Performance Analysis of Linearly arranged Concentric Circular Antenna Array with Low Sidelobe Level and Beamwidth Using Robust Tapering Technique.

Imteaz Rahaman (✉ imteaz.eee.ruet@gmail.com)
Rajshahi University of Engineering and Technology https://orcid.org/0000-0002-2567-0559

Md. Farhamdur Reza
RUET: Rajshahi University of Engineering and Technology

Dr. Md. Selim Hossain
RUET: Rajshahi University of Engineering and Technology

Pallab Kumar Sarkar
RUET: Rajshahi University of Engineering and Technology

Md. Mamunur Rashid
RUET: Rajshahi University of Engineering and Technology

Md. Yeakub Ali
RUET: Rajshahi University of Engineering and Technology

Md. Firoj Ali
RUET: Rajshahi University of Engineering and Technology

Research Article

Keywords: LCCAA, sidelobe level, beamwidth, interference, Optimal; robust techniques -FDL, ODL, VDL; tapering techniques – Uniform, Binomial, Chebyshev, Blackman, Hamming, Hanning, Taylor, Triangular; robust tapering technique

Posted Date: March 23rd, 2021

DOI: https://doi.org/10.21203/rs.3.rs-165610/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

In this research, a novel antenna array named Linearly arranged Concentric Circular Antenna Array (LCCAA) is proposed concerning lower beamwidth, lower sidelobe level, sharp ability to detect the false signal, and impressive SINR performance. The performance of the proposed LCCAA beamformer is compared with geometrically identical existing beamformers using the conventional technique where the LCCAA beamformer shows the lowest beamwidth and sidelobe level (SLL) of 12.50° and -15.17 dB in equal element accordingly. However, the performance gets degraded due to looking direction error, and robust techniques- fixed diagonal loading (FDL), optimal diagonal loading (ODL), and variable diagonal loading (VDL) are applied to all the potential arrays to minimize this problem. Furthermore, the LCCAA beamformer is further simulated to reduce the sidelobe applying tapering techniques where the hamming window shows the best performance having 17.097 dB less sidelobe level compared to the uniform window. The proposed structure is also analyzed under a robust tapered (VDL-hamming) method which reduces around 69.92 dB and 48.39 dB more sidelobe level compared to conventional and robust techniques. Analyzing all the performances, it is clear that the proposed LCCAA beamformer is superior and provides the best performance with the proposed robust tapered (VDL-hamming) technique.

Full Text

Due to technical limitations, full-text HTML conversion of this manuscript could not be completed. However, the latest manuscript can be downloaded and accessed as a PDF.

Figures
Figure 1

Block diagram of the concentric circular antenna array-based communication system.
Figure 2

The Geometry of centered element concentric circular antenna array.
Figure 3

Antenna arrays.

(b) CCAA antenna array (33 elements).

(c) UCCAA antenna array (33 elements).

(d) CECCAA antenna array (34 elements).

(e) UCECCAA antenna array (34 elements).

(f) ULCCAA antenna array (102 elements).
Figure 4
LCCAA antenna array (102 elements).

Figure 5
Comparison of directivity between linear beamformer and LCCAA beamformer using equal elements.
Figure 6
Comparison of all structure having equal element applying conventional technique.

Figure 7
Comparison of all structure having equal element for orthogonal azimuthal plane applying conventional technique.
Figure 8

Comparison of Power pattern between conventional & optimal technique with interference and mismatch for the proposed LCCAA beamformer.
Figure 9

Comparison of all structures for equal element using (a) ODL & (b) VDL technique.
Figure 10

SINR comparison of all structures with equal element based on (a) ODL, (b) VDL robust technique with respect to disparity angle.

Figure 11

Power pattern comparison of all structures with equal element based on (a) ODL and (b) VDL robust technique with respect to disparity angle.
Figure 12

Comparison of (a) Output SINR of LCCAA based robust beamformers with the variation of input SNR and noise power (b) Power pattern for LCCAA based optimal, FDL, ODL and VDL beamformer.

Figure 13

Output power comparison among hamming, binomial and Conventional technique.
Figure 14

Power pattern of proposed robust tapered LCCAA by using Hamming windows.

Figure 15
Output power comparison of conventional, robust VDL and robust tapering (VDL-hamming) technique in the LCCAA beamformer.