Two-hour surgical access in South Africa: a useful indicator in a middle-income country?

Kathryn Chu (kathryn_chu@yahoo.com)
Stellenbosch University Faculty of Medicine and Health Sciences
https://orcid.org/0000-0002-8923-7447

Angela J Dell
University of Cape Town Faculty of Health Sciences

Harry Moultrie
University of the Witwatersrand

Candy Day
Health Systems Trust

Megan Naidoo
Stellenbosch University Faculty of Medicine and Health Sciences

Stephanie van Straten
University of the Witwatersrand

Sarah Rayne
University of the Witwatersrand

Research

Keywords: global surgery, surgical access, geographic information systems, surgical capacity, district hospital, South Africa

Posted Date: March 10th, 2020

DOI: https://doi.org/10.21203/rs.3.rs-16476/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background In a robust health care system, at least 80% of a country’s population should be able to access a district hospital that provides surgical care within two hours. The objective was to identify the proportion of the population living within two hours of a district hospital with surgical capacity in South Africa.

Methods All government hospitals in the country were identified. Surgical district hospitals were defined as district hospitals with a surgical provider, a functional operating theatre, and the provision of at least one caesarean section annually. The proportion of the population within two-hour access was estimated using service area methods.

Results One hundred and thirty-eight of 240 (58%) district hospitals had surgical capacity and 86% of the population had two-hour access to these facilities. Ninety-eight percent of the population had two-hour access to any government hospital in South Africa.

Conclusion Improving equitable surgical access is urgently needed in sub-Saharan Africa. This study demonstrated that in South Africa, just over half of district hospitals had surgical capacity but more than 80% of the population had two-hour access to these facilities. Strengthening district hospital surgical capacity is an international mandate and needed to improve access.

Background

The Lancet Commission on Global Surgery (LCGS) reported that five billion people lack access to safe, timely, and affordable surgical care. In trying to define a minimum package of care for every health system, there are six indicators that are routinely measured (Table 1). The first indicator is the proportion of a population that lives within two hours of a facility that provides the bellwether procedures (caesarean section, laparotomy, and treatment of an open fracture), which are used by the LCGS as a proxy for surgical capacity.¹ A recent modelling of two-hour access (2HA) in sub-Saharan Africa (SSA) demonstrated large inter-country variation (23 - 97%). The 2HA in South Africa was estimated to be 95%, however, it did not consider the actual surgical capacity at each hospital.²

Table 1. Global Surgery Indicators to Measure Universal Surgical Access
<table>
<thead>
<tr>
<th>Indicator</th>
<th>2030 Targets (per country)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-hour access to timely surgery</td>
<td>Minimum 80% of the population with access to a facility that can perform a caesarean delivery, laparotomy, and treatment of open fracture (the bellwether procedures) within two hours</td>
</tr>
<tr>
<td>Specialist surgical workforce density</td>
<td>20 surgical, anesthetic, and obstetric doctors per 100,000</td>
</tr>
<tr>
<td>Surgical volume</td>
<td>Minimum of 5000 procedures per 100,000; 100% countries tracking</td>
</tr>
<tr>
<td>Perioperative mortality</td>
<td>100% countries tracking</td>
</tr>
<tr>
<td>Protection against impoverishing expenditure</td>
<td>100% protection against impoverishment from out-of-pocket payments for surgery and anesthesia</td>
</tr>
<tr>
<td>Protection against catastrophic expenditure</td>
<td>100% protection against catastrophic expenditure from out-of-pocket payments for surgery and anesthesia</td>
</tr>
</tbody>
</table>

South Africa is an upper middle-income country with one of the most unequal income distributions in the world.\(^3\) Approximately 84% of the population relies on the public (government) health care system,\(^4\) which is organized around primary health care clinics (PHC) and community health centers (CHC). PHC and CHC refer patients to district, then regional and tertiary hospitals for higher levels of care.\(^5\) The government surgical services are highly variable in terms of capacity and output and only employ 42% of general surgeons.\(^6\) While surgical care is a component of the Department of Health Strategic Plan, implementation strategies across different hospital levels are not well outlined.\(^7\)

The World Health Organization stated that essential surgical care should be delivered at district hospitals (DH) which has been shown to be cost-effective.\(^8-12\) However, DH surgical capacity in many SSA countries remains unmeasured.

The objective of this study was to identify the proportion of the population living within two hours of a district hospital with surgical capacity in South Africa.
Methods

Hospital selection and definitions

All government national, tertiary, regional, and district hospitals in South Africa were identified from the South African National Department of Health (NDoH). Each health district and its corresponding DH had defined district boundaries. While patients could attend other facilities in acute emergencies, we assumed that district boundaries would likely be followed for the majority of surgical referrals given defined referral pathways from PHC and CHC to a DH. A surgical district hospital (S-DH) was defined by the presence of a functional operating theatre, a surgical provider, and provision of at least one caesarean section (CS) annually. Operating theatre and surgical provider data were obtained from previous published studies.13,14 CS data for 2015-16 were obtained through the NDoH.

GPS locations

Geographical Positioning Satellite (GPS) coordinates for hospitals were obtained from the National Institute for Communicable Diseases. GPS coordinates were reviewed using logical checks and compared with NDoH datasets. Discrepancies were manually checked using a combination of Landsat images, Google Maps, Google Street View, telephone calls to facilities, and metadata from photographs.

Population data

The 2014 population estimates for 103,576 Enumeration Areas for South Africa were obtained from the Environmental Research System Institute (ESRI, Redlands, CA) IDEAL dataset.

Road network data

We obtained road map data for South Africa from the OpenStreetMap (OSM) project (http://www.openstreetmap.org/). Road speed limits from OSM were utilized, where available, to calculate travel time impedance. Where OSM road speed limits were not available, travel speeds of 110 kilometers per hour (km/h) were assigned to highways, 100 km/h to regional roads, 80 km/h to regional secondary roads, 60 km/h to local roads, and 50 km/h to unclassified roads and tracks in keeping with standard OSM algorithms. Standard OSM modifications for road surface (e.g. gravel/dirt = speed/2); and road smoothness (e.g. horrible = speed/2) were incorporated. The road network was compiled in ArcMap (version 10.3) and identified errors manually corrected.

Spatial analysis

2HA service areas for all hospitals were estimated using detailed non-overlapping polygons in the service area tool in ArcMap (version 10.3). Since the off-network travel time to the nearest road was not directly modelled, high and low 2HA estimates were generated for each analysis. Low 2HA estimates were generated by trimming the 2HA service area polygons to within 1 km of the outer network edges, whereas high 2HA estimates were not trimmed resulting in larger service areas. Mask area weighting,
incorporating mesozenes with population counts of less than five people as mask areas, was used to estimate the proportion of the population residing within the 2HA service areas.

Results

There were 315 government hospitals in South Africa (75 tertiary/regional and 240 DHs). Ninety-eight percent of the population lived within 2 hours of one of these facilities. Although there were large areas of the country that did not have 2HA, these areas were sparsely populated covering only two percent of the population. Of all DH, 138 (58%) could be defined as S-DH (DH with a functional operating room, a surgical provider, and performed at least one CS annually). The low and high estimates for 2HA to a S-DH were 86% and 89% respectively (Fig. 1).

Discussion

In South Africa, an upper middle-income country, the majority of the population lived less than two hours away from a district hospital with surgical capacity, exceeding the LCGS target of 80%. However, almost half of district hospitals did not have surgical capacity. The World Health Assembly urged members to incorporate essential and emergency surgical care into universal health coverage, including integration “in primary health care facilities and first-referral (district) hospitals” in an unanimously passed declaration. Strengthening DH surgical capacity is an international mandate, and countries are tasked with formulating national surgical plans to improve access. The South African NDoH has defined a DH surgical package but this has not been widely implemented.

2HA has limitations as a metric of surgical access. Firstly, 2HA is challenging to measure due to the lack of available data. LCGS defines 2HA as proximity to a hospital that performs the bellwether procedures. In many countries, including South Africa, most hospitals do not provide granular data on these operations. In a recent study, data to measure this metric were available for only 19 countries and of these, only 2 were in SSA. Therefore, in order to estimate 2HA in South Africa, we used the presence of a functional operating theatre, a surgical provider, and provision of at least one CS annually as a proxy definition for surgical capacity.

Secondly, the 2HA indicator does not consider other factors that impact access, such as the availability of transport or financial constraints. For example, only 29% of households in South Africa have private cars and public transport is not reliable in every part of the country. Furthermore, ambulances are not readily available and may not respond within the two-hour access window. In the rural area of Eastern Cape, there is a severe shortage of pre-hospital emergency medical services with only 12 ambulances for a population of 1 million (the recommendation is one per 10,000 persons). Financial costs can limit access to- and utilization of- health services. A recent modelling study demonstrated that combined direct medical and non-medical costs would potentially be catastrophic for up to half of the global population.
Our study had methodologic limitations. The surgical capacity of a health facility is influenced by human resource, equipment, and implementation challenges, such as theatre/post-operative personnel and surgical materials, which our study did not measure. An in-depth situational analysis into the various barriers to strengthening surgical capacity and outputs at South Africans DHs is necessary.

Conclusion

LCGS recommended six indicators to evaluate surgical delivery including 2HA.\(^1\) This study demonstrated that in South Africa, more than 80% of the population could have 2HA to district hospitals with surgical capacity. However, this indicator as a global metric may not be practical given the lack of available country-level data on bellwether procedures\(^{16}\) and because it does not measure other aspects of true access. Nevertheless, surgical access is a key component of surgical equity and finding improved ways to measure and achieve it must be a global health priority.

Declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Availability of data and material

The data that support the findings of this study are available from the South African National Department of Health and National Institute for Communicable Diseases, but restrictions apply to the availability of these data, which were requested for use in the study, and so are not publicly available. Data are however available from the authors upon reasonable request and with permission of South African National Department of Health and National Institute for Communicable Diseases. The 2014 population estimates for Enumeration Areas and Road map data for South Africa are publically available from the Environmental Research System Institute (ESRI, Redlands, CA) IDEAL dataset, and OpenStreetMap (OSM) project (http://www.openstreetmap.org/), respectively.

Competing interests

The authors report no financial or non-financial competing interest regarding the study.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
Authors' contributions

Kathryn M Chu and Sarah Rayne conceived the study, Angela J Dell, Candy Day, and, Stephanie van Straten participated in data collection, Harry Moultrie conducted the geospatial analysis, and Megan Naidoo interpreted the data analysis. All authors: contributed to drafting and editing the manuscript, approve the final version for publication, and agree to be accountable for the study.

Acknowledgements

The authors would like to thank Sule Burger and Robert Jaich for their support in data collection.

References

Figures
Figure 1

The Population Proportion with Two-Hour Access to District Hospitals with Surgical Capacity in South Africa