6.47 (-2.36~-10.58) | 34  | <0.01  |
| End of below-ground growing season    | 2.26 (-4.20~8.73)    | 34  | <0.02  |
| Length of below-ground growing season | 8.73 (2.20~15.27)    | 34  | <0.01  |

**Table S2** Egger's regression test was used to identify publication bias, P < 0.05 suggests the presence of publication bias. If the publication bias exist, Rosenberg fail-safe number was further used to test whether our conclusion was likely to be affected by the nonpublished studies. When the Rosenberg fail-safe number was larger than 5N + 10 (N the numbers of the observations), it indicated that the conclusion in our study was not affected by the nonpublished studies.


|                                       | P value for Egger's regression test | Rosenberg<br>fail-safe<br>number | 5N+10 |
|---------------------------------------|-------------------------------------|----------------------------------|-------|
| Herbaceous plants                     |                                     |                                  | _     |
| Start of above-ground growing season  | 0.14                                | -                                | 570   |
| End of above-ground growing season    | 0.24                                | -                                | 570   |
| Length of above-ground growing season | 0.01                                | 6708                             | 570   |
| Start of below-ground growing season  | 0.94                                | -                                | 290   |
| End of below-ground growing season    | 0.18                                | -                                | 290   |
| Length of below-ground growing season | 0.29                                | -                                | 290   |
| Woody plants                          |                                     |                                  |       |
| Start of above-ground growing season  | <0.01                               | 4041                             | 360   |
| End of above-ground growing season    | <0.001                              | 19753                            | 360   |
| Length of above-ground growing season | <0.01                               | 41916                            | 360   |
| Start of below-ground growing season  | 0.80                                | -                                | 180   |
| End of below-ground growing season    | 0.69                                | -                                | 180   |
| Length of below-ground growing season | 0.82                                | -                                | 180   |

| phenophases | Belowground phenophases                 |
|-------------|-----------------------------------------|
|             |                                         |
| Yes         |                                         |
|             | Yes                                     |
|             | Yes                                     |
| Yes         |                                         |
| Yes         |                                         |
| Yes         |                                         |
|             | Yes                                     |
| Yes         |                                         |
|             | Yes                                     |
|             | Yes                                     |
|             | Yes                                     |
| Yes         |                                         |
|             | Yes                                     |
|             | Yes                                     |
|             | Yes                                     |
| Yes         |                                         |
|             | Yes                                     |
| Yes         | Yes                                     |
| Yes         |                                         |
| Yes         |                                         |
| Yes         | Yes                                     |
| Yes         |                                         |
| Yes         |                                         |
|             | Yes                                     |
| Yes         |                                         |
|             | Yes                                     |
| Yes         | Yes                                     |
|             | Yes                                     |
| Yes         |                                         |
|             | Yes                                     |
| Yes         | Yes                                     |
| Yes         |                                         |
| Yes         |                                         |
|             | Yes                                     |
| Yes         |                                         |
|             | Yes |

| Peltola et al. 2002       | Yes |     |
|---------------------------|-----|-----|
| Pilon et al. 2013         |     | Yes |
| Pilumwong et al. 2007     | Yes | Yes |
| Radville et al. 2018      | Yes | Yes |
| Randriamanana et al. 2015 | Yes |     |
| Reddy et al. 1991         | Yes |     |
| Schuerings et al. 2014    |     | Yes |
| Sheppard and Stanley 2014 | Yes |     |
| Shi et al. 2017           |     | Yes |
| Slaney et al. 2007        | Yes |     |
| Sobuj et al. 2018         | Yes |     |
| Sønsteby et al. 2012      | Yes |     |
| Stenström et al. 2010     | Yes |     |
| Stirling et al. 2010      | Yes |     |
| Sullivan and Welker 2005  | Yes | Yes |
| Tacarindua et al. 2013    | Yes |     |
| Takahashi 2005            | Yes |     |
| Tian et al. 211           | Yes |     |
| Usami and Lee 2010        | Yes |     |
| Veteli et al. 2010        | Yes |     |
| Volder et al. 2015        | Yes |     |
| Walker et al. 2015        | Yes |     |
| Wan et al. 2004           |     | Yes |
| Wang et al. 2017          |     | Yes |
| Wang et al. 2010          | Yes |     |
| Wang et al. 2016          |     | Yes |
| Wheeler et al. 2016       | Yes |     |
| Wu et al. 2020            |     | Yes |
| Xiong 2018                | Yes | Yes |
| Xu et al. 2015            | Yes |     |
| Xu et al. 2009            | Yes |     |
| Yoon et al. 2009          | Yes |     |
| Yoshitake et al. 2015     | Yes |     |
| Zha et al. 2001           | Yes |     |
| Zhang et al. 2020         | Yes |     |

## 32 Figure S1 Article selection process using Preferred Reporting Items for Systematic

## 33 Reviews (PRISMA) guidelines.



## References

- 1. **Adams SR, Cockshull KE, Cave CRJ. 2001.** Effect of temperature on the growth and development of tomato fruits. *Annals of Botany* **88**(5): 869-877.
- Arndal MF, Tolver A, Larsen KS, Beier C, Schmidt IK. 2018. Fine root growth and vertical distribution in response to elevated CO<sub>2</sub>, warming and drought in a mixed heathland—Grassland.
- 41 *Ecosystems* 2018(21): 15-30.
- 42 3. **Bai W, Wan S, Niu S, Liu W, Chen Q, Wang Q, Zhang W, Han X, Li L. 2010.** Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: implications for ecosystem C cycling. *Global Change Biology* **16**(4): 1306-1316.
- 45 4. **Bannayan M, Soler CMT, Garcia AGY, Guerra LC, Hoogenboom G. 2009.** Interactive effects of elevated CO<sub>2</sub> and temperature on growth and development of a short- and long-season peanut cultivar. *Climatic Change* **93**: 389-406.
- Benlloch-González M, Quintero JM, Suarez MP, Sánchez-Lucas R, Fernández-Escobar R,
   Benlloch M. 2016. Effect of moderate high temperature on the vegetative growth and potassium allocation in olive plants. *Journal of Plant Physiology* 207: 22-29.
- 51 6. **Bronson DR, Gower ST, Tanner M, Van Herk I. 2009.** Effect of ecosystem warming on boreal black spruce bud burst and shoot growth. *Global Change Biology* **15**(6): 1534-1543.
- 7. Carrillo Y, Dijkstra FA, Dan LC, Morgan JA, Blumenthal D, Waldron S, Pendall E. 2014.
   54 Disentangling root responses to climate change in a semiarid grassland. *Oecologia* 175(2): 699.
- Coleman JS, Bazzaz FA. 1992. Effects of CO<sub>2</sub> and temperature on growth and resource use of co occurring C<sub>3</sub> and C<sub>4</sub> annuals. *Ecology* 73(4): 1244-1259.
- D'Imperio, L., Arndal, M.F., Nielsen, C.S., Elberling, B. & Schmidt, I.K. (2018) Fast responses
   of root dynamics to increased snow deposition and summer air temperature in an arctic wetland.
   Frontiers in Plant Science, 9, 1258.
- Darrouzet-Nardi, A., Steltzer, H., Sullivan, P.F., Segal, A., Koltz, A.M., Livensperger, C.,
   Schimel, J.P. & Weintraub, M.N. (2019) Limited effects of early snowmelt on plants,
   decomposers, and soil nutrients in Arctic tundra soils. *Ecology & Evolution*, 9, 1820-1844.
- 11. **Edwards EJ, Benham DGMarland LA, Fitter AH. 2004.** Root production is determined by radiation flux in a temperate grassland community. *Global Change Biology* **10**(2): 209-227.
- 65 12. **Esmail S, Oelbermann M. 2011.** The impact of climate change on the growth of tropical agroforestry tree seedlings. *Agroforestry Systems* **83**(2): 235-244.
- 67 13. **Feng J, Xiong D, Deng F, Shi S, Xu S, Zhong B, Chen Y, Chen G. 2017.** Effects of soil warming and precipitation exclusion and their interaction on fine roots production of Chinese fir (*Cunninghamia lanceolata*) seedlings. *Acta Ecologica Sinica* **37**(4) 1119-1126.
- 70 14. **Fitter AH, Self GK, Brown TK, Bogie DS, Graves JD, Benham D, Ineson P. 1999.** Root production and turnover in an upland grassland subjected to artificial soil warming respond to radiation flux and nutrients, not temperature. *Oecologia* **120**(4): 575-581.
- 73 15. **Forbes PJ, Black KE, Hooker JE. 1997.** Temperature-induced alteration to root longevity in *Lolium perenne. Plant & Soil* **190**(1): 87-90.
- Forbes, S.J., Cernusak, L.A., Northfield, T.D., Gleadow, R.M., Lambert, S. & Cheesman, A.W.
   (2020) Elevated temperature and carbon dioxide alter resource allocation to growth, storage and
   defence in cassava (Manihot esculenta). Environmental & Experimental Botany, 103997.
- 78 17. Gavito ME, Curtis PS, Mikkelsen TN, Jakobsen I. 2001. Interactive effects of soil temperature,

- atmospheric carbon dioxide and soil N on root development, biomass and nutrient uptake of winter wheat during vegetative growth. *Journal of Experimental Botany* **52**(362): 1913-1923.
- 81 18. Ge ZM, Zhou X, Kellomäki S, Peltola H, Biasi C, Shurpali N, Martikainen PJ, Wang KY.
- 82 2012. Measured and modeled biomass growth in relation to photosynthesis acclimation of a
- bioenergy crop (Reed canary grass) under elevated temperature, CO<sub>2</sub> enrichment and different water regimes. *Biomass & Bioenergy* **46**(46): 251-262.
- 85 19. **Gruber A, Oberhuber W, Wieser G. 2018.** Nitrogen addition and understory removal but not soil
   86 warming increased radial growth of *Pinus cembra* at treeline in the Central Austrian Alps. *Frontiers* 87 *in Plant Science* 9: 1-11.
- 88 20. **Hakala, K. & Mela, T.** (1996) The effects of prolonged exposure to elevated temperatures and elevated CO2 levels on the growth, yield and dry matter partitioning of field-sown meadow fescue.

  90 Agricultural & Food Science, **5**, 285-298.
- 91 21. **Han S, Lee SJ, Yoon TK, Han SH, Lee J, Kim S, Hwang J, Cho MS, Son YW. 2015.** Species-92 specific growth and photosynthetic responses of first-year seedlingsof four coniferous species to 93 open-field experimental warming. *Turkish Journal of Agriculture and Forestry* **39**(2): 342-349.
- 94 22. **Hely, S.E. & Roxburgh, S.H.** (2005) The interactive effects of elevated CO<sub>2</sub>, temperature and initial size on growth and competition between a native C<sub>3</sub> and an invasive C<sub>3</sub> grass. *Plant Ecology*, **177**, 85-98.
- 97 23. **Higuchi H, Sakuratani T, Utsunomiya N. 1999.** Photosynthesis, leaf morphology, and shoot growth as affected by temperatures in cherimoya (*Annona cherimola* Mill.) trees. *Scientia* 99 *Horticulturae* **80**(1): 91-104.
- 100 24. **Huang BR, Taylor HM, Mcmichael BL. 1991.** Behavior of lateral roots in winter wheat as affected by temperature. *Environmental & Experimental Botany* **31**(2): 187–192.
- 102 25. **Hutchison JS, Henry HAL. 2010.** Additive effects of warming and increased nitrogen deposition in a temperate old field: plant productivity and the importance of winter. *Ecosystems* **13**(5): 661-104 672.
- 26. Johnson MG, Rygiewicz PT, Tingey DT, Phillips DL. 2010. Elevated CO<sub>2</sub> and elevated temperature have no effect on Douglas-fir fine-root dynamics in nitrogen-poor soil. New Phytologist
   170(2): 345-356.
- 108 27. **Kellomäki, S. & Wang, K.-Y.** (2001) Growth and resource use of birch seedlings under elevated carbon dioxide and temperature. *Annals of Botany*, **87**, 669-682.
- 28. King J, Pregitzer K, Zak D. 1999. Clonal variation in above- and below-ground growth responses
   of *Populus tremuloides* Michaux: Influence of soil warming and nutrient availability. *Plant & Soil* 217(1/2): 119-130.
- 113 29. **Klein JA, Harte J, Zhao X-Q. 2007.** Experimental warming, not grazing, decreases rangeland quality on the Tibetan Plateau. *Ecological Applications* 17(2): 541-557.
- 30. Kreyling, J., Grant, K., Hammerl, V., Arfin-Khan, M.A., Malyshev, A.V., Peñuelas, J., Pritsch,
   K., Sardans, J., Schloter, M. & Schuerings, J. (2019) Winter warming is ecologically more relevant than summer warming in a cool-temperate grassland. *Scientific Reports*, 9, 1-9.
- 118 31. Lahti M, Aphalo PJ, Finer L, Ryyppo A, Lehto T, Mannerkoski H. 2005. Effects of soil
   temperature on shoot and root growth and nutrient uptake of 5-year-old Norway spruce seedlings.
   Tree Physiology 25(1): 115-122.
- 121 32. **Lee JS. 2011.** Combined effect of elevated CO<sub>2</sub> and temperature on the growth and phenology of two annual C<sub>3</sub> and C<sub>4</sub> weedy species. *Agriculture Ecosystems & Environment* **140**(3): 484-491.

- 123 33. Lenka, N.K., Lenka, S., Thakur, J., Elanchezhian, R., Aher, S., Simaiya, V., Yashona, D.,
- Biswas, A., Agrawal, P. & Patra, A. (2017) Interactive effect of elevated carbon dioxide and
- elevated temperature on growth and yield of soybean. *Current Science*, **113**, 2305.
- 126 34. Leppälammi-Kujansuu, J., Salemaa, M., Kleja, D.B., Linder, S. & Helmisaari, H.-S. (2014)
- Fine root turnover and litter production of Norway spruce in a long-term temperature and nutrient
- manipulation experiment. *Plant & Soil*, **374**, 73-88.
- 129 35. Li, Y., Hou, R. & Tao, F. (2020) Interactive effects of different warming levels and tillage
- managements on winter wheat growth, physiological processes, grain yield and quality in the North
- 131 China Plain. Agriculture, Ecosystems & Environment, 295, 106923.
- 132 36. Lin X, Zhang Z, Wang S, Hu Y, Xu G, Luo C, Chang X, Duan J, Lin Q, Xu B. 2011. Response
- of ecosystem respiration to warming and grazing during the growing seasons in the alpine meadow
- on the Tibetan plateau. Agricultural & Forest Meteorology 151(7): 792-802.
- 135 37. Mitchell Rac, Mitchell Vj, Driscoll Sp, Franklin J, Lawlor Dw. 1993. Effects of increased CO<sub>2</sub>
- 136 concentration and temperature on growth and yield of winter wheat at two levels of nitrogen
- 137 application. *Plant, Cell & Environment* **16**(5): 521-529.
- 138 38. Nissinen K, Nybakken L, Virjamo V, Julkunentiitto R. 2016. Slow-growing Salix repens
- 139 (Salicaceae) benefits from changing climate. Environmental and Experimental Botany 128: 59-68.
- 140 39. Nybakken L, Hörkkä R, Julkunen-Tiitto R. 2012. Combined enhancements of temperature and
- 141 UVB influence growth and phenolics in clones of the sexually dimorphic Salix myrsinifolia.
- 142 *Physiologia Plantarum* **145**(4): 551-564.
- 143 40. **Oh-e I, Saitoh K, Kuroda T. 2007.** Effects of high temperature on growth, yield and dry-matter
- production of rice grown in the paddy field. *Plant Production Science* **10**(4): 412-422.
- 145 41. Peltola H, Kilpeläinen A, Kellomäki S. 2002. Diameter growth of Scots pine (*Pinus sylvestris*)
- trees grown at elevated temperature and carbon dioxide concentration under boreal conditions. *Tree*
- 147 *Physiology* **22**(14): 963-972.
- 148 42. Pilon R, Picon-Cochard C, Bloor JMG, Revaillot S, Kuhn E, Falcimagne R, Balandier P,
- Soussana J-F. 2013. Grassland root demography responses to multiple climate change drivers
- depend on root morphology. *Plant and Soil* **364**(1): 395-408.
- 43. Pilumwong J, Senthong C, Srichuwong S, Ingram KT. 2007. Effects of temperature and elevated
- 152 CO<sub>2</sub> on shoot and root growth of peanut (Arachis hypogaea L.) grown in controlled environment
- 153 chambers. *Scienceasia* **33**(1): 79-87.
- 154 44. Radville L, Post E, Eissenstat DM. 2018. On the sensitivity of root and leaf phenology to warming
- in the Arctic. Arctic Antarctic & Alpine Research **50**(1): S100020.
- 45. Randriamanan, T.R., Lavola, A. & Julkunen-Tiitto, R. (2015) Interactive effects of
- supplemental UV-B and temperature in European aspen seedlings: Implications for growth, leaf
- traits, phenolic defense and associated organisms. *Plant Physiology & Biochemistry*, **93**, 84-93.
- 159 46. Reddy KR, Hodges HF, Mckinion JM, Wall GW. 1991. Temperature effects on pima cotton
- growth and development. Agronomy Journal 84(2): 237-243.
- 47. Schuerings J, Jentsch A, Walter J, Kreyling J. 2014. Winter warming pulses differently affect
- plant performance in temperate heathland and grassland communities. *Ecological Research* **29**(4):
- 163 561-570.
- 48. Sheppard CS, Stanley MC. 2014. Does elevated temperature and doubled CO<sub>2</sub> increase growth of
- three potentially invasive plants? *Invasive Plant Science & Management* 7(2): 237-246.
- 49. Shi SZ, Xiong DC, Deng F, Feng JX, Chen-Sen XU, Zhong BY, Chen YY, Chen GS, Yang YS.

- 2017. Interactive effects of soil warming and nitrogen addition on fine root production of Chinese fir seedlings. *Chinese Journal of Plant Ecology* **41**(2): 186-195.
- 169 50. Slaney, M., Wallin, G., Medhurst, J. & Linder, S. (2007) Impact of elevated carbon dioxide
- concentration and temperature on bud burst and shoot growth of boreal Norway spruce. *Tree*
- 171 *Physiology*, **27**, 301-312.
- 172 51. Sobuj N, Virjamo V, Zhang Y, Nybakken L, Julkunentiitto R. 2018. Impacts of elevated
- temperature and CO<sub>2</sub> concentration on growth and phenolics in the sexually dimorphic *Populus*
- tremula (L.). Environmental and Experimental Botany 146: 34-44.
- 52. Sønsteby A, Heide OM. 2012. Effects of photoperiod and temperature on growth, flowering and
- fruit yield in annual-fruiting red raspberry cultivars (Rubus idaeus L.). European Journal of
- 177 *Horticultural Science* **77**(3): 97-108.
- 178 53. **Stenström A, Jónsdóttir IS. 2010.** Responses of the clonal sedge, Carex bigelowii, to two seasons
- of simulated climate change. *Global Change Biology* **3**(S1): 89-96.
- 180 54. Stirling CCM, Jones ML, Ashenden TW, Sparks TH. 2010. Effects of elevated CO2 and
- temperature on growth and allometry of five native fast-growing annual species. New Phytologist
- **182 140**(2): 343-354.
- 183 55. **Sullivan, P.F. & Welker, J.M.** (2005) Warming chambers stimulate early season growth of an arctic
- sedge: results of a minirhizotron field study. *Oecologia*, **142**, 616-626.
- 185 56. Tacarindua CRP, Shiraiwa T, Homma K, Kumagai E, Sameshima R. 2013. The effects of
- increased temperature on crop growth and yield of soybean grown in a temperature gradient
- 187 chamber. *Field Crops Research* **154**(3): 74-81.
- 188 57. **Takahashi K. 2005.** Effects of artificial warming on shoot elongation of alpine dwarf pine (*pinus*
- pumila) on mount shogigashira, central Japan. Arctic Antarctic & Alpine Research 37(4): 620-625.
- 190 58. Usami T, Lee JT. 2010. Interactive effects of increased temperature and CO<sub>2</sub> on the growth of
- 191 Quercus myrsinaefolia saplings. Plant Cell & Environment 24(10): 1007-1019.
- 192 59. Veteli TKK, Julkunen-Tiitto R, Roininen H, Tahvanainen J. 2010. Effects of elevated CO<sub>2</sub> and
- temperature on plant growth and herbivore defensive chemistry. Global Change Biology 8(12):
- 194 1240-1252.
- 195 60. Volder A, Gifford RM, Evans JR. 2015. Effects of elevated atmospheric CO<sub>2</sub> concentrations,
- clipping regimen and differential day/night atmospheric warming on tissue nitrogen concentrations
- of a perennial pasture grass. Global Change Biology 7: plv094.
- 198 61. Walker, T.N., Ward, S.E., Ostle, N.J. & Bardgett, R.D. (2015) Contrasting growth responses of
- dominant peatland plants to warming and vegetation composition. *Oecologia*, **178**, 141-151.
- 200 62. Wan SQ, Norby RJPregitzer KS, Ledford J, O'Neill EG. 2004. CO<sub>2</sub> enrichment and warming
- of the atmosphere enhance both productivity and mortality of maple tree fine roots. New Phytologist
- 202 **162**(2): 437-446.
- 203 63. Wang, C., Zhao, X., Zi, H., Hu, L., Ade, L., Wang, G. & Lerdau, M. (2017) The effect of
- simulated warming on root dynamics and soil microbial community in an alpine meadow of the
- 205 Qinghai-Tibet Plateau. Applied Soil Ecology, 116, 30-41.
- 206 64. Wang, J.-F., Gao, S., Lin, J.-X., Mu, Y.-G. & Mu, C.-S. (2010) Summer warming effects on
- 207 biomass production and clonal growth of Leymus chinensis. Crop & Pasture Science, 61, 670-676.
- 208 65. Wang, Z., Ding, L., Wang, J., Zuo, X., Yao, S. & Feng, J. (2016) Effects of root diameter, branch
- order, root depth, season and warming on root longevity in an alpine meadow. *Ecological Research*,
- **31**, 739-747.

- 211 66. **Wheeler JA, Gonzalez NM, Stinson KA. 2016.** Red hot maples: Acer rubrum first-year phenology and growth responses. *Canadian Journal of Forest Research* **47**(2): 159-165.
- 213 67. Wu, Y., Zhu, B., Eissenstat, D.M., Wang, S., Tang, Y. & Cui, X. (2020) Warming and grazing interact to affect root dynamics in an alpine meadow. *Plant & Soil*, 1-16.
- 215 68. **Xiong D. 2018.** Interactive effects of warming and nitrogen addition on fine root dynamics of a young subtropical plantation. *Soil Biology and Biochemistry* **123**: 180-189.
- 217 69. **Xu MH, Peng F, You QG, Guo J, Tian XF, Liu M, Xue X. 2015.** Effects of warming and clipping on plant and soil properties of an alpine meadow in the Qinghai-Tibetan Plateau, China. *Journal of Arid Land* **7**(2): 189-204.
- Xu, Z., Hu, T., Zhang, L., Zhang, Y., Xian, J. & Wang, K. (2009) Effects of simulated warming
   on the growth, leaf phenology, and leaf traits of Salix eriostachya in sub-alpine timberline ecotone
   of western Sichuan, China. *The Journal of Applied Ecology*, 20, 7-12.
- Yoon STH, Gerrit, Flitcroft I, Bannayan M. 2009. Growth and development of cotton
   (Gossypium hirsutum L.) in response to CO<sub>2</sub> enrichment under two different temperature regimes.
   Environmental & Experimental Botany 67(1): 178-187.
- Yoshitake S, Tabei N, Mizuno Y, Yoshida H, Sekine Y, Tatsumura M, Koizumi H. 2015. Soil
   microbial response to experimental warming in cool temperate semi-natural grassland in Japan.
   *Ecological Research* 30(2): 235-245.
- 73. Tian, Y., Jin, C., Ai-Xing, D., Jian-Chu, Z. & Wei-Jian, Z. (2011) Effects of asymmetric warming
   on the growth characteristics and yield components of winter wheat under free air temperature
   increased. The Journal of Applied Ecology, 22, 681-686.
- Zha T, ., Ryyppö A, ., Wang KY, KellomäKi S, . 2001. Effects of elevated carbon dioxide concentration and temperature on needle growth, respiration and carbohydrate status in field-grown
   Scots pines during the needle expansion period. *Tree Physiology* 21(17): 1279-1287.
- Zhang, L., Zhong, B., Chen, T., Xiong, D., Yan, X. & Chen, G. (2020) Effects of air and soil warming on aboveground phenology and growth of Cunninghamia lanceolata seedlings. *Acta Ecologica Sinica*. 40, 4146-4156.

238