Computational Recognition of LncRNA Signatures in Tumor-associated Neutrophils could have Implications for Immunotherapy and Prognostic Outcome of Non-small Cell Lung Cancer

Zhuoran Tang
Tongji University, Tongji University Medical School Cancer Institute

Qi Wang
Tongji University Affiliated Shanghai Pulmonary Hospital, Tongji University, Tongji University Medical School Cancer Institute

Peixin Chen
Tongji University, Tongji University Medical School Cancer Institute

Haoyue Guo
Tongji University, Tongji University Medical School Cancer Institute

Jinpeng Shi
Tongji University, Tongji University Medical School Cancer Institute

Yingying Pan
Tongji University, Tongji University Medical School Cancer Institute

Chunyu Li
Tianjin Medical University

Caicun Zhou (drcaicunzhou@163.com)
Tongji University Affiliated Shanghai Pulmonary Hospital, Tongji University, Tongji University Medical School Cancer Institute

Research Article

Keywords: non-small cell lung cancer, tumor-associated neutrophils, long noncoding RNA, immunotherapy,

Posted Date: July 5th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1775508/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Cancer immune function and tumor microenvironment are governed by long noncoding RNAs (lncRNAs). Nevertheless, it has yet to be established whether lncRNAs play a role in tumor-associated neutrophils (TANs). Here, a computing framework based on machine learning was used to identify neutrophil-specific lncRNA with prognostic significance in squamous cell carcinoma and lung adenocarcinoma using univariate Cox regression to comprehensively analyze immune, lncRNA, and clinical characteristics. The risk score was determined using LASSO Cox regression analysis. Meanwhile, we named this risk score as “TANlncSig”. TANlncSig was able to distinguish between better and worse survival outcomes in various patient datasets independently of other clinical variables. Functional assessment of TANlncSig showed it is a marker of myeloid cell infiltration into tumor infiltration and myeloid cells directly or indirectly inhibit the anti-tumor immune response by secreting cytokines, expressing immunosuppressive receptors, and altering metabolic processes. Our findings highlighted the value of TANlncSig in TME as a marker of immune cell infiltration and showed the values of lncRNAs as indicators of immunotherapy.

Introduction

Lung cancer is related with high mortality rates in China with non-small cell lung cancer (NSCLC) accounting for > 80% of lung cancers [1]. The administration of immune checkpoint inhibitors (ICIs) in cancer therapy has had remarkable results [2–4]. For advanced non-small cell lung cancer (NSCLC), several clinical trials have confirmed that as first- or second-line treatment, ICIs are superior to platinum-based chemotherapy [5–7]. However, only 20–40% of advanced NSCLC patients achieve sustained clinical benefits from PD-(L)1 inhibitor therapy, with most patients having primary or acquired resistance to immunotherapy [8]. Moreover, those who do not respond to immunotherapy may suffer immune-related adverse events (IRAE) and the high costs of anti-PD-(L)1 monoclonal antibody therapy [9–11]. Thus, effective biomarkers that distinguish potential responders from non-responders, and indicate patient clinical response in real-time are urgently needed to improve treatment outcomes.

The TME is comprised of a complex cell population that includes tissue-resident lymphocytes, fibroblasts, endothelial cells, and neurons that are present before tumorigenesis, as well as blood-derived cells recruited to tumor sites [12]. Immune cells are the main cellular components in tumors. Tumor-infiltrating myeloid cells, including tumor-associated macrophages (TAM), regulatory dendritic cells, tumor-associated neutrophils (TAN), myeloid-derived suppressor cells (MDSC), as well as tolerogenic dendritic cells (TOL-DC), facilitate the formation of immunosuppressive microenvironments [13]. These cells directly or indirectly inhibit the antitumor immune response by secreting cytokines, expressing immunosuppressive receptors, and altering metabolic processes, leading to tumor immune escape. Tumor-associated neutrophils (TANs) are a key part of tumor-infiltrating myeloid cells and are regularly detected in the TME. Clinically, TANs can be used to predict treatment outcomes and immunotherapy response [14]. Transcriptomic studies have identified gene expression biomarkers as well as signatures for quantitative assessment of TANs, as well as for stratification based on prognoses and immunotherapeutic response [15, 16].

Long non-coding RNA (lncRNAs) influence almost all biological processes and pathways, and their dysregulation is associated with various diseases. Additionally, lncRNAs have wide functional diversity due to their influence on gene expression levels at transcriptional, post-transcriptional and epigenetic levels [17–20]. The correlation between lncRNAs and immune function has been reported. Recent studies have shown that lncRNAs are abundant with cell type specificity in various immune cell subsets [19, 21–24]. LncRNAs expression pattern has been correlated with infiltrations of immune cells into the TME [25–29]. Nevertheless, neutrophil-specific lncRNAs as well as their significance in assessing TANs and prediction of clinical outcomes and immunotherapeutic responses require further study.

Here, a computational framework is proposed for determining neutrophil-specific lncRNA expression levels and lncRNA signatures for TANs (TANlncSig) via integrative immune, lncRNA, and clinical profiling analyses. The TANlncSig’s ability to
predict clinical outcome and response to immunotherapy by NSCLC patients was also investigated.

Materials And Methods

Neutrophil-specific IncRNA screening

The data set can be obtained from the GEO database with series accession number GSE28490 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28490). These included chip data on the expression of 9 human immune cells (neutrophils, monocytes, B cells, eosinophils, CD4 T cells, NK cells, mDCs, CD8 T cells, and pDCs). The GEO2R tool from GEO was used for differential expression analysis. Using adjusted p = < 0.05 and logFC > 1 as cutoff thresholds identified 17 IncRNAs with high neutrophil-specific expression.

Construction of risk scoring model

Clinical data and TCGA RNA-seq datasets for LUSC and LUAD were downloaded by the UCSC Xena browser (https://xenabrowser.net/). Lusc-LINC01272-neutrophils malignant / Luad-Linc01272-neutrophils malignant results from single cell sequencing datasets. First, a monovariate Cox regression analysis was used to find neutrophil-specific IncRNAs with prognostic value in LUSC and LUAD, and LASSO Cox regression was used to determine their risk scores. The multivariate Cox regression analysis (age, risk score, tumor stage, gender), Kaplan-Meier (KM) survival analysis and 3, 5, and 10 years survival AUCs were used to evaluate risk score.

Correlation analysis between risk score and tumor clinical phenotype

Multivariate ANOVA was used to analyze differences between neutrophil-specific, highly expressed IncRNA and risk score in LUSC and LUAD samples at various TNM stages.

Analysis of Risk score related pathways

In LUSC and LUAD samples, genes with mean expression levels > 1 were identified and their correlation with risk score analyzed. 1000 genes with the highest absolute correlation coefficient value were selected from those with positive correlation coefficients (> 0, p = < 0.05) and those with negative correlation coefficients (< 0, p = < 0.05). ClusterProfiler for R was used to analyze GO terms of biological process (BP), Molecular function (MF), cellular component (CC), and KEGG pathway enrichment analyses. After gene enrichment, the adjusted p-value < 0.05 and the smallest TOP10 was selected for mapping.

Development of TAN-derived IncRNA signature to judge the prognosis of immunotherapy for NSCLC using machine learning

Pearson correlation analysis was used to determine correlations between risk score, neutropen-specific IncRNAs, and the expression of common immune checkpoint inhibitors and correlation heat maps drawn, with * denoting p ≤ 0.01 while + denotes p ≤ 0.05.

Results

Prognostic significance of neutrophil-specific IncRNAs

To recognize neutrophil-specific IncRNAs, dataset GSE28490 was downloaded from GEO (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28490). This dataset includes chip data on expressions of 9 human immune cells (CD4 T cells, neutrophils, monocytes, B cells, eosinophils, CD8 T cells, NK cells, mDCs, and pDCs). Using GEO2R, 17 IncRNA specifically highly-expressed in neutrophils (p = < 0.05, log2 > 1) were identified. These neutrophil-specific IncRNAs are referred to as TAN-associated IncRNAs (TANlncRNA)(Fig. 1).
Construction of a risk score based on neutrophil-specific IncRNA for prognosis prediction

To develop a neutrophil-specific IncRNA risk score for predicting prognosis, the TCGA NA-SEQ dataset, TCGA lung squamous cell carcinoma (LUSC) as well as adenocarcinoma (LUAD) gene expression data, clinical features, and prognosis data were downloaded from UCSC Xena. First, univariate Cox regression analyses were used to establish neutrophil-specific IncRNAs with prognostic value in LUSC and LUAD. The final signature named TANIncSig (Table 1). This analysis identified 3 IncRNAs with prognostic value in LUSC (LINC01272, LINC00261, LINC00668, \(p < 0.05 \)). Using these 3 IncRNAs, the expression value of IncRNA was weighted using multivariate Cox regression coefficient to obtain risk scores via the formula: risk score = 0.09 * LNC00668 + 0.17 * LNC00261. Then, TANIncSig scores for every patient in the discovery dataset were determined, after which the 542 patients were grouped into the high (\(n = 271 \)) or low (\(n = 271 \)) risk groups. Low risk group patients were found to have longer overall survival (OS) relative to the high-risk group patients (\(p \leq 0.05 \), Fig. 2A). Multivariate Cox regression analyses revealed that risk score, stage, age, and gender significantly affected the prognostic outcomes of LUSC patients. The p-value and hazard ratio of TANIncSig were better than those of stage and age (Fig. 2B). That said, TANIncSig has the potential to be a good predictor of efficacy. The predictive capacity of TANIncSig was authenticated using the TCGA internal testing dataset and revealed the 3-, 5-, and 10-year OS rates for low-risk group patients to be 60.42, 54.47, and 54.23%, respectively (Fig. 2C). Indicating that risk score significantly correlates with OS in LUSC.

Table 1

<table>
<thead>
<tr>
<th>Ensembl ID</th>
<th>Gene Symbol</th>
<th>Location(GRCh37/hg19)</th>
<th>HR</th>
<th>lower .95</th>
<th>upper .95</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUAD</td>
<td>LINC00261</td>
<td>chr20:22,541,191−22,559,280</td>
<td>0.8726407</td>
<td>0.7771</td>
<td>0.98</td>
<td>0.021359</td>
</tr>
<tr>
<td>ENSG00000269220</td>
<td>LINC00528</td>
<td>chr22:18,260,056−18,262,247</td>
<td>0.5049413</td>
<td>0.2662</td>
<td>0.9577</td>
<td>0.036422</td>
</tr>
<tr>
<td>ENSG00000253138</td>
<td>LINC00967</td>
<td>chr8:67,104,349−67,109,554</td>
<td>0.0026941</td>
<td>9.72E-06</td>
<td>0.7471</td>
<td>0.039252</td>
</tr>
<tr>
<td>LUSC</td>
<td>LINC00261</td>
<td>chr20:22,541,191−22,559,280</td>
<td>1.2676382</td>
<td>1.1</td>
<td>1.461</td>
<td>0.001087</td>
</tr>
<tr>
<td>ENSG00000265933</td>
<td>LINC00668</td>
<td>chr18:6,925,473-6,929,868</td>
<td>0.8529687</td>
<td>0.7512</td>
<td>0.9685</td>
<td>0.01412</td>
</tr>
<tr>
<td>ENSG00000224397</td>
<td>LINC01272</td>
<td>chr20:48,884,015−48,896,333</td>
<td>1.14005</td>
<td>1.022</td>
<td>1.272</td>
<td>0.018818</td>
</tr>
</tbody>
</table>

Similar analysis was done for LUAD. First, 3 IncRNAs with prognostic values (LINC00528, LINC00967 and LINC00261) were identified using univariate Cox analysis. Using the above three IncRNAs, IncRNAs expression value was weighted by multivariate Cox regression coefficient to determine risk score using the formula: risk score = -5.32 * LINC00967-0.16 * LINC00261-0.74 * LINC00528. Patients with LUAD in the low-risk group had longer OS relative to high-risk group LUAD patients(\(p = <0.05 \), Fig. 3A). Cox multivariate regression analyses revealed that risk score and stage significantly correlated with LUAD prognosis. In lung adenocarcinoma, the p-value and hazard ratio of TANIncSig were equally better than those of stage and age (Fig. 3B). The 3-, 5-, and 10-year OS rates in low-risk group patients were 61.01, 61.20, and 65.30%, respectively (Fig. 3C). These results indicate that risk scores in the LUAD dataset significantly correlate with patients’ OS.

Correlation analysis between risk score and tumor clinical phenotype
Clinical phenotypic correlation analysis of single prognostic IncRNA and risk score (tumor stage, T, N, M staging) was performed in lung adenocarcinoma as well as squamous cell carcinoma. According to statistical analysis, the risk score in different tumor stages of lung squamous cell carcinoma showed significant statistical differences, and the statistical results showed that $P = 0.0013, < 0.05$ (Fig. 4A). The risk score in different tumor stages of lung adenocarcinoma also showed significant statistical differences ($P = 0.0081, < 0.05$) (Fig. 4B).

The TNM staging system is the most widely used tumor staging system, worldwide. T denotes tumor sizes and local invasion range, N denotes lymph node involvement, and M denotes distant metastasis. TNM staging has great clinical value in prognosis prediction [30, 31]. The risk score has significant statistical difference in different M stages of lung squamous cell carcinoma (P value $= 0.011, < 0.05$) (Fig. 5C). The risk score has significant statistical difference in different T stages (T1, T2, T3 and T4 stages) of lung adenocarcinoma (P value $= 0.0023, < 0.05$) (Fig. 5D). Similarly, the risk score has significant statistical difference in different N stages (N0, N1, N2 and N3 stages) of lung adenocarcinoma (P value $= 0.013, < 0.05$) (Fig. 5E).

Riskscore correlation pathway analysis

In LUSC and LUAD samples, genes with average expression levels > 1 were identified and their risk scores analyzed. 1000 genes with the largest absolute correlation coefficient values were selected from positive (correlation coefficient > 0, $p \leq 0.05$) and negative (correlation coefficient < 0, $p \leq 0.05$) and correlation genes and pathway enrichment analysis done using cluster profiler on R. In LUSC, positive correlation genes are mainly associated with biological processes (BP) associated with T-cell activation, leukocyte proliferation, and leukocyte cell-cell adhesion. For cellular component (CC) they were enriched in endocytic vesicle, tertiary granule, and secretory granule membrane. For molecular function (MF), they were enriched in immune receptor activity and cytokine binding. KEGG pathway analysis revealed enrichment mainly for cell adhesion molecules (Fig. 6A). Negative correlation genes in lung squamous cell carcinoma are mainly enriched for biological processes (BP) associated with skin development, epidermis development, and cornification. For cellular component (CC), they were enriched for cornified envelope, desmosome, and cell-cell junction. For molecular function (MF), they were enriched for microtubule binding and tubulin binding. For KEGG pathways, they were enriched for basal cell carcinoma (Fig. 6B). Positive correlation genes in lung adenocarcinoma were mainly enriched in biological processes (BP) associated with translational termination and adenocarcinoma. For cellular component (CC), they were enriched for ribosomal subunits, ribosome and large ribosomal subunit. For molecular function (MF) they were enriched for structural constituent of ribosome and cadherin binding. For KEGG pathways, they were enriched for ribosome and cell cycle (Fig. 6C). Genes associated with negative correlations in LUAD are involved in biological processes (BPs) associated with lymphocyte differentiation, leukocyte proliferation, and antigen receptor-mediated signaling. For cellular component (CC), they were enriched for external side of plasma membrane and immunological synapse. For molecular functions (MFs), they were enriched for guanyl-nucleotide exchange factor activity. For KEGG pathways, they were enriched for primary immunodeficiency and B-cell receptor signaling pathway (Fig. 6D).

The TANlncSig associates with TANs

In accordance with previously reported expression levels of the immune cell specific marker genes, cibersort (https://cibersort.stanford.edu/) was further used to evaluate the levels of immune infiltration of 22 immune subpopulations in high-risk and low-risk patient groups. T-test was performed to determine the difference in lymphocyte infiltration levels between the two groups. As shown in Fig. 7A and B, in both LUSC and LUAD, high-risk patients were significantly enriched in 12 immune subpopulations, while low-risk patients were enriched in 10 immune subpopulations. Additionally, mononuclear immune cells, including neutrophils, were found to infiltrate significantly more in the high-risk patient group than in several other groups. Single-cell sequencing data of LUSC and LUAD downloaded from GSE127465, cell type notes downloaded from TISCH (http://tisch.comp-genomics.org/). The homologous expression levels of LINC01272 of the TANlncSig in neutrophil cell lines differed significantly from those of malignant cell lines according to a
subsequent analysis of neutrophil cell lines. This indicates that these IncRNAs are expressed differently in neutrophils compared with malignant cells. In the above study, we found that the TANIncSig was not only associated with patient prognosis but also as a TAN indicator.

TANIncSig was validated over several independent datasets using a microarray platform for prognostic value

TANIncSig was further validated in independent datasets by the microarray platform in order to verify versatility and robustness of TANIncSig. The Affymetrix HG-U133 Plus 2.0 platform was used to analyze 83 LUAD patients from the GSE30219 dataset. As demonstrated again, TANIncSig can distinguish between patients who have high and low survival risk. A total of 83 patients were stratified into 41 high-risk patients and 42 low-risk patients in the GSE30219 dataset. Furthermore, patients in the high-risk group had a marginally poorer outcome than those in the low-risk group (P = 0.0024; log-rank test) (Fig. 8A). The AUC of ROC curve at 3, 5 and 10 years were 64.13, 66.87 and 60.58% respectively (Fig. 8B). The results show that TANIncSig can accurately predict the 5-year overall survival of patients, indicating that TANIncSig has good efficacy and certain stability. In order to investigate whether TANIncSig is an independent prognostic factor, a multivariate Cox regression analysis was conducted in patient cohorts. In the independent GSE30219 dataset, the TANIncSig still maintained a significant correlation with OS in the multivariate analysis (HR = 6.74, 95% CI 1.283–35.5, P = 0.020). Thus, these results demonstrate that the TANIncSig helps predict OS independently of other conventional clinical factors.

Significance of TANIncSig as a marker of immunotherapy

Next, prognostic IncRNAs and risk score were correlated with immune checkpoint molecules expression in LUSC and LUAD patients. In LUSC, risk score, LINC01272, and LINC00261 positively correlated with the expression of most ICBs, while LINC00668 had negative correlations with the expression of most ICBs (Fig. 9A). In LUAD, risk score had negative correlations with expression levels of most ICBs, while LINC00528 positively correlated with expression levels of most ICBs (Fig. 9B). The expressions of risk score were divided into high and low groups and combined according to the median. The combination was used to analyze the prognosis of immunotherapy for non-small cell lung cancer. In lung squamous cell carcinoma, the combination of CEACAM1, TNFSF4, gem, CD47, vtcn1 and risk score can well stratify the prognosis of patients. In lung adenocarcinoma, all ICB molecules combined with risk score can well predict the prognosis of patients. These results suggest that risk score can be used as an index to predict the response of patients to immunotherapy.

Discussion

In the peripheral blood, neutrophils are the most abundant white blood cells [32]. They have a central role in human non-specific immunity. Previous studies suggest that neutrophils inhibit tumors by secreting cytokines and producing reactive oxygen species [33–36]. However, other studies indicate that neutrophils in the tumor microenvironment (TME) promote tumorigenesis. Cytokines and chemokines production by invasive neutrophils might affect the recruitment and activation of inflammatory cells in the TME, create an immunosuppressive microenvironment that is conducive for tumorigenesis, regulate tumor growth, metastasis and angiogenesis, and influence patient prognosis. Traditional methods for quantifying tumor immune cells infiltration based on histology or immunohistochemistry may have bias and variabilities [37–41]. More recently, RNA-seq analyses have shown that IncRNAs exhibit a better degree of cell type specificity, relative to protein-coding genes in immune cells, highlighting their potential as subpopulation-specific immune cells molecular markers [42–44].

Here, we used a machine learning-based computational framework to identify IncRNA features for evaluating TANs and explored their clinical significance using a combination of IncRNA, immune, and clinical spectrum analyses. The computational framework was used on the TCGA discovery dataset of NSCLC to identify a IncRNA signature (TANIncSig) comprised of 17 IncRNAs obtained from a list of neutrophil-specific IncRNAs using machine learning. Functional
enrichment analysis of TANlncSig-related mRNAs showed that TANlncSig is highly correlated with cancer markers of immune response and sustained proliferative signals. Recent experimental evidence on some TANlncSig components is consistent with functional annotations using bioinformatics. It appears that Mir-1303, which is upregulated in tumor tissues, acts as a sponge for LINC01272 and negatively correlates with its expression. A reduction in LINC01272 expression in tissues and cells of NSCLC patients may serve as an independent prognostic marker. LINC01272 overexpression may inhibit NSCLC cells proliferation, migration, and invasion by inhibiting MI-1303 [45]. LINC00261 downregulation in gastric cancer is associated with poor prognosis. Ectopic LINC00261 expression disrupts cell migration and invasion, inhibiting metastasis in vitro as well as in vivo. LINC00261 downregulation promotes cell migration and invasion in vitro. LINC00261 overexpression influences epithelial-mesenchymal transition (EMT) through the regulation of E-cadherin, Vimentin and N-cadherin [46, 47]. LINC00668 expression is significantly upregulated via STAT3 signaling in NSCLC tissues as well as cell lines. Clinical studies show that upregulated LINC00668 correlates with histological grade, advanced TNM stage, and lymph node metastasis. Additionally, multivariate analyses established that LINC00668 as an independent marker of overall survival (OS) in patients with NSCLC. LINC00668 downregulation inhibits proliferation, migration, and invasion of NSCLC cells and promotes apoptosis. Mechanistically, LINC00668 is a direct target of miR-193a, leading to down-regulation in the expression of its target gene KLF7. STAT3-initiated LINC00668 promotes NSCLC progression by upregulating KLF7 via sponging Mir-193a. Therefore, it may serve as a prognostic marker and therapeutic target for NSCLC [48]. From the perspective of lncRNA, TANlncSig seems to be a transcriptional marker as a potentially measurable indicator of neutrophil activity and prognosis.

To further assess TANlncSig's role in clinical risk stratification, we evaluated its relationship with survival in patients with NSCLC. When applied to the TCGA RNAseq patient dataset, TANlncSig significantly correlated with patient survival. In TANlncSig, 3 lung squamous cell carcinoma, neutrophil-specific IncRNAs (LINC01272, LINC00261, and LINC00668) were markedly associated with prognostic outcomes. In lung adenocarcinoma, 3 neutrophil-specific IncRNAs (LINC00528, LINC00967 and LINC00261) significantly correlated with prognosis. In squamous cell carcinoma and lung adenocarcinoma, correlation analysis of individual lncRNAs and risk score with clinical features (TNM staging) revealed that risk score varied significantly with tumor stage. After adjusting for traditional clinical factors, TANlncSig was verified to be an independent prognostic marker for differentiating between poor and good survival outcomes across patient datasets.

Immune checkpoint inhibitors (ICIs) have emerged as effective lung cancer immunotherapies [49, 50]. Some of the drugs acting on the immune checkpoints, CTLA4 and PD-1/PD-L1, have excellent performance against various tumors. Although significant breakthroughs have been made on CTLA4 and PD-1/PD-L1 antibodies, single-drug effective rates are only about 20%, and they benefit a limited proportion of patients [51 – 55]. The limited efficacy is attributable to the immune system's complexity. Indeed, immune cells, cytokines, and immune adjuvants in the TME interact with each other, limiting the effects of drugs on individual targets. Thus, drugs that target different links and aspects of tumor immunity are needed to enhance immunotherapy outcomes. Up to 29 immunoglobulin superfamily members and 26 members of the tumor necrosis factor receptor superfamily are expressed on T-cell surfaces alone, and there have been preclinical or clinical studies on related immune targets and drugs. Specific immune checkpoints include lymphocyte activating gene 3 (LAG-3), T-cell immunoglobulin mucin 3 (TIM-3), and V region Ig inhibitor (VISTA). Non-specific immune checkpoints include human killer cell immunoglobulin like receptor (KIR), indoleamine 2, 3-dioxidase (IDO), and CD47, these novel immune checkpoint molecules are expected to provide hints for clinical and basic research [56 – 60]. VISTA, (B7-H5, PD-1H) is an immunomodulatory receptor that inhibits T-cell response. VISTA is overexpressed on CD11b myeloid cells (e.g., macrophages, monocytes, neutrophils, and dendritic cells) and it is found that in humans and mice at a lower level in primitive CD4+ and CD8+ T-cells as well as Tregs. With two potential protein kinase C binding sites and proline residues acting as docking sites in its cytoplasmic tail domain, VISTA can serve as both a receptor and a ligand [57, 61]. OX40 (TNFRSF4) has been found to be expressed in activated NK cells, T-cells, NKT cells, as well as neutrophils, and acts as an auxiliary costimulatory immune checkpoint [62 – 64]. Combining immune checkpoint genes and TANlncSig showed combined prognostic effects on patient survival, in line with previous findings that immunomotor interactions between
neutrophilic infiltration and expression levels of checkpoint genes affect the outcome of cancer patients and immunotherapy may also be associated with this condition. In combination with earlier findings, it appears that TANlncSig is correlated with immunosuppressive phenotypes and could predict ICI response. Together, these results indicate that TANlncSig can complement and/or add information to existing immune checkpoint genetic markers.

Due to few gene mutations, lung squamous cell carcinoma is less selective than adenocarcinoma with regards to treatment options, and its survival time (about 1 year) is shorter than that of adenocarcinoma [65]. Thus, novel, effective advanced lung squamous cell carcinoma treatments are needed to improve patient outcomes. The emergence of immune checkpoint inhibitors in recent years has markedly improved treatment options for advanced lung squamous cell carcinoma patients. Immune checkpoint inhibitors have substantially changed advanced lung squamous cell carcinoma treatment, leading to a shift from retro line immunotherapy to front-line treatment options. Originally approved as second-line treatment after platinum-based dual therapy, palivizumab is now recommended as a single-agent first-line treatment or in combination with chemotherapy. Although treatments targeting the immune checkpoints PD-1 and CTLA4 are successful in many cancers, not all patients benefit from them. Our findings indicate that the combination of CEACAM1, TNFSF4, GEM, CD47, VTCN1, and TANlncSig in squamous cell carcinoma can effectively stratify patients by prognosis, highlighting these immune checkpoint receptors as potential therapeutic targets against advanced lung cancer.

Conclusions

In conclusion, we used a machine learning-based computational framework to identify IncRNA features of TANs (TANlncSig) via comprehensive analyses of IncRNA, immune, as well as clinical features. TANlncSig revealed a substantial and repeatable correlation with outcomes, even after adjustments of clinical covariates. Analysis of correlation between prognostic lncRNAs and risk score with the expression of immune checkpoint molecules demonstrated that TANlncSig can predict immunotherapy. The study is the first to define IncRNA characteristics of tumor-associated neutrophils, highlighting the importance of IncRNAs in immune responses and the potential for more precise and personalized treatment cancer immunotherapy.

Declarations

Acknowledgements

Funding for this work was provided by the National Natural Science Foundation of China (No. 81871865); Science and Technology Commission of Shanghai Municipality (No. 19411950300); Shanghai Innovative Collaboration Project (No. 2020CXJQ02); Natural Science Foundation of Tianjin (No. 19JCQNJC12300); “Dream Tutor” New Person Cultivation Program of Shanghai Pulmonary Hospital (No. fKxr1907).

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Availability of data and materials
The datasets supporting the findings of this study are available in the from The Cancer Genome Atlas (TCGA) (https://gdc.xenahubs.net) and GEO (https://www.ncbi.nlm.nih.gov/geo/) databases. Further inquiries can be directed to the corresponding author.

Author Contributions

Zhuoran Tang, Qi Wang, Peixin Chen, and Haoyue Guo designed the experiments; Zhuoran Tang, Qi Wang, and Jinfeng Shi performed the experiments; Peixin Chen, Haoyue Guo, and Yingying Pan prepared figures; Zhuoran Tang, Qi Wang, Chunyu Li, and Caicun Zhou was responsible for statistical analysis and provided helpful suggestions; Zhuoran Tang, and Qi Wang wrote the manuscript. All authors read and approved the final version of the article.

References

60. Logtenberg MEW, Scheeren FA, Schumacher TN. The CD47-SIRPα Immune Checkpoint. 2020 May 19;52(5):742-752.

Figures

![Figure 1](image)

Using machine learning, 17 neutrophil-specific, highly expressed IncRNAs were identified. Differential expressions of IncRNAs between neutrophils and various immune cell types.
Figure 2

Validation of TANlncSig in TCGA lung squamous cell carcinoma discovery and testing datasets. (A) Kaplan-Meier survival analyses of lung squamous cell carcinoma patients. (B) Multivariate Cox regression analyses of patients with LUSC based on TCGA dataset. (C) ROC curve analyses of patients with LUSC using the TCGA dataset.
Figure 3

Development and subsequent validation of TANIncSig in the lung adenocarcinoma TCGA testing as well as discovery datasets. (A) Kaplan-Meier survival analyses for LUAD patients. (B) An analysis of the TCGA dataset of LUAD patients using multivariate Cox regression. (C) ROC curve analyses of patients with LUAD in the TCGA dataset.
Figure 4

Analysis of risk score differences across NSCLC tumor stages. (A) The risk score of lung squamous cell carcinoma patients at various disease stages. (B) Risk scores of different lung adenocarcinoma stages.

Figure 5

Figure 6

Pathway enrichment analysis using R's cluster profiler. (A) Enrichment of positive correlation gene pathways in lung squamous cell carcinoma. (B) Enrichment of negative correlation gene pathways in lung squamous cell carcinoma. (C) Enrichment of positively correlation gene pathways in lung adenocarcinoma. (D) Enrichment of negative correlation gene pathways in lung adenocarcinoma.
Figure 7

(A and B) An analysis of tumors with high and low TANlncSig based on the NES score from the GSEA in LUSC and LUAD provided the volcano plots for the enrichment of immune cell subpopulations. (C and D) The boxplots show lncRNA expression in both LUSC and LUAD neutrophil cell lines.
Figure 8

The TANlncSig was independently validated in the GSE30219 dataset (A). Kaplan–Meier survival curves of OS were plotted between high- and low-risk groups stratified by the TANlncSig. (B) Time ROC curve of luad patients the GSE30219 dataset. (C) Visualization of the HRs from a multivariate Cox analysis of the TANlncSig and clinicopathological factors in GSE30219.
Figure 9

Correlation analysis of lncRNA and riskScore with expression levels of immune checkpoint blockade (ICB). (A) In lung squamous cell carcinoma, risk score, LINC01272, and LINC00261 positively correlated with the expression of most ICBs, while LINC00668 had negative correlations with the expression of most ICBs. (B) In lung adenocarcinoma, risk score had a negative correlation with the expression of most ICBs, while LINC00528 positively correlated with the expression of most ICBs.