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Abstract. The well-established Bath’s law states that the average magnitude difference between a mainshock and15

its strongest aftershock is roughly 1.2, independently of the size of the mainshock. The main challenge in calculating16

this value is the bias introduced by missing data points when the strongest aftershock is below the observed cut-17

off magnitude. Ignoring missing values leads to a systematic error, because the data points removed are those with18

particularly large magnitude differences ∆M . The error is minimized, if we restrict the statistics to mainshocks19

at least two magnitude units above the cut-off, but then the sample size is strongly reduced. This work provides20

an innovative approach for modelling ∆M by adapting methods for time-to-event data, which often suffers from21

incomplete observation (censoring). In doing so, we adequately account for unobserved values and estimate a fully22

parametric distribution of the magnitude differences ∆M for M ą 6 mainshocks. Results show that magnitude23

differences are best modeled by the Gompertz distribution, and that larger ∆M are expected at increasing depths and24

higher heat flows. A simulation experiment suggests that ∆M is mainly driven by the number and the magnitude25

distribution of aftershocks. Therefore, in a second study, we modelled the variation of aftershock productivity in26

a stochastically declustered local catalog for New Zealand, using a generalized additive model approach. Results27

confirm that aftershock counts can be better modelled by a Negative Binomial than a Poisson distribution. Interestingly,28

there is indication that triggered earthquakes trigger themselves two to three times more aftershocks than comparable29
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background events. This effect can either be an indicator for incorrect trigger pair assignments as a result of the30

declustering approach, or it may represent an actual effect due to a higher prevalent energy level in the tectonic system31

during on-going earthquake sequences. If confirmed, this effect must be carefully considered in forward simulations32

of earthquake sequences, as otherwise there is a risk of substantially underestimating cluster sizes and consequently33

overestimating ∆M .34

Keywords: Bath’s law, survival models, aftershock productivity, generalized additive models.35

Main author contact information: Christian.Grimm@stat.uni-muenchen.de36

1 Introduction37

As energy is released in the event of a strong earthquake, tectonic stress redistributes in the sur-38

roundings of the initial rupture and typically results in further earthquakes, so-called aftershocks39

(Utsu et al., 1995). The cascade of aftershocks is commonly referred to as an earthquake se-40

quence, and the strongest event of the sequence is called the mainshock. Typically, events that41

occurred shortly before the mainshock, so-called foreshocks, are included in the sequence since42

they are believed to be physically related to the upcoming major earthquake (e.g. Helmstetter and43

Sornette, 2003).44

Extensive research has been carried out to analyze and model the spatio-temporal properties of45

earthquake sequences, e.g. through the Epidemic Type Aftershock Sequence (ETAS) model (Ogata,46

1988, 1998; Zhuang et al., 2002). Studies found a well-established power-law decay of aftershock47

rates as a function of the time after the mainshock (Omori, 1895), while the spatial cluster is typi-48

cally elongated rather than isotropic around the mainshock’s rupture plane (e.g. Grimm et al., 2022,49

2021; Hainzl et al., 2008; Ogata, 2011; Ogata and Zhuang, 2006; Zhang et al., 2018).50

Aftershocks are a relevant risk driver since even moderate events can substantially increase dam-51

age in buildings and infrastructure destabilized by a prior mainshock. Similarly, foreshocks can52
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set the stage for more severe mainshock damage (Abdelnaby, 2012; Kagermanov and Gee, 2019;53

Papadopoulos et al., 2020). Therefore, one of the central questions for emergency and risk man-54

agement purposes is: What is the second strongest magnitude to be expected in a sequence?55

To date, the literature only provides a starting point for answers to this question. The well-56

established Bath’s law states that the average magnitude difference ∆M between a mainshock and57

its strongest aftershock is roughly 1.2, independently of the size of the mainshock (Bath, 1965).58

The main challenge in calculating this value is the bias introduced by missing data, if no after-59

shock was observed above the cut-off magnitude Mc of the catalog and therefore ∆M cannot be60

computed. We cannot simply ignore missing values, as these are the ones with particularly large61

magnitude differences ∆M . Therefore, leaving them out would lead to a systematic bias. Sev-62

eral authors found that the statistics is robust, if we restrict the sample to mainshocks at least two63

magnitude units above Mc, but then the sample size is strongly reduced (e.g. Tahir et al., 2012;64

Zakharova et al., 2013). Another work around was suggested by Zakharova et al. (2013), who65

modeled the seismic moment ratio between aftershocks and the mainshock, rather than ∆M , ap-66

proximating the ratio by zero if no aftershocks were recorded.67

In any case, Bath’s law only makes a statement about the average value of the ∆M , but not about68

their distribution (and its parameters) or any important quantiles in the lower tail of the distribution.69

Another term that appears occasionally in the literature is that of an earthquake doublet. Doublets70

are generally defined as a pair of two similarly strong earthquakes, occurring temporarly and spa-71

tially close to each other (e.g. Felzer et al., 2004; Grimm et al., 2021; Kagan and Jackson, 1999).72

Kagan and Jackson (1999) found that approximately 22% of the M ą 7.5 earthquakes worldwide73

occurred accompanied by another M ą 7.5 event within a distance of one rupture length and with74

an inter-event time of considerably less than their recurrence time estimated from plate motion.75
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Grimm et al. (2021) showed that roughly 17% of the global M ě 6 mainshocks and more than76

20% of the mainshocks in Japan were part of an earthquake doublet, defining them as a pair of77

earthquakes with no more than 0.4 magnitude units difference, occurring within 365 days and a78

radius of 2.5 rupture lengths.79

1.1 Survival Model Regression of ∆M80

In the first part of this work, we propose an innovative approach that models the full, paramet-81

ric distribution of ∆M by adapting so-called survival models, originally developed for medical82

applications. Survival models are a class of regression models that account for data with a cen-83

sored (or truncated) response variable (see e.g. Klein and Moeschberger (2003) for comprehensive84

overviews). As the term ”survival” suggests, these models were originally developed in applica-85

tions where the response represents the non-negative lifetime of a patient in medical studies or86

the lifetime of a device in engineering contexts (so-called reliability or failure time analysis). The87

above applications have in common that the exact value of the response is unknown, if the event88

has not occurred until the end of the study period.89

Replacing lifetimes by magnitude differences, we can therefore use survival models to account for90

the missing ∆M values where we only have the partial information that ∆M ą M ´ Mc, given91

mainshock magnitude M .92

To do so, we decluster a global catalog using a window method, and compute the (partially right-93

censored) ∆M between the mainshock and the second strongest event of each cluster. Note that94

the latter may be a foreshock or an aftershock, as both are relevant in a risk management context.95

Then, we enrich the cluster set by a plate boundary classification, relative plate velocities, sea96

floor age and heat flow data, to investigate the regression effects of these large-scale geophysical97
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conditions on the distribution of ∆M .98

1.2 Drivers of ∆M99

The magnitude difference ∆M is controlled by the two drivers (Grimm et al., 2021)100

1. number of aftershocks (hereafter called aftershock productivity) and101

2. frequency-magnitude distribution (FMD) of triggered events.102

A simple simulation shall demonstrate the effect of both factors. Assume an initial mainshock of103

magnitude M “ 8. Let the expected aftershock productivity of an earthquake with magnitude M104

be105

kpMq “ A exppα pM ´ Mcqq, M ě Mc, (1)

and the FMD be the exponential distribution with probability density function (pdf)106

fpMq “ β e´βpM´Mcq, β ą 0, M ě Mc, (2)

where β is related to the Gutenberg-Richter b-value by b “ β{lnp10q (Gutenberg and Richter,107

1944). If we assume the realistic parameters A “ 0.13, α “ 2.0 and b “ 1.0 and, for simplicity, a108

Poisson distributed number of aftershocks with trigger-magnitude dependent parameter λ “ kpMq,109

we can simulate a distribution of ∆M with a mean of 1.2, consistent with Bath’s Law.110

A doubled aftershock productivity (i.e. A “ 0.26) would lead to a pronounced drop of the average111

magnitude difference down to 0.66. If the increase of A does only apply to secondary triggering,112

but the number of direct aftershocks of the M8 mainshock remains unchanged, the mean of ∆M113
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still decreases to below 0.9. A similar reduction of the average ∆M is achieved, if instead we114

modify the FMD, sampling magnitudes according to b “ 0.85.115

1.3 Regression of Aftershock Productivity116

The simplified simulation experiment above illustrates the leverage of both aftershock productivity117

and FMD on the magnitude differences ∆M . This gave motivation for a more in-depth analysis118

of the variation in aftershock productivity in the second part of this study. To do so, we declus-119

ter a local earthquake catalog for New Zealand and fit a generalized additive model (GAM) to120

the estimated number of direct aftershocks per event, comparing a Poisson with a Negative Bi-121

nomial distribution. Here, we use the stochastic declustering method introduced by Zhuang et al.122

(2002), based on the ETAS-Incomplete model proposed by Grimm et al. (2022) that accounts for123

anisotropic ruptures as well as short-term aftershock incompleteness to reduce estimation biases.124

We enrich the local catalog by classifying the events to the main tectonic contexts in the surround-125

ing of the Hikurangi fault, and by concluding the slip type from additional focal mechanism data.126

Extensive research has been done on the variation of aftershock productivity. Kagan (2017) and127

Shebalin et al. (2018) showed that aftershock counts are best modeled by the Negative Binomial128

distribution due to their large variance. Page et al. (2016) found that aftershock productivity may129

regionally vary by a factor of almost 10, which would explain the variation in ∆M to large extent.130

Marsan and Helmstetter (2017) found that 40-80% of the aftershock variability may be related131

to variation in the mainshock stress drop. Dascher-Cousineau et al. (2020) investigated a large132

number of source and site effects on aftershock productivity and showed individual correlations of133

stress drop and rupture dimension with the number of aftershocks. Wetzler et al. (2016) suggest134

a larger productivity in subduction zones of the western circum-Pazific, compared to the eastern135
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side. Zhuang et al. (2004) proposed that triggered events produce more aftershocks than com-136

parable background events, which would provide an additional boost in clustering and decrease137

expected ∆M ’s.138

Potential correlations of the FMD of triggered events with the magnitude of the direct ancestor or139

the cluster mainshock were found by Zhuang et al. (2004), Gulia et al. (2018) and Nandan et al.140

(2019), and may considerably increase the chance of small ∆M . However, they are out of the141

scope of this work.142

1.4 Scope and Outline143

This work consists of two regression studies, the analysis of magnitude differences (hereafter called144

∆M -regression), and the analysis of the aftershock productivity (referred to as productivity re-145

gression). The focus is on the innovate approach to estimate a fully parametric distribution of146

∆M , using survival models that take into account right-censored data rather than avoid it. To our147

knowledge, no similar approach has been pursued in the literature so far. Especially in the ∆M -148

regression, covariates represent rather large-scale regional effects. Attempts to consider small-149

scale variations of these covariates or to include further event specific data are out of the scope of150

this paper.151

Sections 2 and 3 introduce the utilized datasets, the declustering approaches and the compilation152

of the covariate datasets for both regression studies, respectively. Next, Section 4 rigorously ex-153

plains the survival model and GAM methodological approaches. Then, the results of the regression154

studies are shown and discussed in Sections 5 (∆M -regression) and 6 (productivity regression).155

Finally, conclusions are drawn from a joint interpretation and related future research topics are156

recommended.157
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2 Data for ∆M -Regression158

This section summarizes the compilation of the regression dataset for the analysis of global mag-159

nitude differences between the mainshock and the second strongest event in the cluster. First,160

we justify the choice of the underlying global earthquake catalog. Then, we outline the window161

method to decluster the catalog, followed by the definition of the response variable. Finally, the162

enrichment of further geophysical variables as regression covariates is explained.163

2.1 Global Earthquake Catalog164

The choice of an appropriate global earthquake catalog for the regression of magnitude differences165

raises two requirements which, however, are not fully met by any currently available catalog and166

therefore requires a trade-off. On the one hand, the catalog should ideally have homogeneous mag-167

nitude scales, and be reliably complete in any part of the world, including far off-shore regions and168

aftershocks occurring shortly after the mainshock. On the other hand, it should be complete to the169

smallest possible magnitude level to assure a sufficient observable magnitude range of at least one170

unit below the smallest mainshock magnitude of interest, M ą 6.0.171

Despite not providing homogenized magnitude scales, we chose the U.S. Geological Survey Na-172

tional Earthquake Information Center (USGS-NEIC) catalog. We extracted all events from 1973173

until 2021 with depths smaller than 70 km that occurred at a maximum of 300 km distance to a tec-174

tonic plate boundary according to the digital model by Bird (2003). The completeness magnitude175

of this dataset is Mc “ 5.0 according to Kagan and Jackson (2010) and Tahir et al. (2012), which176

allows us to apply the regression model to clusters with mainshock magnitude larger than 6.0.177

To test the influence of inhomogeneous magnitude scales, we performed sensitivity analyzes using178

the International Seismological Centre – Global Earthquake Model (ISC-GEM) instrumental cat-179
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alogue, which is a relocated global event set with homogenized magnitude scales (Bondár et al.,180

2015; Di Giacomo et al., 2015a,b, 2018; Storchak et al., 2015). Due to its higher level of magni-181

tude completeness, Mc “ 5.6 according to Di Giacomo et al. (2015b) and Mc “ 6.0 according to182

Michael (2014) since 1964, we have to limit our statistical analysis to mainshocks with M ě 6.6.183

2.2 Declustering of Global Catalog184

In order to obtain a set of independent clusters, including the information about the magnitude185

difference ∆M between the mainshock and the largest aftershock (or foreshock), we declustered186

the global earthquake catalog using a rather simple window method (see e.g. Gardner and Knopoff,187

1974; Uhrhammer, 1986; van Stiphout et al., 2012). To do so, we first sorted the catalog in de-188

scending magnitude order. Then, we consecutively searched aftershocks occurring within a time189

window of T “ 100 days and a spatial radius of Rpmq “ 2.5Lpmq, where Lpmq “ 10´2.44`0.59m
190

is the expected rupture length of the mainshock, depending on its magnitude m, according to Wells191

and Coppersmith (1994). Similar to Reasenberg (1985), we linked clusters if an event B is found192

to trigger the potential aftershock A, but A is the mainshock of an already identified cluster and193

therefore, due to prior re-ordering of the catalog, has the larger magnitude, mA ě mB. In this194

case, event B is called a foreshock of A.195

We conducted sensitivity studies that showed that the regression results are insensitive to varying196

definitions such as T “ 365 days and Rpmq varying between 1.0Lpmq and 2.5Lpmq.197

2.3 Response Variable198

For each cluster, the magnitude difference ∆M is computed between the mainshock (i.e., the199

strongest event of the cluster) and the second-strongest event, be it a foreshock or aftershock. In200
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total, we obtain 2,933 clusters with mainshock magnitudes M ą 6.0.201

Note that 1,180 of these are single-event clusters, i.e., no associated foreshock or aftershock was202

found in the corresponding time-space window. Based on seismological reasoning we can assume203

that these mainshocks actually triggered aftershocks, but that these were simply too weak to be204

recorded in the dataset, given its cut-off magnitude Mc. Therefore, if for a mainshock i with205

magnitude Mi ě Mc no second event is listed, we have the partial information that the magnitude206

difference is ∆Mi ą Mi´Mc. The single clusters are the reason why we need advanced regression207

models that can deal with censored data.208

2.4 Covariates209

We enriched the declustered catalog by additional geophysical site information interpolated to the210

mainshock locations by a nearest neighbor approach.211

Using the digital plate boundary model of Bird (2003), we categorized each event into one of212

seven plate boundary classes continental convergence boundary (CCB), continental transform fault213

(CTF), continental rift boundary (CRB), oceanic spreading ridge (OSR), oceanic transform fault214

(OTF), oceanic convergent boundary (OCB) and subduction zone (SUB). Fig. 1 shows the main-215

shock locations of the declustered catalog, color-coded by the corresponding plate boundary class216

assigned to them. Table 1 lists the number of clusters with censored and observed ∆M value per217

boundary class, respectively. Note that almost half of the clusters are assigned to a subduction218

zone, and that oceanic spreading ridges and transform faults host more censored than observed219

data points.220

From the same digital model, we assigned estimates of the relative plate velocity and sea floor221

age from the next boundary segment point to the mainshock locations. Likewise, using a near-222
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est neighbor approach, we interpolated values from the scattered heat flow dataset of Bird et al.223

(2008), provided to us by the author. Fig. 2 illustrates the marginal distributions of the interpolated224

covariate data at the mainshock locations, grouped by the assigned plate boundary class. Subduc-225

tion zones show the largest relative plate velocities (values range between 0.4 and 262 mm/a, see226

Fig. 2(a)), while oceanic spreading ridges and transform faults provide the youngest sea floor ages227

(between 0 and 262 Ma, see Fig. 2(b)) and the largest heat flows (between 0.025 and 0.3 Wm´2,228

see Fig. 2(b)).229

3 Data for Productivity-Regression230

This section summarizes the dataset compilation for the regression of aftershock productivity.231

First, we briefly introduce the chosen local event set for New Zealand. Then, we rigorously232

describe the stochastic declustering method which is applied in order to estimate the number of233

aftershocks as the response variable. Finally, we describe the enrichment of the local event set by234

further geophysical properties.235

3.1 Local New Zealand Catalog236

We limited this study to the Hikurangi subduction zone in New Zealand. A local event set was237

provided by GNS Science as an input to the ongoing 2022 revision of the New Zealand National238

Seismic Hazard Model. Using the algorithm of Stepp (1972), we computed that the catalog is239

complete down to Mc “ 3.5 from 1982; however, to be conservative, we assumed Mc “ 3.5 from240

1987, concurrent with an improvement to the seismic network. Fig. 3 shows the chosen extract of241

11,091 events surrounding the Hikurangi fault, between 1987 and end of 2020, at depths down to242

80 km.243
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3.2 Declustering of Local Catalog244

For the regression of aftershock counts, we cannot use the window declustering method, as it does245

not distinguish direct from secondary aftershocks. Instead, we used the stochastic declustering ap-246

proach based on the Epidemic Type Aftershock Sequence (ETAS) model, as introduced by Zhuang247

et al. (2002).248

The ETAS model describes the spatio-temporal clustering behavior of the entire catalog, and mod-249

els a dynamic event rate at time t and location px, yq, given the prior event history Ht, through two250

overlapping processes,251

Rpt, x, y|Htq “ upx, yq `
ÿ

i:tiăt

Rtrigpt, x, y, iq, (3)

where upx, yq denotes the time-invariant, aftershock-independent seismic background rate, and252

ř

i:tiăt R
trigpt, x, y, iq is the sum of the trigger rate contributions by all events i that occurred prior253

to time t. For more details about the ETAS model, see e.g. Jalilian (2019); Ogata (1988, 1998);254

Zhuang et al. (2002).255

From Equation (3), Zhuang et al. (2002) concluded that the probability, that the event j at time tj256

and location pxj, yjq was an aftershock of the prior event i, is257

Pj,i “
Rtrigptj, xj, yj, iq

Rptj, xj, yj|Htq
.

Similarly, the probability that event j is a seismic background event and therefore independent of258

any prior trigger, is259

Pj,backgr “
upx, yq

Rptj, xj, yj|Htq
.
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Thus, unlike the window method, the ETAS model provides probabilistic trigger associations be-260

tween event pairs, and does not require the arbitrary choice of a fixed space-time window to search261

aftershocks. Instead, it optimizes built-in parametric functions that model the expected number of262

aftershocks (for trigger magnitude mi),263

Kpmiq “ Aeα pmi´Mcq, A ą 0, α ą 0, (4)

the temporal decay of aftershock rates (e.g. Omori-Utsu power law, see Omori, 1895), and a typi-264

cally isotropic spatial distribution of aftershocks.265

In this work, we used the ETAS-Incomplete model version of Grimm et al. (2022), who introduced266

a novel, anisotropic and locally restricted spatial kernel and accounted for incomplete records of267

aftershock sequences. The estimation source code is available in a public github repository (see268

Data and Resources). The new features solve the estimation biases due to the misfit of mostly269

elongated aftershock clouds by an isotropic kernel, and an underestimation of the trigger poten-270

tial of strong mainshocks as a consequence of missing aftershock data. Both biases were shown to271

heavily affect our response variable, the aftershock productivity (Grimm et al., 2022, 2021; Hainzl,272

2021; Hainzl et al., 2013; Page et al., 2016; Seif et al., 2017).273

3.3 Response Variable274

As the response variable of the regression model, we defined the estimated number of direct after-275

shocks for each event i in the catalog. We did this by counting the number of subsequent events j,276

for which i is the most probable trigger event, i.e. Pj,i ą Pj,k @ k ‰ i, and that are more likely277

triggered by i than being a background event, i.e. Pj,i ą Pj,backgr.278
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Note that the response is inevitably affected by the short-term incomplete records of aftershock279

sequences, as we can only count aftershocks that are recorded in the dataset. Nevertheless, the280

ETAS-Incomplete model approach avoids a biased parameter estimation, that would lead to ma-281

nipulated declustering probabilities.282

3.4 Covariates283

The local catalog provides us the magnitude and depth for each event as immediate covariates284

for the regression model. Additionally, if the triggering event i was itself already triggered by a285

previous event, we traced back the trigger sequence and identified the largest magnitude in the286

cluster, that occurred before event i. This covariate tests whether an event, that is a member287

of a cluster, is more or less productive than an independent background event, and whether its288

aftershock productivity is influenced by the previous mainshock.289

A focal mechanism data set comprising 1,581 events of the chosen catalog extract was provided290

by GNS Science. We used the nodal-plane.py function from the public GEMScienceTools/oq-291

mbtk repository, based on the algorithm in Álvarez-Gómez (2019), to translate the given focal292

mechanisms into the slip type categories normal (N), strike-slip (SS) and reverse (R) and mixed293

categories.294

We classified each earthquake in the catalogue to the main tectonic regions. These regions are295

the shallow crust, subduction interface, subduction intraslab deep (within the subducting plate,296

but deeper than the zone of contact between the subducting and overriding plate), and subduction297

intraslab shallow (within the subducting plate, but in the shallow part of the plate beneath the298

interface, e.g. Reyners et al., 2010). To do so, we used the methodology described by Pagani299

et al. (2020), which classifies each earthquake based on its hypocentral position relative to surfaces300

14



(with buffers) that demarcate the boundaries of these regions. The surface used to represent the301

Hikurangi subduction interface and the top of the subducting plate was derived from a 3D model302

provided by GNS Science. Earthquakes shallower than 40 km and within 5 km of this surface were303

classified as interface; those shallower than 40 km and more than 5 km below the surface were304

classified as shallow slab; and those deeper than 40 km and within 5 km above or 60 km below305

this surface were classified as deep slab (the large below-slab buffer helps to capture earthquakes306

with large depth errors). Earthquakes shallower than the Moho (depths defined by LITHO1.0,307

Pasyanos et al., 2014) with a 10 km buffer were classified as crustal; crustal earthquakes were then308

sub-classified as occurring within or outside of the surface projection of the subduction zone. If309

an earthquake was classified into more than one tectonic region, then the following hierarchy was310

applied: interface is more likely than shallow slab, which is more likely than deep slab, which is311

more likely than shallow crustal. All other earthquakes were labelled as ”unclassified” and not312

used in further analyses.313

4 Regression Methods314

In this section, we summarize the statistical models used in the two regression studies. Subsection315

4.1 introduces survival regression models that can account for the censored ∆M response data316

due to unobserved aftershocks. Subsection 4.2 explains the use of a generalized additive model317

(GAM) for modeling aftershock counts in the local New Zealand catalog. All statistical analyses318

were performed with the open source software R (R Core Team, 2021).319
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4.1 Survival Models320

4.1.1 Why Using a Survival Model for Earthquakes?321

The magnitude difference ∆M between the mainshock and the second-largest earthquake of a se-322

quence is only known, if at least one foreshock or aftershock was observed and assigned to the323

mainshock. Indeed, roughly 40% of the global clusters consist of a stand-alone mainshock. For324

these clusters, we can conclude that the second strongest event must be smaller than the cut-off325

magnitude Mc, i.e., that ∆Mi ą Mi ´ Mc, where Mi is the magnitude of mainshock i. In statis-326

tics, data points which are capped by such an upper observable threshold are called right-censored327

(Klein and Moeschberger, 2003, section 3.2). Classical statistical models would substantially un-328

derestimate ∆M due to the relevant proportion of censored observations.329

Replacing lifetimes by magnitude differences, our data meets the necessary requirements of a sur-330

vival model,331

• non-negative responses (∆M ě 0)332

• independent responses (mainshocks result from declustered catalog)333

• non-informative censoring (i.e., conditional on covariates, censored clusters are not sus-334

pected to deviate structurally in their ∆M -distribution from non-censored clusters).335

4.1.2 Model Formulation and Software336

In order to estimate both covariate effects and the entire distribution of magnitude differences ∆M ,337

we need a fully parametric survival model approach. As will be shown in the results section, the338

best model fits were achieved assuming a Gompertz distribution for the magnitude differences,339

rather than other candidates such as Weibull or Generalized Gamma. The Gompertz distribution is340
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defined on p0,8q. Therefore data points with ∆M “ 0 were substituted by the value 0.01. In the341

R package flexsurv (Jackson, 2016), the Gompertz distribution is parameterized by its probability342

density function343

fpx|a, bq “ beax exp

ˆ

´
b

a
peax ´ 1q

˙

with shape parameter a P R and scale parameter b ą 0. Besides the categorical plate boundary344

class, we modeled the effects of the mainshock magnitude xmag and depth xdepth, as well as the345

locally interpolated relative plate velocity xveloc, heat flow xheat and sea floor age xage. In the346

resulting full Gompertz survival model, we regressed the scale parameter b through all covariates347

for observation i by348

logpbpxiqq “β0 ` β1 xclass“CCB,i ` ... ` β6 xclass“OTF,i `

fmagpxmag,iq ` fdepthpxdepth,iq ` fvelocpxveloc,iq ` fheatpxheat,iq ` fagepxage,iq,

where β0, β1, ..., β6 are the coefficients related to categorical variables, where boundary class349

”SUB” is the reference category, represented by the intercept β0, and the f terms denote coef-350

fiicients related to categorical variables. Similarly, we modeled the shape parameter a depending351

on the linear effects of the plate boundary class, i.e.352

logpapxqq “α0 ` α1 xclass“CCB ` ... ` α6 xclass“OTF .

In this work, we fitted models using the function flexsurvreg from the flexsurv package, which353

estimates parameters by optimizing a parametric likelihood adapted for censored data (Jackson,354

2016). To allow for flexible non-linear effects, all metric variables are modeled by the penalized355
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spline function pspline from the R package survival (Therneau, 2016), consistenly using df “ 2356

degrees of freedom and n “ 2.5ˆdf basis functions (Eilers and Marx, 1996; Hurvich et al., 1998).357

4.2 Generalized Additive Count Models358

In the second part of this study, we model the number of aftershocks Ni of each event i. The359

starting point for modeling count data response variables are so-called generalized linear models.360

Given covariate values xi1, ...,xik, the expected aftershock productivity of event i is modeled by361

the log-linear relationship362

ErNis “ exppηiq (5)

where ηi “ β0 ` β1 xi1 ` ... ` βk xik is the linear predictor and β0, β1, ..., βk are the estimated363

coefficients. Note that the covariates have an exponentially multiplicative effect on the expected364

number of aftershocks (see e.g. Fahrmeir et al., 2013, section 5.2).365

In this work, we used a GAM approach and replaced the linear effects of all metric covariates366

by potentially smooth functions that can more flexibly represent varying effects in different value367

ranges of the covariates (e.g., see Fahrmeir et al., 2013, section 9.1). The full model is then368

specified by the predictor369

ηi “β0 `
5

ÿ

k“1

βk IpxTR,i “ kq `
12
ÿ

h“6

βh IpxSL,i “ hq ` ...

fmagpxmag,iq ` fdepthpxdepth,iq ` ...

fmainshMagpxmainshMag,iq IpxisBackground,i “ falseq,

(6)

where the β’s are the estimated coefficients for the linear categorical effects of the tectonic region370

(TR, k “ 1, ..., 5) and slip type (SL, h “ 6, ..., 12), and β0 is the intercept representing the refer-371
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ence categories TR=crustal outside and SL=unknown. The functions fmag, fdepth and fmainshMag372

represent the smooth effects of the magnitude and depth of the triggering event as well as of the373

prior mainshock magnitude, and Ip...q is the indicator function that is 1 if the inside condition is374

fulfilled, and 0 otherwise.375

To fit the model, we used the function gam from the R package mgcv (Wood, 2017), using a loga-376

rithmic link function and the restricted maximum likelihood estimator (REML) as the smoothing377

parameter estimation method. Penalized splines based on a basic spline basis (P-Splines) were378

used to model the unspecified smooth functions (e.g., see Fahrmeir et al., 2013, section 8.1). We379

used the standard smooth term function of mgcv, choosing k “ 5 and k “ 8 (for depth) as the380

dimensions of the basis.381

5 Results of the ∆M -Regression382

In this section, we show and discuss the results of a parametric survival model fitted to the global383

declustered earthquake catalog in order to describe the magnitude difference ∆M between the384

mainshock and the second strongest event in the cluster. First, we justify and validate the distribu-385

tion assumption for the response variable. Then we show and interpret the effects of the modeled386

covariates. Finally, we assess the explanatory power of the model using a response residual plot.387

5.1 Choice of Distribution Family388

Following the simple simulation model outlined in the section Introduction, with parameters b “ 1,389

A “ 0.13 and α “ 2, we fitted a Weibull, a Gompertz and a Generalized Gamma distribution to390

the simulated magnitude differences ∆M . Fig. 4(a) shows the fits of the three distributions to the391

kernel density estimator of the sampled data. The Gompertz distribution clearly provides the best392
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fit to the moderately negatively-skewed data.393

In order to confirm this assumption based on the actual dataset, we fitted a Gompertz survival model394

with only the scale parameter depending on the categorical plate boundary class, and compared the395

predicted survival curves to those provided by the non-parametric Kaplan-Meier estimator, which396

does not require a specific distribution assumption (Klein and Moeschberger, 2003, ch. 4). In397

Fig. 4(b), the step functions colored according to the seven boundary classes, refer to the Kaplan-398

Meier estimates. The Gompertz survival model survival curves are plotted on top by black lines,399

showing generally good agreement.400

5.2 Covariate Effects401

Fig. 5 shows the covariate effects for the full parametric Gompertz survival model. The categorical402

effects in Fig. 5(a) represent predictions of the response ∆M given the various boundary classes,403

if the other covariates are held fixed at their median values (magnitude=6.4, depth=23 km, ve-404

locity=66.5 mm/a, sea floor age=220 Ma, heat flow « 0.07 Wm´2). The effects of the metric405

covariates in Fig. 5(b-f) are similarly predicted for a fine grid of values of the considered variable,406

holding the other covariates fixed and assuming a subducting environment (i.e., boundary class407

”SUB”). Gray shades represent the 95% confidence interval.408

5.2.1 Effect of Boundary Class409

Fig. 5(a) reveals no structural effects of specific boundary classes. If we were fitting the same410

model, but leaving out sea floor age and heat flow, the boundary classes OSR and OTF would show411

a substantial and OCB a moderate increase in magnitude differences. In other words, mainshocks412

at oceanic, especially transform and divergent type boundaries, produce weaker second strongest413
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events than those in continental zones, which fits with the generally limited magnitude sizes in414

these two boundary classes (Bird et al., 2002; Boettcher and Jordan, 2004). However, this effect415

seems to be sufficiently represented by the added metric covariates.416

5.2.2 Effect of Mainshock Magnitude417

For values smaller than M “ 7.8, the mainshock magnitude effect depicted in Fig. 5(b) confirms418

the well-established Bath’s law hypothesis that the average magnitude difference ∆M is roughly419

1.2, independently of the mainshock magnitude. For larger magnitudes, there seems to be a ten-420

dency toward smaller ∆M .421

However, this effect is very uncertain for two reasons. First, the sample size of M ą 7.8 events422

(41 data points) is very small compared to the lower magnitude ranges, leading to large standard423

errors. Second, the mainshock magnitude controls the radius of the spatial window in the declus-424

tering approach. Thus, larger mainshocks span an exponentially increasing area, in which potential425

aftershocks are searched. To test, whether the observed effect of strong mainshocks may be an ar-426

tifact of a too generous choice of the spatial window radius, we repeated the study for an event427

set declustered with radius Rpmq “ KpmqLpmq, where the factor Kpmq gradually decreases428

from 2.5 to 1.0 for magnitudes between 6.0 and 9.0. This sensitivity study confirmed the shape of429

the effect curve, indicating that the second strongest event usually occurred relatively close to the430

mainshock.431

5.2.3 Effect of Mainshock Depth432

Fig. 5(c) shows that the effect of the mainshock depth is almost constant for depths smaller than 40433

km. Between 40km und 50km, ∆M increases from roughly 1.2 to a new level of approximately434
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1.5. This effect is consistent with the observation of Hainzl et al. (2019), who showed that af-435

tershock productivity decreases at higher depths due to reduced seismic coupling, i.e. the energy436

discharges increasingly through seismic creep rather than through aftershocks. Given a constant437

magnitude size distribution, this would immediately translate into higher magnitude differences438

∆M . A connection with missing data at greater depths is unlikely, as we are only interested in the439

largest aftershock rather than the entire sequence.440

5.2.4 Effect of Relative Plate Velocity441

Plate velocities play an important role for the duration of stress re-accumulation at a fault after442

the occurrence of a large earthquake. However, recurrence intervals of so-called characteristic443

earthquakes are typically in the range of multiple decades or even centuries. For the short-term444

recurrence of strong aftershocks, Fig. 5(d) reveals no clear effect of the relative plate velocity. As445

an alternative covariate representing the velocity of deformation in the tectonic system, we tested446

global strain rate data (Kreemer et al., 2014), which similarly showed no structural effect.447

5.3 Effect of Heat Flow448

According to Fig. 5(e), regions with heat flow larger than 0.23W {m´2 show a substantial increase449

of magnitude differences. Warmer rock is known to be more viscous, which discharges stress450

through seismic creep rather than abrupt fractures, leading to the same aftershock productivity451

argument as for higher depths. As Fig. 2 shows, high heat flow values are typically prevalent in452

oceanic ridges and transform faults, which explains why the model predicts larger ∆M for the453

plate boundary classes OSR and OTF if heat flow is left out as a covariate.454
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5.3.1 Effect of Sea Floor Age455

Fig. 5(f) shows that magnitude differences are substantially larger in young compared to old456

oceanic crusts. A potential causal reason for the effect of the plate age cannot be ruled out, but is457

unknown to the authors. Note that young sea floor typically comes with large heat flows. Therefore,458

the effects of the two variables are consistent. As new oceanic crust is formed at oceanic ridges,459

the effect also coincides with the increased magnitude differences in the nested model without sea460

floor age.461

If we fit the full model to the subset of subduction zone mainshocks only, both heat flow and sea462

floor age show no clear signal. Thus, it is likely that their effect is mainly driven by their tails at463

oceanic ridges.464

5.4 Response Residuals465

Fig. 6 shows the response residuals (i.e., observed minus predicted values) plotted against pre-466

dicted magnitude differences. Note that, as observations are censored, residuals are censored as467

well. Therefore, we show only residuals for non-censored observations here. This explains the468

superiority of negative residuals. The blue line represents the linear trend of the residuals.469

The large variation of the residuals suggests a weak predictive power of the model. Residuals of470

more than one magnitude unit are not rare, and can even reach up to almost two units. Small ob-471

servations are typically substantially overestimated, and vice versa. The root mean square error for472

predictions by the full model, 0.62, is only minimally better than by a Gompertz intercept model,473

0.63. However, these values only account for predictions of non-censored observations. The ma-474

jority of substantial covariate effects identified above explain increases of the expected magnitude475

difference, which means that related observations (e.g. events with larger depth or heat flow, or476
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at younger sea floors) are considerably more likely to be censored and therefore left out of the477

residuals statistics.478

A similar argument holds for the negative linear trend of the residuals. For instance, the lowest479

mainshock magnitude, M “ 6.1, can only have observed magnitude differences up to ∆MmaxObs “480

M ´ Mc “ 1.1. Therefore, if the model predicts ∆M ą 1.1, only negative residuals will occur in481

the statistic. As we move to larger predicted values on the x-axis, the selection bias affects even482

larger mainshock magnitudes.483

The censoring of observations and residuals hinder a rigorous diagnosis of the model. Despite484

the covariates showing some relevant signals, it is evident that the model misses additional high-485

resolution geophysical variables for local site effects or event-specific properties that can help486

explain a larger proportion of the variance in the data.487

5.5 Sensitivity Studies488

As partly mentioned above, we tested the influence of varying time windows (e.g. T “ 365 days)489

and spatial windows (e.g. Rpmq “ Lpmq or Rpmq “ KpmqLpmq with gradually decreasing490

Kpmq as described above) in the declustering approach on the regression results. The covariate491

effects are very insensitive, indicating that the second strongest event typically occurs close to and492

shortly after (or before) the mainshock. In other words, the contamination of the response variable493

through background seismicity is negligible.494

6 Results of Productivity-Regression495

In this section, we present the results of the GAM regression of aftershock count data in New496

Zealand. First, we justify and validate our choice of the Negative Binomial distribution instead497
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of the commonly used Poisson distribution for aftershock counts. Then we show and interpret the498

effects of the modeled covariates. Finally, we illustrate the impact of the results in a simulation499

experiment.500

6.1 Choice of Distribution Family501

Fig. 7(a) and (b) show the quantile-quantile (Q-Q) plots of the deviance residuals for the Poisson502

distribution (a) and the Negative Binomial distribution (b). The latter fits the data better, as it503

adjusts the variance independently of the mean and therefore allows for larger variation than the504

Poisson distribution, resulting in a more adequate representation of the upper and lower tails of the505

distribution. The dispersion parameter of the Negative Binomial fit is 2.3.506

In Fig. 7(c) and (d), the corresponding model residuals are plotted against the linear predictors ηi507

(see Equation 6) for the Poisson (c) and Negative Binomial distribution (d). The Negative Binomial508

fit shows substantially less spread in the residuals than the Poisson fit, confirming that aftershock509

count data is rather Negative Binomial distributed.510

Note that, according to our simplified simulation model, a larger variance of aftershock counts511

directly translates into a larger variance of ∆M . In other words, the Negative Binomial distribution512

increases the likelihood of particularly small ∆M .513

Alternative approaches such as a Quasi Poisson or a zero-inflated model were tested, but did not514

stand out substantially from the respective basic models. Additionally, from a substantive point of515

view, there seems to be no causal reason for ”excess zeros” that would suggest the use of zero-516

inflated approaches.517
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6.2 Covariate Effects518

Fig. 8 and 9 present the exponential, multiplicative effects of the categorical and metrical covari-519

ates on the expected number of aftershocks according to the relationship in Equation (5). That is,520

if the exponential effect of a category is larger than 1, it has a positive impact on aftershock counts,521

and vice-versa. If the exponential effect is equal to 1, the model shows no effect of the respective522

category.523

524

6.2.1 Effects of Categorical Variables525

Fig. 8 shows the effects of the categorical covariates Tectonic Region and Slip Type.526

The effects of the tectonic region are presented relative to their reference category crustal outside.527

Crustal events in the subduction zone show a substantially increased aftershock productivity. The528

expected number of aftershocks is approximately 1.8 times larger than for crustal events outside529

of the subduction zone. For interface and slab events, both shallow and deep, no clear signal is530

found, as their confidence intervals overlap with the reference line at expp0q “ 1. Unclassified531

events appear to have a slightly positive effect, but the uncertainty is large. Sensitivity tests with532

different buffer sizes of the slab do not consistently confirm the effect for unclassified events. The533

positive effect of crustal events on the aftershock productivity, compared to interface, might be534

explained by reduced seismic coupling in subduction zones (Hainzl et al., 2019). On the interface,535

a substantial part of the deformation is often aseismic (Lay et al., 2012).536

A second possibility is that, in the proximity of the study region, the crust contains a dense network537

of faults with a wide range of orientations, and therefore more structures that could be brought538

closer to failure by a change in stress conditions due to mainshock earthquakes. Slip type effects539
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are depicted relatively to their reference category unknown. None of the focal mechanisms appears540

to be substantially more or less productive. Additionally, there seems to be no selection effect in541

the sense that events where the focal mechanism is known have a common effect on the aftershock542

productivity.543

6.2.2 Effects of Magnitude and Depth544

Fig. 9(a) shows an exponential effect of the triggering magnitude on aftershock productivity. How-545

ever, this effect is enforced by the declustering approach, as the ETAS model fits the exponential546

aftershock productivity function (4) to optimize the aftershock trigger rates Rtrigpt, x, y, iq. There-547

fore, the effect only has control character.548

The effect of the depth, shown in Fig. 9(b), confirms the argumentation in the discussion of the549

∆M regression results, that increasing magnitude differences may coincide with reduced after-550

shock productivity at higher depths. The physical reason may again be reduced seismic coupling551

along the subduction interface relative to the shallow crust (Hainzl et al., 2019; Lay et al., 2012).552

6.2.3 Effect of Mainshock Magnitude553

Fig. 9(c) shows no clear trend in the effect of varying mainshock magnitudes. However, indepen-554

dently of the size of the mainshock, triggered events in general appear to be two to three times555

more productive than a comparable background event.556

This finding has two possible explanations. On the one hand, it may be an indicator that the ETAS557

model based declustering approach does not adequately disentangle spatio-temporal clusters in558

the catalog, and incorrectly assigns too much aftershock productivity to the smaller events, at the559

cost of the mainshock productivity. In other words, in seismically active periods, small events560
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may be simply more likely to be assigned offsprings than in seismically quiet times, but in reality,561

many of these aftershocks should perhaps be direct rather than secondary ones of the mainshock.562

Such a rearrangement of trigger relationships would have a strongly distorting effect on our model,563

in which we consider the number of direct aftershocks. Note, however, that we used here an564

ETAS model approach that accounts for short-term aftershock incompleteness as well as locally565

restricted, anisotropic spatial kernels and therefore already improves some of the major biases of566

common ETAS models (de Arcangelis et al., 2018; Grimm et al., 2022, 2021; Hainzl et al., 2008;567

Hainzl, 2021; Seif et al., 2017).568

On the other hand, Zhuang et al. (2004) proposed that triggered events are more productive than569

background events, based on a similar study. It seems reasonable that during an on-going sequence570

the aftershock productivity could temporarily increase due to a higher level of energy prevalent in571

the tectonic system, compared to seismically quiet periods with occasional background activity. A572

doubling of the productivity parameter A in the simulation model (see Introduction), applied only573

to secondary triggering, led to a reduction of the expected magnitude difference ∆M from 1.2 to574

below 0.9 due to the increasing cluster sizes. This additional ”boost” in triggering illustrates the575

relevance of the observed effect. The finding may also contribute to an explanation as to why the576

ETAS model tends to underestimate cluster sizes and doublet probabilities in forward simulations,577

as observed in my first contribution (Grimm et al., 2021). Further research is recommended to578

evaluate this finding.579

7 Conclusions580

We adapted a survival regression model approach from medical studies to estimate the parametric581

distribution of the magnitude difference ∆M between the mainshock and its strongest foreshock or582
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aftershock. The highlight of this regression class is that it accounts for right-censored observations.583

In our case, these are mainshocks for which no aftershock or foreshock is recorded above cut-off584

magnitude Mc, and for which we therefore have only the partial information that ∆M ą M ´Mc,585

where M is the mainshock magnitude.586

We declustered a global earthquake catalog using a window method and computed ∆M for each587

of the independent clusters. Then, we enriched the cluster dataset with a plate boundary classifi-588

cation, relative plate velocities and sea floor ages obtained from the digital plate boundary model589

of Bird (2003) and with heat flow from Bird et al. (2008). From a simplified simulation model, as-590

suming an exponential aftershock productivity law and the Gutenberg-Richter type magnitude size591

distribution, we concluded that the Gompertz distribution may be the better choice than Weibull or592

Generalized Gamma.593

The regression results show that larger ∆M are expected at higher depths and in younger ocean594

crust. This may be an indication, that aftershock productivity is a relevant driver of ∆M , as in these595

conditions lower aftershock productivity is expected due to reduced seismic coupling (Hainzl et al.,596

2019).597

In the second part of this study, we used the stochastic declustering method of Zhuang et al. (2002)598

to estimate the aftershock productivity per event in a local catalog for New Zealand. To do so,599

we used the anisotropic ETAS-Incomplete model (Grimm et al., 2022) to disentangle the trigger600

relations between events. We further enriched the event set by a categorization of events in tectonic601

regions and slip types and used a generalized additive regression approach to model the aftershock602

productivity.603

The results clearly confirm that aftershock counts follow a Negative Binomial rather than a Pois-604

son distribution (Kagan, 2017; Shebalin et al., 2018). Also, aftershock productivity decreases with605
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increasing depth, supporting the reasoning regarding the depth effect on ∆M above. Furthermore,606

results indicate that triggered earthquakes trigger themselves two to three times more aftershocks607

than non-triggered ones. In other words, secondary aftershock triggering is substantially stronger608

than direct triggering by background events. This effect may either be an indicator for wrongly609

disentangled sequences in the sense that secondary triggering is overestimated at the cost of the610

productivity of the mainshock, or it may represent an actual effect due to the temporarily higher611

energy level after the occurrence of a strong mainshock. A causal effect, if confirmed, would have612

an enormous impact on the expected cluster sizes (compare with Grimm et al., 2021) and could613

explain some of the rather small ∆M observations in the first study.614

Future research should identify whether small magnitude differences ∆M are typically character-615

ized rather by above-average aftershock productivity or by magnitude size distributions favoring616

large aftershocks. To do so, one could compile a sufficiently large set of earthquake sequences617

and analyze the correlation of their ∆M with estimates of the aftershock productivity (Equation618

4) and frequency-magnitude distribution (Equation 2). Additionally, it should be verified whether619

triggered events indeed have a larger aftershock productivity, and how this effect impacts ∆M .620

Similarly, potential correlations of aftershock magnitudes with their ancestors should be evaluated.621

Finally, an extension of the ∆M -regression model using small-scale covariate data could certainly622

contribute to a better understanding of magnitude differences in different geophysical settings.623

Data and Resources624

The U.S. Geological Survey National Earthquake Information Center (USGS-NEIC) catalog625

has been downloaded from https://earthquake.usgs.gov/earthquakes/search/626

(last accessed on March 30, 2022). Global covariate data has been downloaded from http://627
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peterbird.name/publications/2003_pb2002/2003_pb2002.htm (Bird, 2003,628

last accessed on March 30, 2022) or has been made available by Peter Bird after personal con-629

tact (heat flow data, Bird et al., 2008). The New Zealand event set and focal mechanism data630

was provided by GNS Science as an input to the ongoing 2022 revision of the New Zealand Na-631

tional Seismic Hazard Model. For the stochastic declustering, we used the ETAS-Incomplete632

model source code available in the Github repository https://github.com/ChrGrimm/633

ETASanisotropic (Grimm et al., 2022), implemented using the software Matlab. All statisti-634

cal analyses were performed with the open source software R.635
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Table 1: Number of censored and observed ∆M data points, grouped by plate boundary class.

Plate Boundary Number of Clusters

Class #censored #observed

CCB 71 148

CTF 82 157

CRB 69 114

OSR 108 73

OTF 322 194

OCB 59 83

SUB 474 989
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Fig 1: Locations of 2,933 global M ą 6 mainshocks between 1973 and 2020 after declustering

the USGS-NEIC catalog. Mainshocks are colour-coded according to their assignment to the plate

boundary classes continental convergence boundary (CCB), continental transform fault (CTF),

continental rift boundary (CRB), oceanic spreading ridge (OSR), oceanic transform fault (OTF),

oceanic convergent boundary (OCB) and subduction zone (SUB), introduced in the digital plate

model of Bird (2003).

47



Fig 2: Boxplots of (a) relative plate velocity, (b) sea floor age, and (c) heat flow values assigned to

cluster mainshocks by a nearest approach from original scatter data (Bird, 2003; Bird et al., 2008),

grouped by the plate boundary class. Acronyms of boundary classes are spelled out in the caption

of Fig. 1.
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Fig 3: Spatial extract (blue polygon) of the Hikurangi subduction region in New Zealand, chosen

for the aftershock productivity regression model. Black scatter points represent event locations of

earthquakes with magnitude M ě 3.5, depths ď 80 km, that occurred between 1987 and 2020.

The local event set was provided by GNS Science as an input to the ongoing 2022 revision of the

New Zealand National Seismic Hazard Model.
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Fig 4: (a) Fits of a Gompertz, Weibull and Generalized Gamma distribution to simulated magnitude

differences ∆M , represented by the kernel density estimator (black curve). (b) Comparison of

survival curves estimated from a Gompertz model and a non-parametric Kaplan-Meier estimator,

stratified for plate boundary classes (c).
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Fig 5: Covariate effects of the ∆M -Regression, by (a) plate boundary type (categorical), (b) main-

shock magnitude, (c) mainshock depth, (d) relative plate velocity, (e) heat flow and (f) sea floor

age on the magnitude difference between a mainshock and the second largest event of the cluster.

For linear effects (a), 95% confidence intervals are represented by bars. For smooth effects (b-f),

95% confidence intervals are depicted by gray shades. The effects are computed as predictions of

the response variable, fixing the other variables at their median values. Rug lines on the x axis

visualize the marginal distributions of the corresponding metric covariate.
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Fig 6: Response Residuals of the ∆M -regression for non-censored observations only, plotted

against predicted values. The blue line represents the linear trend of the residuals. The row ar-

rangement of the points is due to the rounding of the observed data to one decimal place. For

instance, the bottom row represents observations where ∆M “ 0.
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Fig 7: Top row: Quantile-Quantile plots of the deviance residuals for the (a) Poisson and the (b)

Negative Binomial regression of the aftershock productivity. Bottom row: Corresponding model

residuals plotted against the linear predictors ηi (see Equation 6) for the (c) Poisson and (d) Nega-

tive Binomial regression. The row arrangement of points is due to the count data structure of the

response.
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Fig 8: Exponential, multiplicative effects of the categorical covariates tectonic region and slip type

relative to their reference categories ”crustal outside” and ”unkown”, respectively, according to

Equation (5). Exponential effects larger than one signify a positive effect on aftershock productiv-

ity, and vice versa.
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Fig 9: Exponential, multiplicative effects of the metric covariates magnitude and depth of the

triggering event as well as mainshock magnitude, given that the triggering event was already part

of a triggered sequence. Exponential effects larger than one signify a positive effect on aftershock

productivity, and vice versa. Rug lines on the x axis visualize the marginal distributions of the

corresponding covariate.
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