Epidemiological Characteristics and Factors Associated Alzheimer's Disease and Mild Cognitive Impairment among the Elderly in Urban and Rural Areas of Hubei Province

Jing CHENG
Medical College, Wuhan university of Science and Technology

XiaoQi JI
Medical College, Wuhan university of Science and Technology

Lu HE
Medical College, Wuhan university of Science and Technology

YuTong ZHANG
Chinese Center For Disease Control and Prevention

TongTong XIAO
Medical College, Wuhan university of Science and Technology

Qiang GENG
Medical College, Wuhan university of Science and Technology

ZhiHui WANG
Chinese Center For Disease Control and Prevention

ShiGe QI
Chinese Center For Disease Control and Prevention

Fang ZHOU (✉ 38571581@qq.com)
Hubei Provincial Center for Disease Control and Prevention

JianBo ZHAN
Hubei Provincial Center for Disease Control and Prevention

Research Article

Keywords: Alzheimer's disease, Mild cognitive impairment, Epidemiology, Protective factors, Risk factors

Posted Date: June 21st, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1690951/v1

License: ☑️ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Objective To investigate the prevalence, influencing factors and population distribution of AD and MCI among residents of Hubei province aged 60 years or over.

Methods A cross-sectional study was used for recruitment the subjects. The screened patients with AD and MCI were then selected as patients in a case-control study.

Results A total of 4,314 subjects were recruited into the study. The prevalence of AD and MCI was 1.44% and 10.04%, respectively. The prevalence of AD and MCI differed significantly as a function of age and gender ($P<0.05$). The protective factors for AD and MCI separately included a happy marriage (OR=0.69, 95%CI: 0.36-1.35), etc; and higher education (OR=0.65, 95%CI: 0.55-0.78) etc. The risk factors for AD and MCI separately included infrequent participation in social activities (OR=1.00, 95%CI: 0.60-1.66), etc; and infrequent communication with children (OR=1.35, 95%CI: 1.09-1.69), etc.

Conclusion The prevalence of AD aged 60 and over in Hubei province was lower than the national average of 3.06%. The prevalence of MCI was within the range nationally (5.2-23.4%). The influencing factors of AD and MCI were associated with their social connections, lifestyle behaviours and somatic diseases and so on. The elderly people should be encouraged to study and communicate with others, take part in regular physical exercise and choose a healthy lifestyle so as to prevent or slow the decline of cognitive ability.

1. Introduction

Alzheimer's disease (AD) is an increasingly serious global health problem. In 1990 it was the 28th cause of death and by 2017, it had risen to the 8th leading cause of death $^{[1]}$. It is estimated that more than 50 million people worldwide are currently living with dementia, and China has the largest number of dementia patients in the world. In 2020, there are about 176.03 million people aged over 65 years in China, accounting for 12.6% of the total population of 1.4 billion $^{[2]}$. The population aging rate of China ranks first in the world $^{[3]}$. It is estimated that by 2050, there will be over 30.3 million AD patients in China, 2.35 times the number of patients in 2015 $^{[4]}$. The pathological changes of AD begin about 10 to 20 years before the onset of clinical symptoms $^{[5]}$, this is referred to as the mild cognitive impairment (MCI) stage. Those with MCI, especially those with memory problems and those with co-occurring MCI and anxiety, are more likely to develop Alzheimer's disease (AD) or other dementias, as compared to those without MCI. Approximately 15 to 20% of people aged 65 years and older have MCI $^{[6]}$.

AD is a serious threat to human health and quality of life due to its high morbidity, disability, and mortality, and being a heavy burden on families and society $^{[7]}$. To date, the pathogenesis of AD has not been determined, though the most widely recognized theories are the theory of amyloid protein (Aβ) toxicity and the theory of abnormal Tau protein $^{[8,9,10]}$. Many studies have shown that the gradual loss of oligodendrocytes and myelin $^{[11,12]}$ is also a key factor leading to a decline in cognitive ability and
pathological state repair ability. In current research, there is still no clear and effective way to prevent or treat AD. The current treatment method is to continuously stimulate patients and improve their psychological and mental states on the basis of conventional diet, sleep quality, psychological care, etc., combined with new methods such as memory recovery, language function recovery, and life function recovery, so as to promote the early recovery of patients.

A meta-analysis by Ward et al. [13, 14] found that, on average, 32% of patients with MCI develop AD within five years, and about 10–20% of MCI patients progress to AD every year. However, some patients with MCI can become cognitively normal or stable without worsening through intervention and effective treatment [15, 16], and about 24% of MCI patients are able to reverse to normal cognition (NC) [18]. Therefore, it is very important to carry out early population-level screening, intervention, and possible treatment for MCI, so as to reduce the incidence and delay the occurrence of AD, thereby reducing the impact of AD on the health of the elderly population.

There are a large number of studies showing that caregivers, age and residency are the main influencing factors for the quality of life of patients with AD and MCI [17, 18]. To identify factors associated with MCI and AD, the current study conducted a large-scale epidemiological field investigation of AD and MCI in Hubei Province. It is hoped that this study will provide a theoretical basis for the early intervention, prevention and control of AD and MCI.

2. Methods

2.1 Study Population

The target population for this study was individuals aged 60 years and over who had local household registration and had lived in Hubei Province for more than one year. A multi-stage, stratified, clustered, random sampling method was used for recruitment. The specific sampling method includes the following five steps: Stage 1: Based on urban communities and rural township communities, Jingmen city and Huanggang City of Hubei Province were selected. Then one county and one district were simply selected at random. In order to achieve a sample size of 4000, an average of 2000 people were selected from each project county/district. Stage 2: One township and one street were randomly selected from each project county/district using PPS sampling method proportional to population size. Stage 3: 4-8 administrative villages or neighborhood committees are selected by cluster sampling in the selected towns/streets. Stage 4: At least 100-200 households with members aged 60 and above in each administrative village (neighborhood committee) were randomly selected as the investigation households. Stage 5: Invite all permanent residents aged 60 and above to carry out the survey.

After multi-stage sampling, 2032 individuals from Qichun County, Huanggang City, Hubei Province were recruited, together with 2282 individuals from Jingmen City, Dongbao District, Hubei Province. After preliminary screening of the survey participants, 58 patients with AD and 404 patients with MCI were identified and were selected as the case group.
2.2 Survey methods and contents

2.2.1 Survey Methods Potential AD and MCI subjects were identified through initial screening according to xxx. Inclusion criteria to be included in this study were: Age ≥60 years; Participate voluntarily and agree to cooperate with all investigators. Exclusion criteria were: Non-residents of the community; Those who refuse to provide true information; temporary residents; Patients with severe depression, schizophrenia and other mental diseases.), and then questionnaires, physical examinations, and laboratory tests were performed in a home-based and centralized manner by uniformly trained investigators. The Mini-Mental State Examination (MMSE) and the Activities of Daily Living (ADL) were used for the neuropsychological and daily activity ability assessment. The MCI diagnostic criteria are based on standards developed by the National Institute on Aging-Alzheimer's Association (NIA-AA). The Geriatric Depression Scale (GDS) and Hachinski Ischemic Score (HIS) were used for the initial differential diagnosis of AD. The Clinical Dementia Rating (CDR) was used to grade the severity of dementia. Finally, the suspected cases were further confirmed by neurology experts based on the preliminary diagnosis results combined with computed tomography (CT) evaluations. And then, a case-control study was performed. For the 58 diagnosed patients with AD and 404 diagnosed patients with MCI, gender and age (±2 years) were taken as matching factors. Elderly individuals with normal cognitive function who were matched to the cases with respect to area of residence were selected as the normal control (NC) group. The AD and NC groups were matched at a ratio of 1:4, with a total of 290 individuals across the AD and matched NC group, and the MCI group and NC group were matched at a ratio of 1:1, with a total of 808 individuals across the MCI and matched NC group.

2.2.2 Survey contents (1) Inquiry and investigation. The main contents of the survey include: family status registration form and personal questionnaire survey. Among them, the contents of the family status registration form include family records, family demographic information (such as name, age, sex, education level, marital status, occupation, etc.), family elderly AD information, etc. Personal questionnaire contents include basic information such as demographic data, daily habits such as smoking, drinking, diet, physical activity and other behavior risk factors), primary hypertension related information (such as common and treatment of chronic disease, chronic functional disorder, etc.), daily life ability and self-evaluation of health, and other major health problems such as dementia screening.

(2) Physical examination. The examination content mainly includes: body and height measurement. Physical measurements include height, weight, waist circumference, blood pressure and heart rate. Height measurement using height sitting meter (maximum measuring length 2.0 meters, accuracy 0.1 cm); Electronic scales are used for weight measurement (maximum range 150 kg, accuracy 0.1 kg); Waist circumference measurement using waist ruler (maximum measurement length 1.5 meters, accuracy 0.1 cm); Blood pressure and heart rate were measured using an electronic sphygmomanometer with an accuracy of 1mmHg.

(3) Laboratory testing. The detection content includes: routine blood biochemical index detection, namely fasting blood glucose and lipid. If the respondents can produce results of tests conducted within one
year by other accredited medical institutions, these results are copied in the questionnaire; if not, fasting venous blood was collected from all subjects on site, and four tests of fasting blood glucose and blood lipid were performed.

2.3 Data analysis

Epidata 3.1 and SPSS 18.0 software were used for data processing and statistical analysis. Different descriptive statistics and hypothesis testing methods were used for the various types of statistical data. The rate and percentage were used to describe count data, and paired chi-square tests were used for between-groups comparisons. Measurement data were expressed as mean± standard deviation (Mean ±SD). Multivariate conditional logistic regression models were used to analyse the association between the two groups and the various influencing factors. The potential risk factors were further screened by a step-by-step method, and the odds ratio (OR) and 95% confidence interval (CI) was calculated to evaluate the strength of the association between each factor and AD and MCI, respectively. All tests were two-tailed with $\alpha=0.05$; $P<0.05$ was considered statistically significant.

2.4 Quality control

(1) Before on-site investigation began, pre-investigation, revision, and improvement of a series of survey design schemes were performed.

(2) During the process of the field investigation, there was a clear field workflow, a reasonable arrangement of on-site investigators, and timely feedback of the survey results.

(3) After the completion of the field investigation, the quality of data entry was the focus. Each project site made local backups of the collected data every day and 5% of the questionnaires from each investigation site were extracted for review. Timely feedback was provided when problems were identified.

3. Results

3.1 Basic information on the sample

A total of 4314 people aged 60 years and over were recruited into this study from the Qichun County of Huanggang City and Dongbao District of Jingmen City, Hubei Province. A total of 304 invalid questionnaires were excluded from the analysis (including 81 people who refused to participate, 128 people were lost to follow-up, 80 people who died, and 15 surveys with incomplete information). Thus, a total of 4010 respondents were included in the analysis, with a response rate of 92.95%.

Of the 4,010 people included in the study, ranged in age from 60 to 110 years old, 2,069 were female, and 1941 were male. The structure and category of the sample was shown in Supplementary Figure S1 to Figure S8.
3.2 The prevalence of AD and MCI

3.2.1 Overall Prevalence of AD and MCI and Average Score on MMSE A total of 4010 people aged 60 years and over were included in this study, among which, 58 patients met the diagnostic criteria for AD, with an AD prevalence of 1.44%. Among the patients with AD, 17 were male (29.3%) and 41 were female (70.7%). A total of 404 patients met the diagnostic criteria for MCI, with an MCI prevalence of 10.07%. Among the patients diagnosed with MCI, 150 were male (37.1%) and 254 were female (62.9%). The average MMSE scores of the AD and MCI patients were 10.24±0.59 and 18.75±0.29, respectively. The MMSE scores were divided into six groups based on level of cognitive function. The specific scores are shown in Supplementary Table S1 and Table S2.

3.2.2 Prevalence of AD and MCI as a Function of Age and Gender With increasing age, the prevalence of AD and MCI first increased and then decreased; there was no statistically significant difference among the age groups ($P > 0.05$), which was shown in Table 1 and Table 2. 29.31% of AD patients are male and 70.69% are female, and 7.13% of MCI patients are male and 62.87% are female. (Figure 1 and Figure 2). The difference in the prevalence of AD/MCI between genders was statistically significant ($P < 0.05$).

3.2.3 Prevalence of AD and MCI in Different Regions Among the two areas selected for this study, Qichun County is a rural area and Dongbao District is an urban area. The prevalence of AD and MCI in the two areas was 1.44% and 10.04%, respectively. As shown in Supplementary Figure S9, the proportion of AD among the elderly in rural areas was significantly higher than that in urban areas (96.55% vs. 3.45%; $P < 0.05$). There was no statistically significant difference in the proportion of MCI between the two groups ($P > 0.05$).

3.3 Factors associated with the presence of AD or MCI

3.3.1 Demographic factors associated with the presence of AD or MCI Equilibrium analysis showed that there were no statistically significant differences in age and gender between the AD and MCI case groups and the respective control group ($P > 0.05$), indicating that the groups were comparable. The influence of other demographic factors on the prevalence of AD and MCI is shown in Table 3 and Table 4. The paired χ^2 test showed that the incidence of AD differed significantly as a function of region and education level ($P < 0.05$). There were no significant differences in the prevalence of AD as a function of marital status and occupational status ($P > 0.05$). Univariate logistic regression analysis revealed that urban residence, happy marriage, higher education level, and previous relatively easy occupation were statistically significant, suggesting that these factors may be a protective factor for AD. Having a relatively easy occupation, higher education level, and happy marriage may also be protective factors for MCI; these relationships were statistically significant ($P < 0.05$).

3.3.2 Influence of Social Connections and Life Events on the Incidence of AD and MCI Univariate logistic regression analysis showed that a harmonious neighbourhood relationship and living with family members were protective factors for AD and MCI. Frequent communication with children and continuing to work were also protective factors for AD. Active participation in social activities was a protective factor.
for MCI. However, active participation in social activities had no protective effect on AD. Frequent communication with children and ongoing work were risk factors for MCI. See Supplementary Table S3 and Table S4 for details.

3.3.3 Influence of Life Behaviour on AD and MCI

The results of the univariate logistic regression analysis showed that a healthy lifestyle (including regular physical examination, wider waist circumference, frequent drinking of tea, and moderate alcohol) reduced the risk of AD, and frequent low to moderate physical exercise reduced the risk of MCI. Smoking and high levels of physical activity increased the risk of AD, while having sleep disturbances, regular smoking, drinking tea, and alcohol increased the risk of MCI. See Supplementary Table S5 and Table S6 for details.

3.3.4 Influence of Somatic Diseases on the Incidence of AD and MCI

Univariate logistic regression analysis showed that diabetes, stroke, disc herniation, hearing loss, and tumours were all protective factors for AD. High blood pressure, coronary heart disease, chronic bronchitis, asthma, tuberculosis, arthritis, and cervical spondylosis were risk factors for AD. Both coronary heart disease and stroke were risk factors for MCI. See Supplementary Table S7 and Table S8 for details.

3.3.5 Influence of Hobbies on AD and MCI

As can be seen from Supplementary Table S9 and S10, compared with the control group, there were no statistically significant differences in the rate of Internet surfing among the AD and MCI patients ($P > 0.05$), and there was no statistically significant difference in the rate of reading for interest between the controls and AD patients ($P > 0.05$). There was a significant difference in the rate of reading for interest between controls and the MCI case group ($P < 0.05$). There was also a statistically significant difference in the rate of playing chess and cards between controls and AD patients ($P < 0.05$), but no statistically significant difference between controls and MCI patients ($P > 0.05$). The results of the univariate logistic regression analysis showed that reading books and newspapers, playing chess and cards, and properly using computers to surf the Internet were all protective factors for AD and MCI.

3.3.6 Multivariate Analysis of the Factors Influencing AD and MCI

The single factors associated with AD and MCI as identified in the above analyses were included in a multivariate conditional logistic regression analysis. The stepwise method was used to enter variables. The results showed no statistically significant difference in the influencing factors between the AD case group and the control group. Compared with the control group, higher education level, harmonious neighbourhood relationship, and happy marriage were protective factors for MCI. Coronary heart disease, poor sleep quality, and frequent communication with children were risk factors for MCI. See Table 5 for details.

4. Discussion

This current study identified 58 patients with AD and 404 patients with MCI among the elderly population aged 60 years and above living in Hubei Province. The overall prevalence of AD and MCI was 1.44% and 10.07%, respectively, which is significantly lower than the prevalence rates reported in other domestic
populations[^2,^24,^25]. The prevalence of AD in males was significantly lower than that in females (29.31% vs. 70.69%); the same was observed for MCI (37.13% vs. 62.87%). The prevalence of MCI in females was significantly higher than that of males for all five age groups in this study. This may be related to women’s longer life expectancy than men, lower estrogen levels after menopause, lower levels of education, less sleep (more housework) and more mood swings[^26].

The possible factors associated with the occurrence of AD in this study included education, neighbourhood associations, physical examinations, BMI, waist circumference, tea consumption, smoking, and playing chess and cards. Higher education level was a protective factor that reduced the risk of AD (OR = 0.07, 95%CI: 0.01–0.51). This is consistent with previous results[^25]. During the process of education, blood flow to the brain will increase, which can effectively prevent nerve cell damage caused by free radicals[^25]. And people with higher education, in contrast, tend to pay more attention to their physical health, making healthier lifestyle choices and reducing associated activities and lifestyle habits that may increase the risk of disease[^27]. Education level also affects people’s ability and degree to participate in social behaviour and social interaction. Frequent communication with neighbours was found to reduce the risk of AD. Elderly people who often communicate with neighbours may have a cheerful personality and strong affinity[^28,^29]. This may be because communicating with neighbours is a social activity that can promote the activity of the brain, enhance memory abilities[^30]. Actively participating in physical examinations organized by community health service centres may also reduce the risk of AD. This may be because physical examination can provide early screening for hidden diseases, resulting in early detection and treatment of diseases among the elderly. In addition, BMI and waist circumference were negatively correlated with the severity of AD, and reasonable intake of nutrients may be a protective factor for AD[^31]. Polyphenols in green tea have great potential for the prevention and treatment of neurodegenerative diseases in the elderly due to their strong antioxidant capacity. Feng et al.[^32] conducted a cross-sectional study of the relationship between cognitive function and tea consumption in 716 elderly Chinese people aged 55 or above. The results showed that those who consumed more tea had better cognitive performance, and the protective effect of tea on cognitive function was not limited to specific types of tea. The current study indicated that smoking may increase the risk of AD. Studies have shown that nicotine and carbon oxide contained in tobacco can cause damage to the capillary endothelium, resulting in platelet agglutination and vascular stenosis, and increasing the risk of vascular obstruction, which can lead to dementia[^33,^34].

The factors affecting the occurrence of MCI in this study were education level, neighbourhood communication, communication with children, coronary heart disease, sleep, and marital status. Higher education level was associated with a lower risk of MCI, making it a protective factor for MCI (OR = 0.67, 95%CI: 0.56–0.81). This is consistent with previous findings[^10]. Frequent interaction with neighbours also reduced the risk of MCI (OR = 0.72, 95%CI: 0.59–0.89); this was also a possible protective factor for AD. In addition, a happy marriage was a protective factor for MCI (OR = 0.59, 95%CI: 0.40–0.88). This may be because in a happy marriage, the interaction and care with the spouse can prevent the development of MCI, while an unhappy marriage can lead to loneliness, depression and lack of love, which may promote
the development of MILD cognitive impairment. A recent study showed that maintaining physical and mental health helps to delay the decline in cognitive engagement in older adults experiencing cognitive impairment [35]. Sleep problems have been identified as a risk factor for cognitive decline and dementia. A recent meta-analysis identified ten sleep conditions or parameters associated with a higher risk of cognitive impairments [36]. Further, a recent study was found that participants who reported sleeping less than five hours had twice the risk of dementia as those who reported sleeping seven to eight hours per night [37]. Frequent communication with children in this study was associated with an increased risk of MCI (OR = 1.53, 95%CI: 1.19–1.97), which is contrary to the results of Ritchie [38]. This previous study argued that a lack of communication with one's children leads to loneliness among the elderly, and can even lead to depression and improper diet, which will accelerate the occurrence and progress of MCI. The contrary result obtained in the current study may be related to the sample selected for this study. When children live with their parents, their communication increases, but supporting elderly parents will bring economic and mental pressure to children. Differences in living habits and values may lead to more conflicts, which will also increase the psychological burden of parents and may promote the occurrence of MCI.

Coronary heart disease was also found to be associated with MCI. Li et al. studied the relationship between cardiovascular disease and MCI and found that cardiovascular disease leads to cognitive impairment [39]. Thus, by actively controlling risk factors for vascular disease, we may be able to effectively prevent the occurrence of cardiovascular disease, and subsequently, the development of MCI.

Together with research on the pathogenesis, early diagnosis, and drug treatment of MCI and AD, research on factors influencing the incidence of MCI and AD, including diet and nutrition, may contribute to interventions for high-risk AD and MCI groups and improved prevention, early detection, early diagnosis, and treatment for AD and MCI. Such research also provides a scientific basis for the establishment of relevant government policies.

Strengths and Limitations

This is the first cross-sectional study to analyse the sporadic AD and MCI, as well as the influencing factors in urban and rural elderly people. Our study, conducted in Hubei Province, had a large sample size of the aged over 60 to explore epidemiological characteristics and influencing factors. Moreover, we obtained the prevalence data. The vast majority of AD cases have no known genetic cause, so it is crucial to identify environmental factors associated with the onset and progression of the disease. This study explores the living environment and lifestyle of patients with AD and MCI, combined with published studies to synthesize the risk factors and protective factors that are most likely to affect AD and MCI in older adults.

All of these provide valuable clues for follow-up research and preventive and intervening measures for AD and MCI.
This study also has several limitations. First, 80 participants were lost to follow-up of having died over the course of the study, which may have affected the results. Second, it is only a cross-sectional study, and the analysis results of risk factors have some limitations. For example, it is difficult to judge the time relationship and causality between the factors to be studied and the disease. Third, our sample results are not based on geographical distribution and economic level, the research results can only be representative of Hubei province. Fourth, our study only investigated Han population, and whether the results can be extrapolated to ethnic minorities needs further study.

5. Conclusion

In this study, we found that the prevalence of AD in the elderly population aged 60 and over in Hubei province was lower than the national average, which was significantly higher in females than in males. And the prevalence of MCI was within the range nationally. There were also differences in the prevalence of AD and MCI as a function of age, gender, and region. The influencing factors of AD and MCI were associated with their social connections, lifestyle behaviours and somatic diseases and so on. There is no effective treatment for AD and MCI, which poses a great challenge to the national and regional health, welfare, social services and other relevant departments, and has attracted the high attention of governments and health personnel. Therefore, how to generally carry out effective early screening, improve the early diagnosis rate and strengthen the standardized management of diseases, so as to delay or delay the occurrence of diseases is the prevention and control strategy concerned by countries all over the world.

We recommend that 1) activity centres and universities for the elderly could be set up to encourage elderly people to study and communicate more. If the patient is fully aware of the disease knowledge, it is conducive to improving the confidence of treatment. Moreover, the family should be targeted, and the active cooperation and support of family members obtained so that elderly people receive better monitoring and psychological support. 2) elderly people should be encouraged to participate in social activities (such as reading books and newspapers, playing chess, writing, and other intellectual activities), and choose a healthy lifestyle so as to prevent or slow the decline of cognitive ability. 3) Government departments should also carry out capacity building training for medical and health workers in the disease control system and workers in primary medical and health service institutions, so as to improve the awareness of and the preventive efforts for geriatric neurodegenerative diseases.

Abbreviations
Declarations

Consent for publication

Informed consent was obtained from the participants for publication of this report and any accompanying images.

Ethics approval and consent to participate

The study was approved by the Ethics Committees of the Wuhan University of Science and Technology Medical College. The ethical approval number is 2015010201. Informed consent was obtained from all subjects and/or their legal guardian(s). All methods were performed in accordance with the relevant guidelines and regulations.

Availability of data and materials

The datasets used and/or analysed during the current study available from the corresponding author on reasonable request.

Conflict of interest

The authors declare no conflicts of interest in this study.

Authors' information

<table>
<thead>
<tr>
<th>AD</th>
<th>Alzheimer's Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCI</td>
<td>Mild Cognitive Impairment</td>
</tr>
<tr>
<td>NC</td>
<td>Normal Control</td>
</tr>
<tr>
<td>MMSE</td>
<td>Mini-Mental State Examination</td>
</tr>
<tr>
<td>ADL</td>
<td>Activities of Daily Living</td>
</tr>
<tr>
<td>NIA-AA</td>
<td>National Institute on Aging-Alzheimer's Association</td>
</tr>
<tr>
<td>GDS</td>
<td>Geriatric Depression Scale</td>
</tr>
<tr>
<td>HIS</td>
<td>Hachinski Ischemic Score</td>
</tr>
<tr>
<td>CDR</td>
<td>Clinical Dementia Rating</td>
</tr>
<tr>
<td>CT</td>
<td>computed tomography</td>
</tr>
<tr>
<td>Mean±SD</td>
<td>mean± standard deviation</td>
</tr>
<tr>
<td>OR</td>
<td>odds ratio</td>
</tr>
<tr>
<td>CI</td>
<td>confidence interval</td>
</tr>
</tbody>
</table>
Cheng Jing, Associate professor, School of Public Health, Wuhan University of Science and Technology. Research interests include nutrition and chronic disease prevention, field epidemiological investigation, biomarker detection, etc., focusing on the epidemiological investigation and related prevention and treatment of cognitive disorders in the elderly (AD and MCI), and biological sample detection.

Author contributions

Cheng Jing conceived and designed the study. Zhou Fang, Zhan Jianbo Wang Zhihui, Qi Shige offered us epidemiological investigation strong support, He Lu, Ji Xiaoqi, Zhang Yutong, Xiao Tongtong, Geng Qiang performed the study and wrote the paper. All authors contributed to discussions and the writing of the manuscript.

Acknowledgements

We wish to thank the participants for taking part in the study. We also thank the Wuhan University of Science and Technology Medical College, Chinese Center for Disease Control and Prevention, Hubei Province Center for Disease Control and Prevention, Jingmen City Center for Disease Control and Prevention, and Qichun County Center for Disease Control and Prevention, who assisted in the conduct of the project, in particular Ms Zhou Fang, Mr Wang Zhihui, Ms Qi Shige, Mr Zhan Jianbo, Mr Guan Chunlin, Ms Qu Likai, Ms Li Meihua, Mr Gao Zhiyun, Mr Li Jing, Ms Rongshuang, Mr Zhu Hailin, Mr Li Benchao, Mr Li Haoyue and some counsellors. We also thank the NativeEEwww.nativeee.com, which offered polishing service.

Funding

This study was supported by grants from the National Innovation and Entrepreneurship Training Program for College Students: Investigation of high risk factors and health management of elderly patients with mild cognitive impairment aged over 60 years in Hubei province(201810488038), Hubei Province Key Laboratory of Occupational Hazard Identification and Control: Study on blood biomarkers for early diagnosis of Alzheimer’s disease(OHIC2019G04), Education Department of Hubei Province: Research on the status and influencing factors of Alzheimer’s disease and mild cognitive impairment in Hubei province (19Q016).

References

23. John C Morris. CLINICAL DEMENTIA RATING (CDR). Neurology,1993,43:2412-2414, f:\institut\cultadap\project\2925 \etude2925\ final-versions\cdr\cdroriq.doc-30/05/2006.

Tables

Table 1

Prevalence of AD as a function of age and gender
Table 2

Prevalence of MCI as a function of age and gender

<table>
<thead>
<tr>
<th>Age group (years)</th>
<th>Male</th>
<th>Female</th>
<th>Prevalence rate (%)</th>
<th>Male</th>
<th>Female</th>
<th>Prevalence rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AD(n)</td>
<td>Prevalence rate (%)</td>
<td>AD(n)</td>
<td>Prevalence rate (%)</td>
<td>Prevalence rate (%)</td>
<td></td>
</tr>
<tr>
<td>60~</td>
<td>2</td>
<td>0.67</td>
<td>7</td>
<td>2.25</td>
<td>1.47</td>
<td></td>
</tr>
<tr>
<td>65~</td>
<td>4</td>
<td>1.54</td>
<td>5</td>
<td>1.92</td>
<td>1.73</td>
<td></td>
</tr>
<tr>
<td>70~</td>
<td>2</td>
<td>1.01</td>
<td>6</td>
<td>3.14</td>
<td>2.05</td>
<td></td>
</tr>
<tr>
<td>75~</td>
<td>6</td>
<td>5.04</td>
<td>13</td>
<td>9.49</td>
<td>7.42</td>
<td></td>
</tr>
<tr>
<td>80~</td>
<td>3</td>
<td>2.44</td>
<td>10</td>
<td>7.87</td>
<td>5.20</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>1.70</td>
<td>41</td>
<td>3.99</td>
<td>2.86</td>
<td></td>
</tr>
</tbody>
</table>

Table 3

Influence of different demographic factors on AD

<table>
<thead>
<tr>
<th>Variable</th>
<th>β</th>
<th>sx</th>
<th>χ^2</th>
<th>P</th>
<th>$OR , 95% CI$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region</td>
<td>-5.812</td>
<td>2.607</td>
<td>4.971</td>
<td>0.026</td>
<td>0.03[0.00,0.50]</td>
</tr>
<tr>
<td>Marital status</td>
<td>-0.367</td>
<td>0.340</td>
<td>1.167</td>
<td>0.280</td>
<td>0.69[0.36,1.35]</td>
</tr>
<tr>
<td>Level of education</td>
<td>-2.705</td>
<td>1.038</td>
<td>6.795</td>
<td>0.009</td>
<td>0.07[0.01,0.51]</td>
</tr>
<tr>
<td>Professional status</td>
<td>-3.461</td>
<td>2.744</td>
<td>1.592</td>
<td>0.207</td>
<td>0.03[0.00,6.79]</td>
</tr>
</tbody>
</table>
Table 4

Influence of different demographic factors on MCI

<table>
<thead>
<tr>
<th>Variable</th>
<th>β</th>
<th>sx</th>
<th>χ^2</th>
<th>P</th>
<th>OR/95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional status</td>
<td>-0.934</td>
<td>0.252</td>
<td>13.788</td>
<td>0.001</td>
<td>0.39[0.24,0.64]</td>
</tr>
<tr>
<td>Level of education</td>
<td>-0.424</td>
<td>0.089</td>
<td>22.929</td>
<td>0.001</td>
<td>0.65[0.55,0.78]</td>
</tr>
<tr>
<td>Marital status</td>
<td>-0.452</td>
<td>0.183</td>
<td>6.117</td>
<td>0.013</td>
<td>0.64[0.45,0.91]</td>
</tr>
</tbody>
</table>

Table 5

Multivariate conditional logistic regression analysis of factors influencing MCI

<table>
<thead>
<tr>
<th>Variable</th>
<th>β</th>
<th>sx</th>
<th>χ^2</th>
<th>P</th>
<th>OR/95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coronary heart disease (CHD)</td>
<td>0.878</td>
<td>0.258</td>
<td>11.582</td>
<td>0.001</td>
<td>2.41[1.45,3.99]</td>
</tr>
<tr>
<td>Sleep</td>
<td>0.771</td>
<td>0.164</td>
<td>22.112</td>
<td>0.001</td>
<td>2.16[1.57,2.98]</td>
</tr>
<tr>
<td>Level of education</td>
<td>-0.399</td>
<td>0.096</td>
<td>17.183</td>
<td>0.001</td>
<td>0.67[0.56,0.81]</td>
</tr>
<tr>
<td>Neighbour interaction</td>
<td>-0.325</td>
<td>0.104</td>
<td>9.671</td>
<td>0.002</td>
<td>0.72[0.59,0.89]</td>
</tr>
<tr>
<td>Children communication</td>
<td>0.424</td>
<td>0.129</td>
<td>10.832</td>
<td>0.001</td>
<td>1.53[1.19,1.97]</td>
</tr>
<tr>
<td>Marital status</td>
<td>-0.529</td>
<td>0.203</td>
<td>6.777</td>
<td>0.009</td>
<td>0.59[0.37,0.88]</td>
</tr>
</tbody>
</table>

Figures
Figure 1

Trend in AD prevalence as a function of gender and age
Figure 2

Trend in the prevalence of MCI as a function of gender and age

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaryTable.docx
- SupplementaryFigure.docx