Dapagliflozin alleviates diabetic kidney disease via HIF-1α/HO1 mediated ferroptosis

yihui Wang
Peking University
https://orcid.org/0000-0002-8511-3017

Dongyuan Chang
Peking University First Hospital

Ming-hui Zhao
Peking University First Hospital
https://orcid.org/0000-0003-3340-3108

Min Chen (chenmin74@sina.com)
Peking University First Hospital

Article

Keywords: diabetic kidney diseases, SGLT2 inhibitors, dapagliflozin, hypoxia-inducible factor-1α, heme oxygenase 1, ferroptosis

Posted Date: July 15th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1745222/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease. In recent clinical trials, sodium-glucose cotransporter 2 inhibitors (SGLT2i) showed excellent renoprotection effects, but the underlying mechanism remains to be investigated. Previous studies have revealed an important role of ferroptosis, which is mediated by iron overload and lipid peroxidation, in the progression of DKD. Therefore, it is of interest to explore the effects of SGLT2i on ferroptosis in DKD due to its role in alleviating oxidative stress.

Methods: Diabetic (db/db) mice were administered with dapagliozin or solvent treatment from 9 to 22 weeks of age, and were compared with non-diabetic (m/m) mice. High glucose/high fat (HG/HF) was applied to HK-2 cells, and effects of dapagliozin on ferroptosis in HK-2 cells as well as the underlying mechanism were investigated.

Results: Typical changes of ferroptosis including massive lipid peroxidation, reduced antioxidant capability, and iron overload were found in db/db mice and HG/HF treated HK-2 cells. Furthermore, increased expression of hypoxia-inducible factor-1α (HIF-1α) and heme oxygenase-1 (HO1) was observed in db/db mice and HG/HF cultured cells as well. Dapagliozin treatment significantly ameliorated the ferroptosis-related changes via inhibiting HIF-1α/HO1 axis in vivo and in vitro. Besides, downregulation of HIF-1α/HO1 axis rescued ferroptosis, while overexpression of HO1 aggravated ferroptosis induced by HG/HF in HK-2 cells. In DKD patients, the expression level of GPX4 in the kidney was significantly lower than that in healthy controls.

Conclusion: SGLT2i play a renal protective effect, at least in parts, via inhibiting HIF-1α/HO1 axis mediated ferroptosis.

1. **Introduction**

Diabetic kidney disease (DKD) develops in approximately 40% of type 2 diabetes mellitus (T2DM) patients and has become the leading cause of end-stage kidney disease (ESKD)\(^1, 2, 3\). Despite multifactorial risk management hyperglycemia and hypertension, the residual risk of DKD progression remains high, indicating an unmet medical need. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) inhibit the coupled reabsorption of sodium and glucose from the proximal tubule, reducing glucose reentry from tubular fluid into the bloodstream. Many recent clinical trials showed the renoprotection effects of SGLT2i in patients with T2DM\(^4, 5, 6, 7\), but the underlying mechanisms were not fully clear.

Multiple factors, including hemodynamic dysfunction, oxidative stress, hypoxia, and inflammation contribute to the development and progression of DKD\(^8\). Ferroptosis is a form of regulated cell death culminating with the accumulation of redox-active iron and iron-dependent lipid peroxidation\(^9\). Oxidative stress is crucial in ferroptosis for reactive oxygen species (ROS) generation and polyunsaturated fatty acids (PUFAs) peroxidation. Glutathione peroxidase 4 (GPX4), solute carrier family 7 member 11...
(SLC7A11), and nuclear factor erythroid 2-related factor 2 (NRF2) function as negative regulators of ferroptosis by relieving ROS accumulation through antioxidant capacity10,11,12, while transferrin receptor (TFRC), NADPH oxidase, and p53 act as positive regulators of ferroptosis by stimulating iron uptake and/or promoting ROS production13,14. Previous studies suggested that ferroptosis is involved in the pathogenesis of DKD by bioinformatics analysis as well as \textit{in vivo} and \textit{in vitro} experiments15,16,17. Antioxidative stress is a prominent pathway related to the renoprotective effects of SGLT2i18,19,20. Therefore, it is reasonable to speculate that SGLT2i play a renoprotective role \textit{via} inhibiting ferroptosis.

Hypoxia-inducible factor-1α (HIF-1α), which binds to hypoxia response elements (HREs; 5'-RCGTG-3'), regulates a variety of genes including iron homeostasis associated genes such as heme oxygenase-1 (HO1, catalyzing the rate-limiting heme oxidation to biliverdin, carbon monoxide, and free ferrous iron21,22) and TFRC23,24, and thus makes it a key regulator of ferroptosis. Although Feng X's study found that ferroptosis could aggravate albuminuria, damage renal tubules, and enhance renal fibrosis through HIF-1α/HO-1 pathway in diabetic mice25, several lines of evidence showed the survival-promoting effects of HIF-1α and HO1 on inhibiting ferroptosis in other models26,27,28,29,30,31. Moreover, Jiang N's study revealed that HIF-1α exerted a protective effect against tubular injury by improving mitochondrial quality in DKD through HO1 upregulation32. Given the controversial role of HIF-1α and HO1 in ferroptosis and DKD, it is of interest to elucidate the renoprotective effects of SGLT2i in DKD \textit{via} regulating ferroptosis by HIF-1α/HO1 axis since SGLT2i can attenuate hypoxia as well as HIF-1α accumulation \textit{in vivo} and \textit{in vitro}33,34.

2. Materials And Methods

2.1 Patients and samples

Twenty patients with T2DM and biopsy-proven DKD, diagnosed from January 2017 to December 2017 in Peking University First Hospital35, were enrolled in this study. T2DM was defined according to the criteria proposed by the American Diabetes Association in 201736. None of the patients had coexisting non-diabetes-related renal disease. DKD was defined as previously described35. Healthy control kidney samples were obtained from healthy kidney poles of individuals (n = 10) receiving tumor nephrectomies without diabetes or other kidney diseases. All healthy control kidney samples were confirmed by pathological examinations including immunofluorescence, light microscopy, and electron microscopy. Clinical data of the patients at the time of renal biopsy was systematically recorded. Biopsies were scored independently by two experienced pathologists respectively. Interstitial fibrosis and tubular atrophy (IFTA) scores were assessed semi-quantitatively based on the proportion of the tubulointerstitial compartment affected (0, none; 1, < 25%; 2, 25–50%; 3, > 50%)35. The investigation was conducted according to the Declaration of Helsinki and was approved by the Ethics Committee of Peking University First Hospital (2017 – 1280). Written informed consent was obtained from each participant at renal biopsy.

2.2 Animal experimentation
Wild-type and \textit{db/db} mice (male, 8 weeks old) inbred on C57BLKS/J background were purchased from Gempharmatech Co., Ltd (Nanjing, China). The mice were randomly allocated into three groups after one-week acclimatization: a wild-type group (m/m, \(n = 7 \)), a \textit{db/db} group receiving 1 mg/kg/day dapagliozin (AstraZeneca Pharmaceuticals LP, solving in 0.5% methylcellulose) treatment (\textit{db/db}-Dapa, \(n = 7 \)) and a \textit{db/db} group receiving solvent as a vehicle (\textit{db/db}-Veh, \(n = 6 \)). During the 13-week treatment, body weight was monitored every week. Fasting blood glucose (FBG) was obtained at week0, 4, 8, and 13. The 24-h urine was collected using the metabolic cage to measure urinary albumin (E99-134; Bethyl Laboratories, Montgomery, TX, USA) and creatinine (C011; Nanjing Jiancheng, Nanjing, China) at week0, 4, and 13. Urinary HO1 levels were measured at week0 and 13 (ab205524; Abcam, Cambridge, MA, USA). Kidney tissues were collected before the time of euthanization and preserved for examination. All animal experiments were approved by the Laboratory Animal Ethics Committee of Peking University First Hospital (J202138).

2.3 Renal histology

Staining of kidney sections was performed using periodic acid Schiff (PAS; K1433; BioVision, CA, USA). Glomerular area was measured by tracing around the perimeter of the glomerular tuft. The mesangial matrix expansion area was assessed from the images of glomeruli and presented as a proportion of PAS-stained per glomerular cross-sectional area. The tubulointerstitial injury index was determined by assessing the extent and severity of tubular dilation, atrophy, and loss of tubular cells. Twenty images of a kidney section (magnification \(\times 400 \)) were scored as follows: 0 for no injury, 1 for <25%, 2 for 25–50%, 3 for 50–75%, and 4 for >75% tubulointerstitial injury35. Quantitation analyses were performed on Image-Pro Plus software V.6.0 (Media Cybernetics, Bethesda, MD).

2.4 Immunohistochemistry (IHC)

Formalin-fixed paraffin-embedded kidney tissue sections were blocked by 3% bovine serum albumin (BSA, A1933; Sigma-Aldrich, St Louis, MO, USA) after heat-induced epitope retrieval, and stained with anti-HO1 antibody (ab52947; Abcam), anti-TFRC antibody (ab84036; Abcam), or anti-GPX4 antibody (ab125066; Abcam) overnight at 4° C, respectively. Subsequently, an HRP-DAB system (PV-9002; ZLI-9018; ZSBIO, Beijing, China) was used for color development. Twenty images (magnification \(\times 400 \)) of each section were assessed by Image-Pro Plus.

2.5 Transmission electron microscopy

The renal cortical tissues of mice were fixed in 3% glutaraldehyde and further sample handling was performed by the Laboratory of Electron Microscopy, Peking University First Hospital. Imaging was performed by a Hitachi HT7800 transmission electron microscope (Hitachi, Japan). The measurement of glomerular basement membrane (GBM) thickness and mitochondria analysis of renal tubular epithelial cells was processed using Image-pro plus.

2.6 Cell culture
HK-2 human kidney proximal tubular cells (American Type Culture Collection, Rockville, MD) were cultured in DMEM nutrient mix F12 (11330-032; Gibco, Carlsbad, CA, USA) supplemented with 10% fetal bovine serum (10099141; Gibco, Australia), 1% penicillin-streptomycin (V900929; Sigma-Aldrich) at 37°C, 95% humidity, and 5% CO₂. Cells were seeded in 6, 12 or 96-well plates, and cells were exposed to different treatments for 24, 48 or 72h, including 30 mM D-glucose (high glucose; HG) (G8270, Sigma-Aldrich) or D-mannitol (Man) (M4125, Sigma-Aldrich), 200 µM palmitic acid (high fat; HF) (P0500, Sigma-Aldrich) or BSA (A9576, Sigma-Aldrich), 20 µM dapagliflozin (Dapa) (HY-10450; MedChemExpress (MCE), NJ, USA), 20 nM PX-478 (HY-10231; MCE), 80 µM hemin (HY-19424; MCE), 5 µM zinc protoporphyrin (Znpp) (HY-101193; MCE), 1 mM dimethyloxallyl glycine (DMOG) (HY-B0988; MCE), 50 µM deferoxamine mesylate (DFO) (HY-B0988; MCE), 2 µM erastin (HY-15763; MCE), 5 µM RSL3 (HY-100218A; MCE) and 1 µM ferrostatin-1 (Fer-1) (HY-100579; MCE), respectively.

2.7 Cell viability assay

Cell viability was measured using Cell Counting Kit-8 (CCK8-100; Dojindo, Kumamoto, Japan) according to the manufacturer’s instructions.

2.8 Iron and malondialdehyde (MDA) assay

Intracellular ferrous iron (Fe²⁺) was assessed by fluorescent probe FerroOrange (F374; Dojindo) via fluorescence-activated cell sorter (FACS) analysis using BD FACSVerse (BD biosciences, NJ, USA), while total iron concentration was measured by Iron detection kit (TC1015; Leagene, Beijing, China). MDA concentrations were determined by the Micro Malondialdehyde Assay Kit (BC0025; Solarbio, Beijing, China).

2.9 Quantification of lipid peroxidation

HK-2 cells were incubated with 2.5 µM C11-BODIPY₅₈₁/₅₉₁ (D3861; Thermofisher Scientific, MA, USA) for 45 min at 37°C. Then cells were collected and washed once with PBS followed by FACS. Fluorescence intensity was analyzed using FlowJo_V7 software.

2.10 Assessment of mitochondrial activity

Mitochondrial activity in HK-2 cells was assessed (C1035; Beyotime, Beijing, China) via FACS analysis or confocal laser scanning microscope. The fluorescence intensity of FACS was analyzed using FlowJo_V7 software.

2.11 Quantitative real-time PCR (qRT-PCR)

Total RNA was extracted (DP441; Tiangen, Beijing, China) and reverse transcribed into cDNA (4374966; Applied Biosystems, MA, USA). The qRT-PCR analysis was carried out in an ABI Prism 7500 sequence detection system using SYBR Green Master Mix (A25742; Applied Biosystems). Primers are listed in Table S1.
2.12 Western blot

Total protein was extracted, and nucleoprotein and cytoplasmic proteins from HK-2 cells were isolated (P0027; Beyotime). Protein was separated using 10% SDS-PAGE and transferred to PVDF membranes, which were probed with primary antibodies against HIF-1α (10006421; Cayman, USA), TFRC (13-6800; Thermo Scientific) GPX4 (ab125066; Abcam) and HO1 (10701-1-AP; Proteintech, CHI, USA). β-actin (sc-47778; Santa Cruz Biotechnology, CA, USA) and histone 3 (4499T; Cell Signaling Technology, MA, USA) were used as internal controls. Protein was visualized on autoradiographic film using an ECL Plus Western blot detection system (GE Healthcare).

2.13 Bioinformatic analysis

The transcriptome sequencing and analysis were conducted by OE Biotech Co., Ltd. (Shanghai, China). Raw data were processed using Trimmomatic37. After removing the low-quality reads, clean data were mapped to the reference genome using hisat238. FPKM39 value was calculated using cufflinks40, and the read counts were obtained by htseq-count41. Differentially expressed genes (DEGs) were identified using DESeq42 R package, and \(p < 0.05 \) and fold change > 2 or fold change < 0.5 was set as the threshold for significantly differential expression. KEGG43 pathway enrichment analysis of DEGs was performed using the Cluster Profiler R package.

2.14 Statistical analysis

Normally distributed data were presented as mean ± standard deviation (SD), and non-normally distributed data were presented as median and interquartile range (IQR). Groups were compared using unpaired two-tailed Student’s t-tests or one-way analysis of variance (ANOVA) as appropriate. Pearson or Spearman correlation analysis was used to evaluate the association between immunohistochemistry staining intensity (IOD/area) and clinicopathological parameters as appropriate. A \(p \) value less than 0.05 was considered statistically significant (* \(p < 0.05 \), ** \(p < 0.01 \), *** \(p < 0.001 \)). All the results were plotted using GraphPad Prism 8 software.

3. Results

3.1 Dapagliflozin ameliorated DKD in \(db/db \) mice

The vehicle-treated \(db/db \) mice showed significantly higher body weight, 24-h urinary albumin excretion, urine albumin-to-creatinine ratio (uACR), and FBG than m/m mice (43.5 ± 8.70 vs. 28.8 ± 1.02 g, \(p < 0.001 \); 11.7 ± 5.32 vs. 2.9 ± 1.46 mg/24h, \(p < 0.01 \); 768.7 ± 372.53 vs. 20.5 ± 8.82 µg/mg, \(p < 0.001 \); 32.0 ± 3.18 vs. 7.5 ± 2.30 mmol/l, \(p < 0.001 \); respectively) (Table 1). Dapagliflozin-treated \(db/db \) mice showed significant amelioration of 24-h urinary albumin excretion, uACR and FBG compared with vehicle-treated \(db/db \) mice.
(6.7 ± 2.03 vs. 11.7 ± 5.32 mg/24h, p < 0.05; 289.2 ± 118.32 vs. 768.7 ± 372.53 µg/mg, p < 0.01; 19.4 ± 5.26 vs. 32.0 ± 3.18 mmol/l, p < 0.001; respectively) (Table 1). No obvious adverse event was found in any experimental group.

Table 1
Laboratory data of mice

<table>
<thead>
<tr>
<th></th>
<th>m/m mice</th>
<th>vehicle-treated db/db mice</th>
<th>dapagliflozin-treated db/db mice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight, g</td>
<td>28.8 ± 1.02</td>
<td>43.5 ± 8.70*</td>
<td>51.4 ± 6.53</td>
</tr>
<tr>
<td>Water intake, ml/24h</td>
<td>4.6 ± 0.91</td>
<td>25.9 ± 10.72*</td>
<td>26.4 ± 5.50</td>
</tr>
<tr>
<td>Food intake, g/24h</td>
<td>4.5 ± 1.04</td>
<td>12.8 ± 3.22*</td>
<td>12.1 ± 4.11</td>
</tr>
<tr>
<td>Urine volume, ml/24h</td>
<td>0.9 ± 0.51</td>
<td>15.4 ± 9.00*</td>
<td>15.3 ± 5.37</td>
</tr>
<tr>
<td>FBG, mmol/l</td>
<td>7.5 ± 2.30</td>
<td>32.0 ± 3.18*</td>
<td>19.4 ± 5.26#</td>
</tr>
<tr>
<td>Triglyceride, mmol/l</td>
<td>0.8 ± 0.15</td>
<td>1.7 ± 0.48*</td>
<td>1.0 ± 0.21#</td>
</tr>
<tr>
<td>uACR, µg/mg</td>
<td>20.5 ± 8.82</td>
<td>768.7 ± 372.53*</td>
<td>289.2 ± 118.32#</td>
</tr>
<tr>
<td>Urine albumin, mg/24h</td>
<td>2.9 ± 1.46</td>
<td>11.7 ± 5.32*</td>
<td>6.7 ± 2.03#</td>
</tr>
</tbody>
</table>

FBG, fasting blood glucose; uACR, urine albumin-to-creatinine ratio. The continuous data were expressed as mean ± SD.* p < 0.01 vs. m/m mice; # p < 0.05 vs. vehicle-treated db/db mice.

PAS staining analysis showed that dapagliflozin-treated db/db mice manifested alleviated histological changes in kidneys, including glomerular size, mesangial matrix expansion, and tubulointerstitial lesions (Fig. 1A-D). The ultrastructural analysis demonstrated that dapagliflozin-treated db/db mice had significant improvement in glomerular basement membrane thickness, as compared with vehicle-treated db/db mice (Fig. 1E and F). These in vivo findings suggested dapagliflozin significantly ameliorated DKD of db/db mice.

3.2 Dapagliflozin alleviated renal ferroptosis in db/db mice

The level of MDA which increased in kidney cortex of vehicle-treated db/db mice was significantly alleviated in dapagliflozin-treated db/db mice, indicating the decreased lipid peroxidation upon dapagliflozin treatment (Fig. 1G). GPX4, which mainly expressed in tubulointerstitium, significantly increased in kidney cortex of dapagliflozin-treated db/db mice compared with vehicle-treated db/db mice (Fig. 1H-K).

Transmission electron microscopy revealed that typical changes of mitochondria in ferroptosis in kidney tubular epithelial cells including ruptured mitochondrial membrane and disappeared mitochondrial
cristae were improved in dapaglioflozin-treated db/db mice, as compared with vehicle-treated db/db mice (Fig. 1E). Consistently, the form factor and aspect ratio of mitochondria were improved by dapaglioflozin treatment (Fig. 1L and M).

TFRC upregulated in vehicle-treated db/db mice was significantly alleviated in dapaglioflozin-treated db/db mice (Fig. 1H-K). Total iron concentration significantly decreased in dapaglioflozin-treated db/db mice compared with vehicle-treated db/db mice (Fig. 1N). Collectively, dapaglioflozin ameliorated renal ferroptosis in db/db mice.

3.3 Dapaglioflozin downregulated HIF-1α/HO1 axis in db/db mice.

Kidney cortical tissues of mice were isolated for metabolomics analysis. 49 and 10 differential metabolites were found in db/db-vehicle vs. m/m group and db/db-dapaglioflozin vs. db/db-vehicle group respectively (Fig. 2A and B). Arachidonic acid signaling was upregulated in vehicle-treated db/db mice compared with m/m and dapaglioflozin-treated db/db mice, and lipid peroxidation products derived from arachidonic acid have been claimed as the proximate executioners of ferroptosis (Fig. 2C and D).

In RNA-Seq analysis, there were 2187 and 285 DEGs in db/db-vehicle vs. m/m group and db/db-dapaglioflozin vs. db/db-vehicle group respectively (Fig. 2E). HO1, a key regulator of oxidative stress and strongly associated with ferroptosis, stood out among a group of DEGs in db/db-dapaglioflozin vs. db/db-vehicle group (Fig. 2F). KEGG pathway enrichment analysis based on the RNA-Seq data showed that arachidonic acid (endocannabinoid) signaling was simultaneously enriched in db/db-vehicle vs. m/m group and db/db-dapaglioflozin vs. db/db-vehicle group, which was consistent with the metabolomics analysis (Fig. S1A and B).

We verified the RNA-Seq results on protein level and confirmed that dapaglioflozin treatment led to a remarkable reduction of HIF-1α and HO1 expression, as compared with vehicle-treated db/db mice (Fig. 3A-D). Meanwhile, the urinary HO1 level was also significantly reduced in dapaglioflozin-treated db/db mice compared with vehicle-treated db/db mice (Fig. 3E). These results suggested that HIF-1α/HO1 axis may be associated with the ferroptosis inhibition effects of dapaglioflozin in db/db mice.

3.4 Dapaglioflozin relieved HG/HF induced ferroptosis by downregulating HIF-1α/HO1 axis in vitro

The viability of HK2 cells with HG/HF treatment was significantly decreased compared with control group (Man/BSA and vehicle treated cells), which was rescued by dapaglioflozin, DFO (ferroptosis inhibitor), and Fer-1 (ferroptosis inhibitor) (Fig. 4A). Dapaglioflozin restored the cell viability reduction induced by RSL3, a ferroptosis inducer by inhibiting GPX4 activity (Fig. 4A).

Significantly reduced mitochondrial activity (Fig. 4B and C) was found in HG/HF group compared with control group. Lipid peroxidation level (Fig. 4D) increased, while GPX4 expression decreased upon HG/HF
treatment (Fig. 4E-G). These alterations were accompanied by increased expression of HIF-1α (in both whole cell and nucleus), HO1 and TFRC (Fig. 4E-G) as well as elevated iron levels (Fig. 4H-J).

Under HG/HF condition, cells in dapagliozin group have significant restoration of the cell viability (Fig. 4A), mitochondrial activity (Fig. 4B and C), and GPX4 expression compared with vehicle group (HG/HF and solvent treated cells) (Fig. E-G). The lipid peroxidation level (Fig. 4D) and iron concentration (Fig. 4H-J) were significantly lower in dapagliozin group than in vehicle group.

Under HG/HF condition, overexpression of HIF-1α by DMOG (Fig. 5A and B) weakened the effects of dapagliozin, evidenced by reduced cell viability (Fig. 5C), mitochondrial activity (Fig. 5D and E) and GPX4 expression (Fig. 5A, B and F), as well as enhanced iron overload (Fig. 5G-I) and lipid peroxidation (Fig. 5J) in dapagliozin and DMOG treated cells compared with dapagliozin treated cells. Moreover, overexpression of HO1 by hemin (Fig. 5A and B) reversed the effects of PX-478 (HIF-1α inhibitor), as evidenced by aggravated ferroptosis in cells treated with PX-478 and hemin compared with cells with PX-478 treatment alone (Fig. 5A-J).

These data suggested that dapagliozin alleviated HG/HF induced ferroptosis via downregulating HIF-1α/HO1 axis in vitro.

3.5 Inhibition of HIF-1α/HO1 axis rescued HG/HF induced ferroptosis in vitro

Under HG/HF condition, inhibition of HIF-1α or HO1 (by PX-478 and Znpp respectively) restored the cell viability impaired in vehicle group (Fig. 5C). PX-478 and Znpp also improved mitochondria activity (Fig. 5D and E) and reduced lipid peroxidation level (Fig. 5J) compared with vehicle group. Upregulation of GPX4 (Fig. 5A, B and F) and relieved iron overload (Fig. 5G-I) were also observed in PX-478 and Znpp treated cells.

Interestingly, TFRC was upregulated in DMOG and Znpp treatment but not in PX-478 treatment whether with or without hemin (Fig. 5A, B and F), which indicated HO1 and TFRC were regulated by HIF-1α while GPX4 was regulated by HO1. Collectively, these findings showed the inhibition of the HIF-1α/HO1 axis could suppress ferroptosis of HK-2 cells induced by HG/HF.

3.6 Ferroptosis was associated with the disease severity in DKD patients

We further analyzed the correlation between ferroptosis and disease severity in DKD patients (general data in Table S2). GPX4 level in kidney tubulointerstitium was significantly lower in DKD patients than in healthy controls (Fig. 6A and B), while HO1 and TFRC levels were significantly higher in kidney tubulointerstitium of DKD patients than in healthy controls (Fig. 6A and B). HO1 level positively correlated with serum creatinine (Scr) (r = 0.54, p < 0.05; Fig. 6C) and negatively correlated with estimated glomerular filtration rate (eGFR) (r = -0.59, p < 0.01; Fig. 6D), and GPX4 level negatively correlated with Scr (r = -0.63, p
< 0.01; Fig. 6E) and positively correlated with eGFR (r = 0.69, p < 0.001; Fig. 6F). These data suggested that ferroptosis was associated with the disease severity of DKD in patients.

4. Discussion

SGLT2i have emerged as promising antidiabetic drugs with renoprotection in T2DM patients47, and the role of ameliorating oxidative stress in SGLT2i-mediated renal protection has aroused increasing attention recently19. In the current study, we found that dapagliflozin relieved ferroptosis in \textit{db/db} mice and HK-2 cells, including lipid peroxidation products accumulation, weakened antioxidant capacity and iron overload, by downregulating the HIF-1\textalpha/HO1 axis. In addition, we found that HO1 and GPX4 in kidney tubulointerstitium significantly correlated with the disease severity in DKD patients.

In diabetic kidneys, enhanced glucose reabsorption by renal proximal tubular cells (RPTCs) \textit{(via} SGLT2) increases oxygen consumption and predisposes the renal cortex to hypoxia48, and increased HIF-1\textalpha expression in RPTCs suggested that hypoxia of renal tubules was a hallmark of DKD49,50. Some studies showed the pathogenic role of HIF-1\textalpha in DKD51,52,53, while others found that modulation of metabolic disorders and inflammation in diabetic mice by hypoxia-inducible factor stabilizers (prolyl hydroxylase inhibitors) was protective54,55. Adaptive upregulation of HIF-1\textalpha under hypoxia could be protective to a certain degree, while overactivation of HIF-1\textalpha would lead to tissue damage. In addition, except HIF-1\textalpha prolyl hydroxylase inhibitors also stabilize HIF-2\textalpha55. HIF-2\textalpha played a protective role in DKD by inhibiting inflammation and fibrosis56, which should be taken into consideration of studies of prolyl hydroxylase inhibitor. SGLT2i improved hypoxia, which explained the prevention of HIF-1\textalpha accumulation by SGLT2i mechanistically.

Accumulation of HIF-1\textalpha in DKD induces the expression of HO1 and TFRC and regulates iron metabolism57. Although previous evidence indicated that HO1 had protective effects in DKD58,59,60, several studies found elevated HIF-1\textalpha and HO1 levels in kidneys of diabetic models25,61. HO1 helps attenuate oxidative stress in the early stage, while continuous HO1 upregulation will trigger ferroptosis52,63, which indicates that the effect of HO1 in DKD may depend on different pathological conditions. We found that upregulation of the HIF-1\textalpha/HO1 axis promoted ferroptosis \textit{in vivo} and \textit{in vitro}, and inhibition of the HIF-1\textalpha/HO1 axis alleviated ferroptosis. Moreover, upregulation of the HIF-1\textalpha/HO1 axis weakened the ferroptosis-relieving effect of dapagliflozin, which suggested alleviated iron overload by SGLT2i through the HIF-1\textalpha/HO1 axis could, at least to some extent, explain its renoprotective effects.

Cyst(e)ine/glutathione (GSH)/GPX4 signaling axis constitutes the predominant ferroptosis defense system10,64,65. However, we found dapagliflozin could rescue ferroptosis induced by RSL3 but not erastin (ferroptosis inducer by inhibiting SLC7A11 activity) in HK-2 cells (Fig. S2), which indicated that dapagliflozin inhibits ferroptosis by regulating GPX4 expression rather than SLC7A11. GPX4 utilizes GSH as its cofactor to prevent ferroptosis by eliminating membrane phospholipid hydroperoxides and maintaining the integrity of phospholipid bilayers66. GPX4 deficiency is regarded as one of the
biomarkers of ferroptosis, and GPX4 depletion caused massive renal tubular epithelial cells to undergo ferroptosis10,67,68. Dapagliflozin could reverse the GPX4 reduction \textit{in vivo} and \textit{in vitro}, which suggested that the restored antioxidant capacity against lipid peroxidation caused by the iron overload of SGLT2i was also necessary for its renoprotective role.

There were many other pathways with significant changes in metabolomics and RNA-Seq (Fig. 2C and D; Fig. S1), so more detailed insights are needed to elaborate the effects of these pathways in the renoprotective effect of SGLT2i.

In conclusion, dapagliflozin alleviated DKD progression by mitigating ferroptosis through HIF-1\(\alpha\)/HO1 axis (Fig. 7). The present study explained the renoprotective effect of SGLT2i from a new angle.

Declarations

Acknowledgments

We are grateful to the Laboratory Animal Center of Peking University First Hospital for the technical support of this study.

Competing Interests

All the authors have nothing to disclose.

Funding

This research was funded by the National Natural Science Found [grant number 82070748, 82090020, and 82090021]; CAMS Innovation Fund for Medical Sciences [grant number 2019-I2M-5-046]; and Hengrui Pharmacy.

References

50. Dekkers CCJ, Petrykiv S, Laverman GD, Cherney DZ, Gansevoort RT, Heerspink HJL. Effects of the SGLT-2 inhibitor dapagliflozin on glomerular and tubular injury markers. Diabetes, obesity &

Figures
Figure 1

Dapagliflozin alleviated renal ferroptosis in \textit{db/db} mice.

Representative light microscopy photomicrographs of glomeruli and tubulointerstitium of PAS staining kidney tissue (A) (scale bar=60μm), and mesangial matrix expansion (B), glomerular size (C), and tubulointerstitial lesions (D) were assessed. Representative transmission electron microscopy...
photomicrographs of glomeruli and mitochondria morphology of kidney cortex (E). The black arrow indicates the increasing thickness of GBM, and the red and yellow arrows indicate the fused foot process and mitochondria with disappeared cristae. Black scale bar=2μm, and white scale bar=1μm. Quantification of mean GBM thickness (F). The MDA level in the kidney cortex lysates (G). Immunohistochemical staining results of GPX4 and TFRC in kidney cortex, and scale bar=60μm (H). Semi-quantification analysis of immunohistochemical staining of GPX4 and TFRC (I). The protein expression of GPX4 and TFRC (J) and semi-quantification results of gray value (K) in kidney cortex of mice. The form factor (L) and aspect ratio of mitochondria per image (M) in kidney tubular cells. The iron concentrations in the kidney cortex lysates (N). GBM, glomerular basement membrane; GPX4, glutathione peroxidase 4; IOD/area, the intensity of immunohistochemical staining; MDA, malondialdehyde; m/m, wild type mice; db/db-Veh, vehicle-treated db/db mice; db/db-Dapa, dapagliflozin-treated db/db mice; TFRC, transferrin receptor. Data were expressed as mean ± SD. *p<0.05, **p<0.01, ***p<0.001.
Figure 2

Ferroptosis played an important role in the renoprotective effects of dapagliozin.

The metabolites difference between \textit{m/m} mice and vehicle-treated \textit{db/db} mice (A). The metabolites difference between vehicle-treated and dapagliozin-treated \textit{db/db} mice (B). The KEGG pathway clustering results of differential metabolites between \textit{m/m} mice and vehicle-treated \textit{db/db} mice (C) and
vehicle-treated and dapagliflozin-treated db/db mice (D). The intersection of differentially expressed genes in m/m, vehicle-treated db/db and dapagliflozin-treated db/db mice (E). The differentially expressed genes between vehicle-treated and dapagliflozin-treated db/db mice (F). HO1, heme oxygenase-1; m/m, wild type mice; db/db-Veh, vehicle-treated db/db mice; db/db-Dapa, dapagliflozin-treated db/db mice.

Figure 3
Dapagliflozin reversed increased expression of HIF-1α/HO1 axis in db/db mice.

The protein expression levels in kidney cortex lysates of m/m, vehicle-treated db/db and dapagliflozin-treated db/db mice (A), and semi-quantification results of gray value (B). Immunohistochemical staining results of HO1 in kidney cortex, and scale bar=60μm (C). Semi-quantification analysis of the HO1 level in immunohistochemical staining (D). The urine HO1 level of m/m, vehicle-treated db/db and dapagliflozin-treated db/db mice (E). HIF-1α, hypoxia-inducible factor-1α; HO1, heme oxygenase-1; IOD/area, the intensity of immunohistochemical staining; m/m, wild type mice; db/db-Veh, vehicle-treated db/db mice; db/db-Dapa, dapagliflozin-treated db/db mice. Data were expressed as mean ± SD. *p<0.05, **p<0.01, ***p<0.001.
Figure 4

Dapagliflozin rescued the ferroptosis induced by HG/HF by downregulating HIF-1α/HO1 axis in HK-2 cells.

The viability of HK-2 cells cultured in the media with dapagliflozin, deferoxamine mesylate, ferrostatin-1 for 72h, or RSL3 for 48h (A). Detection of mitochondrial activity in HK-2 cells treated with different
treatments for 72h using confocal laser scanning microscope (scale bar =10μm) (C), and the relative MFI of PE channel was also calculated using FACS (B). Lipid peroxidation level of HK-2 cells in different treatments assessed by C11-BODIPY_{581/591} using FACS and relative MFI of FITC channel was calculated (D). The mRNA expression levels of TFRC, GPX4, HIF-1α and HO1 in each group (E). The protein expression levels of TFRC, GPX4, HIF-1α and HO1 in whole cell lysates and HIF-1α in nuclear lysates of each group (G) and semi-quantitative analysis of gray value (F). Detection of Fe²⁺ in HK-2 cells treated with different treatments for 72h using confocal laser scanning microscope (scale bar =10μm) (I), and the relative MFI of PE channel was also calculated using FACS (H). Total iron level of HK-2 cells in different treatments (J). Dapa, dapagliozin; DFO, deferoxamine mesylate; Fer-1, ferrostatin-1; GPX4, glutathione peroxidase 4; HIF-1α, hypoxia-inducible factor-1α; HIF-1α-N, HIF-1α in nuclear lysates; HIF-1α-W, HIF-1α in whole cell lysates; HG/HF, high glucose/high fat; HO1, heme oxygenase-1; MFI, mean fluorescent intensity; TFRC, transferrin receptor. Data were expressed as mean ± SD. *p<0.05, **p<0.01, ***p<0.001.

Figure 5

Inhibition of HIF-1α/HO1 axis alleviated the ferroptosis induced by HG/HF in HK-2 cells.

The protein expression levels of TFRC, GPX4, HIF-1α and HO1 in whole cell lysates and HIF-1α in nuclear lysates of each group of cells (B) and semi-quantitative analysis of gray value (A). The viability of HK-2 cells being cultured in the media with different treatments for 72h (C). Detection of mitochondrial activity in HK-2 cells treated with different treatments for 72h using confocal laser scanning microscope (scale bar=10μm) (E), and the relative MFI of PE channel was also calculated using FACS (D). The mRNA expression levels of TFRC and GPX4 in each group (F). Total iron concentration of HK-2 cells in different treatments (G). Detection of Fe²⁺ in HK-2 cells treated with different treatments for 72h using confocal laser scanning microscope (scale bar=10μm) (I), and the relative MFI of PE channel was also calculated using FACS (H). Lipid peroxidation levels of HK-2 cells in different treatments assessed by C11-BODIPY_{581/591} using FACS and relative MFI of FITC channel was calculated (J). Dapa, dapagliozin; DMOG, dimethyloxallyl glycine; GPX4, glutathione peroxidase 4; HIF-1α, hypoxia-inducible factor-1α; HIF-1α-N, HIF-1α in nuclear lysates; HIF-1α-W, HIF-1α in whole cell lysates; HG/HF, high glucose/high fat; HO1, heme oxygenase-1; MFI, mean fluorescent intensity; TFRC, transferrin receptor; Znpp, zinc protoporphyrin. Data were expressed as mean ± SD. *p<0.05, **p<0.01, ***p<0.001.
Figure 6

Ferroptosis significantly elevated in kidney samples of DKD patients.

Immunohistochemical staining results of HO1, GPX4 and TFRC in kidney sections of DKD patients and HC, and scale bar=60μm (A). Semi-quantification analysis of immunohistochemical staining of HO1, GPX4 and TFRC (B). The correlation of HO1 and clinical parameters of DKD patients including Scr (C) and eGFR (D). The correlation of GPX4 and clinical parameters of DKD patients including Scr (E) and eGFR (F). DKD, diabetic kidney disease; eGFR, estimated glomerular filtration rate; GPX4, glutathione peroxidase 4; HC, healthy control; HO1, heme oxygenase-1; IOD/area, the intensity of immunohistochemical staining; Scr, serum creatinine; TFRC, transferrin receptor. Data were expressed as mean ± SD. *p<0.05, **p<0.01, ***p<0.001.
Figure 7

The proposed model of dapagliflozin in DKD alleviation.

GPX4, glutathione peroxidase 4; HIF-1α, hypoxia-inducible factor-1α; HRE, hypoxia response element; SGLT2i, sodium-glucose cotransporter 2 inhibitors; TF, transferrin; TFRC, transferrin receptor.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementalMaterial.pdf
- SupplementalMaterial2.pdf