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Abstract
Background: Blood coagulation has been associated with ovulation and female infertility. In this study,
the expression of the tissue factor system was examined during ovulation in immature rats; the
correlation between tissue factor and ovarian hyperstimulation syndrome (OHSS) was evaluated both in
rats and human follicular �uids.

Methods: Ovaries were obtained at various times after human chorionic gonadotropin (hCG) injection to
investigate the expression of tissue factor system. Expression levels of ovarian tissue factor, tissue factor
pathway inhibitor (Tfpi)-1 and Tfpi-2 genes and proteins were determined by real-time quantitative
polymerase chain reaction (qPCR), and Western blot and immuno�uorescence analyses, respectively.
Expression levels of tissue factor system were also investigated in ovaries of OHSS-induced rats and in
follicular �uid of infertile women.

Results: The expression of tissue factor in the preovulatory follicles was stimulated by hCG, reaching a
maximum at 6 h. Tissue factor was expressed in the oocytes and the preovulatory follicles. Tfpi-2 mRNA
levels were mainly increased by hCG in the granulosa cells whereas the mRNA levels of Tfpi-1 were
decreased by hCG. Human CG-stimulated tissue factor expression was inhibited by the progesterone
receptor antagonist. The increase in Tfpi-2 expression by hCG was decreased by the proliferator-activated
receptor γ (PPARγ) antagonist. Decreased expression of the tissue factor was detected in OHSS-induced
rats. Interestingly, the tissue factor concentrations in the follicular �uids of women undergoing in vitro
fertilization were correlated with pregnancy but not with OHSS.

Conclusions: Collectively, the results indicate that tissue factor and Tfpi-2 expression is stimulated during
the ovulatory process in rats; moreover, a correlation exists between the levels of tissue factor and OHSS
in rats but not in humans.

Background
Ovulatory follicles undergo in�ammation-like changes in response to the luteinizing hormone (LH) surge
[1]. In rats, leukocyte in�ltration in the periovulatory ovary [2] and extravasation of erythrocytes and �brin
clots in the follicular wall are observed during ovulation [3]. Fibrinogen secretion by bovine granulosa
cells plays a role in ovulation by increasing the proteolytic activity [4]. Consistent with these observations,
thrombin (a protease essential for �brin formation) and its receptor are present in the periovulatory
follicles in bovine [5, 6] and mouse [5] ovaries. In addition, the functional activity of thrombin and its
receptor has been reported in human luteinized granulosa cells [7] and follicular �uid [8, 9]. These
�ndings suggest the involvement of the blood coagulation system in the ovulatory process.

Tissue factor, a membrane-anchored glycoprotein, is the most important physiological regulator in
thrombin generation and initiates the extrinsic pathway of coagulation via binding to factor VII [10]. The
catalytic activity of the tissue factor-factor VIIa complex is inhibited by tissue factor pathway inhibitors
(TFPIs), TFPI-1 and TFPI-2, belonging to the Kunitz family of serine protease inhibitors [11]. Tissue factor
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and TFPI-2 are detected in ovarian follicular �uid obtained from women undergoing in vitro fertilization
[12]. Recently, it has been reported that TFPI-2 expression is stimulated by an ovulatory dose of
gonadotropins in rat and human ovaries [13]. However, the detailed changes in the expression of the
tissue factor system during the periovulatory period need to be assessed.

Factors regulating blood coagulation have been proven to be relevant to female infertility. Recurrent
pregnancy loss is often related to increased levels of coagulant factors such as factor X and �brinogen,
and reduced levels of anticoagulant factors such as protein C [14]. The presence of blood clots within the
cumulus matrix is associated with reduced blastocyte formation during in vitro fertilization in humans
[15]. In addition, tissue factor acts as an important pro-in�ammatory mediator in antiphospholipid
antibody-induced pregnancy loss in mice [16]. Circulating tissue factor is elevated in women with
polycystic ovary syndrome [17, 18]. Interestingly, TFPI-1 levels in blood, but not in follicular �uid, are
signi�cantly different between patients with ovarian hyperstimulation syndrome (OHSS) and non-OHSS
patients [19].

OHSS is the most serious complication that, occurs during ovulation induction for the in vitro fertilization
procedure [20]. The rat model of OHSS is established, demonstrating that vascular endothelial growth
factor (VEGF) is a potential cause of the development of OHSS [21, 22]. Following treatment with human
chorionic gonadotropins (hCG), an increase in VEGF concentration was observed in follicular �uid and
serum in women undergoing in vitro fertilization [23]. Clinical manifestations of OHSS include massive
extravascular �uid accumulation and hemoconcentration due to capillary leakage [20]. VEGF induces
tissue factor expression in endothelial cells, increasing procoagulant properties of the vessel wall [24].
High tissue factor and low TFPI-1 levels in plasma were reported in patients with severe OHSS [25, 26];
however, no relationship was observed between follicular �uids of patients with and without OHSS [19].
Moreover, no report has yet elucidated the relationship between the tissue factor system and infertility
factors, including OHSS in human follicular �uid.

Therefore, the present study was aimed to investigate the time- and cell-speci�c expression of tissue
factor, TFPI-1 and TFPI-2 by gonadotropin treatment during the ovulatory process in rats. Moreover, as
angiogenic factors play a role in the pathogenesis of OHSS [27], the relationship between the tissue
factor system and OHSS was tested in the experimental model of OHSS in rats and in infertile patients
undergoing in vitro fertilization.

Materials And Methods
Hormones and reagents

Equine chorionic gonadotropin (eCG/PMSG), human chorionic gonadotropin (hCG), and chemical
inhibitors including indomethacin, nordihydroguaiaretic acid, GW9662 were purchased from Sigma (St.
Louis, MO, USA). RU486 was purchased from Enzo Life Sciences, Inc. (Farmingdale, NY, USA).

Animals for superovulation induction and administration of ovulation-inhibiting agents
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Immature female Sprague-Dawley rats were purchased from Korea Basic Science Institute (Gwangju,
Korea) and Samtako BioKorea (Seoul, Korea). They were housed in groups in a room with controlled
temperature and photoperiod (10-h dark/14-h light; lights on from 0600 to 2000 h). The animals had ad
libitum access to food and water. Immature rats (26 days old; body weight, 60–65 g) were s.c. injected
with 10 IU of eCG to induce multiple follicle growth. Two days later, some eCG-primed rats were i.p.
injected with 10 IU hCG to induce superovulation. All animals were maintained and treated in accordance
with the National Institutes of Health Guide for the Care and Use of Laboratory Animals, as approved by
the Institutional Animal Care and Use Committee at Chonnam National University.

Five eCG-primed rats for each treatment group were i.p. injected 30 min before hCG administration with
ovulation-inhibiting agents including progesterone receptor antagonist (RU486, 10 mg/kg body weight),
cyclooxygenase inhibitor (indomethacin, 10 mg/kg body weight), lipoxygenase inhibitor
(nordihydroguaiaretic acid, 3 mg/kg body weight), or proliferator-activated receptor γ (PPARγ) antagonist
(GW9662, 2 mg/kg body weight) [28]. Six hours after hCG injection, the rats were euthanized using CO2
administration method and ovaries, upon removal of oviduct and fat pad, were collected for RNA
isolation.

Preparation of the rat model of ovarian hyperstimulation syndrome (OHSS)

To prepare the OHSS rat model, immature rats (22 days old) were s.c. injected with 10 IU eCG at 0900 for
four consecutive days to promote follicular development; this was followed by an i.p. injection of 30 IU
hCG on the 5th day (on the 26th day of life) to induce OHSS (Figure 1). As the control, rats were injected
with 0.9% saline instead of hCG on the 5th day. Manifestation of OHSS includes the increased ovarian
weight, VEGF expression and vascular permeability 48 h after hCG administration [22]. Subsequently, the
rats were euthanized 48 h after hCG administration (on the 28th day of life); then, the ovaries were
collected for RNA isolation. Ovaries were also collected from rats that were stimulated for superovulation
in a routine manner 0 h and 48 h after hCG administration.

Collection of ovaries and isolation of granulosa and theca cells of preovulatory follicles

Ovaries were collected from immature rats at different time points (0, 3, 6, 9 and 12 h) after eCG/hCG
administration for RNA and protein detection of tissue factor, TFPI-1 and TFPI-2. For the isolation of the
granulosa and theca cells of preovulatory follicles, the ovaries were incubated in DMEM/Ham’s F-12
medium (Gibco, Grand Island, NY, USA) containing 0.5 M sucrose and 10 mM EGTA at 37°С for 30 min.
The ovaries were then washed thrice with phosphate buffered saline (PBS), and �attened to a single layer
to easily identify the preovulatory follicles using �ne forceps under a dissection microscope. The
granulosa and theca cells were isolated from the preovulatory follicles using a 21-gauge needle for the
measurement of mRNA levels.

RNA isolation and real-time PCR analysis
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To detect mRNA levels of tissue factor, TFPI-1 and TFPI-2 in ovaries and preovulatory follicles after hCG
treatment (0, 3, 6, 9 and 12 h), total RNA was extracted using TRIzol reagent (Molecular Research Center,
Inc., Cincinnati, OH, USA), according to the manufacturer’s instructions. Ten or twenty micrograms of total
RNA was reverse-transcribed using the RevertAid M-MuLV reverse transcriptase kit (Fermentas, St. Leon-
Rot, Germany) to evaluate gene expression. Real-time PCR was then performed on a Rotor-Gene Q 5plex
(QIAGEN, Hilden, Germany), located at Korea Basic Science Institute (Gwangju, Korea), using the
QuantiTect SYBR Green PCR Kit (QIAGEN) at 95°С for 20 seconds, 60°С for 20 seconds, and 72°С for 30
seconds. Speci�c primers were designed using the PRIMER3 software (Table 1). The average Ct value in
triplicate for each gene was divided by the linear Ct value of β-actin to obtain relative abundance of the
transcripts. β-Actin was used as an internal control for all measurements.

Western blot analyses

The ovarian lysates (30 μg) were resolved by 10% SDS-PAGE and transferred to nitrocellulose membranes
(Amersham Bioscience, Arlington Heights, IL, USA), as previously described [3]. Brie�y, the transferred
membrane was blocked using 5% skim milk before immunoblotting using anti-tissue factor polyclonal
antibodies (American Diagnostica, Inc., Stamford, CT, USA; 1:500 dilution) and horseradish peroxidase-
conjugated secondary IgGs (1:1,000 �nal dilution). Gapdh (Santa Cruz Biotechnology, Santa Cruz, CA,
USA) was used as the loading control. Signals were visualized via enhanced chemiluminescence
(Amersham Biosciences).

Immuno�uorescence

The localization of the tissue factor protein was determined by immuno�uorescence as previously
described [3]. Brie�y, para�n sections of ovary (5 μm thick) were incubated with 10% normal horse serum
in PBS for 30 min to block non-speci�c binding of the antibody. The ovarian sections were probed with
primary anti-tissue factor antibodies (American Diagnostica, Inc., 1:500 dilution) overnight and, then,
washed thrice with PBS, followed by incubation with AlexaFluor 633 �uorescence antibodies (Invitrogen,
Carlsbad, CA, USA ; 1:500 dilution) for 1 h. After washing thrice with PBS, the sections were mounted on
slides and the nuclei were stained with 4′, 6-diamidino-2-phenylindole (DAPI) in ProLong Gold Antifade
reagent (Invitrogen). Digital images were captured using a TCS SP5 AOBS laser-scanning confocal
microscope (Leica Microsystems, Heidelberg, Germany), located at the Korea Basic Science Institute
Gwangju center.

Collection of follicular �uid from women undergoing in vitro fertilization (IVF) and measurement of tissue
factor concentrations via enzyme-linked immunosorbent assay (ELISA)

Follicular �uid was collected from 80 patients undergoing ovarian stimulation for IVF. Characteristics of
patients based on the cause of infertility were presented in Supplemental Table 1. Forty-nine patients with
infertility due to male (n = 22) or tubal factors (n = 27) served as controls. The male infertility patients
were described as total motile count of <10 million sperms/ml or normal morphology in <4% of the sperm
by strict criteria. Five women showed mild signs of OHSS after hCG administration during the IVF
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procedure. The causes of infertility among �ve OHSS patients include unknown factor (n = 3), oocyte
donor and tubal factor. The inclusion criteria were age 21-42 years and normal uterine cavity on
hysteroscopy. Patients who presented allergy to gonadotropins or other medications used in the
treatment, or abusive use of any medications during the treatment were excluded. Our research was
approved by the Institutional Review Board of Creation & Love Women’s Hospital (CLWH-IRB-2009-001).

Only clear follicular �uid, without blood or �ushing medium contamination, was processed. After oocyte
transfer, the follicular �uid (≈10 mL) aspirated from each patient was centrifuged for 10 min at 500 × g.
Supernatants of the follicular �uid samples were stored at -80°С until the tissue factor concentrations
were determined using an ELISA kit (EIAab Science Co., Wuhan, China). All the procedures were carried
out according to the manufacturer's instructions. Concentrations of tissue factor were detected in
follicular �uids obtained from women with different infertility factors.

Statistics

Statistical analyses were performed using the statistical software GraphPad Prism 5 (GraphPad
Software, Inc. La Jolla, CA, USA). Data obtained from rat ovaries were presented as the means ± SEM.
One way ANOVA, followed by Dunnett’s test, was used for comparisons among multiple groups.
Comparisons between any two points were evaluated using Student’s two-tailed t-test. The levels of
tissue factor in human follicular �uid were presented as the mean ± SD or median (range). Correlation
analysis was performed using Spearman's rho test. Pregnant and non-pregnant women were compared
using the Kruskal-Wallis test or Mann–Whitney's U-test. Fisher's F-test was used to assess the
relationship between two variables for parametric data. P < 0.05 was considered signi�cant.

Results
Ovarian expression of tissue factor and Tfpi during ovulation in vivo

To examine gonadotropin regulation, the total RNA extracted from the preovulatory follicles of ovaries at
different time points after hCG treatment was analyzed using real–time RT-PCR. As shown in Fig. 2a, the
levels of tissue factor mRNA reached a maximum at 6 h (56.9-fold vs. that at 0 h; P < 0.05) and slightly
decreased at 12 h in the granulosa cells. The expression of tissue factor in the theca cells increased
gradually until 12 h (7.9-fold vs. that at 0 h). Western blot analysis revealed that the tissue factor protein
had a molecular weight of 47 kDa, probably indicating that the tissue factor protein lacked the
cytoplasmic domain, identical to the full-length protein at the initiation of thrombin generation (Fig. 2b).
The levels of tissue factor protein increased transiently, reaching a maximum at 9 h after hCG treatment
(5.3-fold vs. that at 0 h; P < 0.05). Immuno�uorescence analysis demonstrated that the tissue factor
protein was found in both the granulosa and theca cells at 12 h after hCG treatment (Fig. 2c).
Interestingly, hCG treatment for 12 h increased tissue factor expression in the cumulus cells (Fig. 2c,
asterisk) as well as in oocytes (Fig. 2c, arrowhead). No speci�c signal was detected in ovarian sections
that were treated with goat control antibodies (anti-IgG; data not shown).
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Gonadotropin regulation of tissue factor pathway inhibitor (Tfpi) expression was also examined using
real-time RT-PCR analysis. The levels of ovarian Tfpi-2 mRNA were stimulated, reaching a maximum at 6
h after hCG treatment (68.7-fold increases vs. 0 h) whereas the levels of Tfpi-1 mRNA gradually
decreased until 12 h after hCG treatment (Fig. 3a). The Tfpi-1 gene was expressed in both the granulosa
and theca cells, with a gradual decrease in expression after hCG treatment (Fig. 3b, left panel). However,
although the granulosa cell expression of Tfpi-2 showed a transient stimulation at 6 h (18.8-fold vs. 0 h),
the levels of Tfpi-2 in the thecal cells were greatly increased, reaching a maximum at 6 h after hCG
treatment (236.8-fold vs. 0 h; P < 0.05) (Fig. 3b, right panel).

Regulation of tissue factor and Tfpi expression by ovulation-inhibiting agents in vivo

To study the effect of ovulation-inhibiting agents on the expression of hCG-regulated tissue factor, Tfpi-1,
and Tfpi-2, progesterone receptor antagonist (RU486), cyclooxygenase inhibitor (indomethacin),
lipoxygenase inhibitor (nordihydroguaiaretic acid, NDGA), or PPARγ antagonist (GW9662) was
administered 30 min before hCG stimulation in eCG-primed immature rats. Quantitative analysis using
real-time PCR revealed that, at 6 h, the hCG-induced mRNA levels of tissue factor were inhibited by RU486
(68.1% inhibition; P < 0.05) but not the other agents (Fig. 4). The mRNA levels Tfpi-1 were not affected by
any inhibitor. Interestingly, injection with GW9662 signi�cantly inhibited the hCG-induced Tfpi-2 mRNA
levels (96% inhibition vs. hCG at 6 h).

Ovarian expression of tissue factor and Tfpi in the OHSS model in rats

Blood clotting is related to OHSS [20]. Changes in the expression of tissue factor and TFPIs were
therefore examined in a hormone-induced OHSS model in rats [22]. To validate the induction of OHSS in
rats, the indexes for the occurrence of OHSS were examined. Ovarian weight was increased after hCG
administration for 48 h in ovulation-induced rats (Fig. 5a). Ovarian weight was markedly increased in
OHSS-induced rats upon administration of 30 IU of hCG for 48 h compared with that in rats treated with
saline for 48 h. The ovarian levels of vascular endothelial growth factor (Vegf) were increased in
ovulation- and OHSS-induced rats treated with hCG and saline, respectively, for 48 h (Fig. 5b). The levels
of Vegf mRNA were higher (P < 0.05) in OHSS-induced rats administered with hCG than in those
administered with saline. The vascular permeability was also higher in OHSS-induced rats administered
with hCG than in those administered with saline indicating the elevation of capillary permeability
(Supplemental Fig. S1). These results indicated the successful induction of OHSS in rats.

Although the ovarian expression of tissue factor was not changed by hCG in the ovulation model, the
mRNA levels of ovarian tissue factor were signi�cantly lower in OHSS-induced rats injected with hCG
than in those injected with saline (Fig. 6a), suggesting that tissue factor can be a potential biomarker of
OHSS in humans. The levels of ovarian Tfpi-1 and Tfpi-2 remained unaltered upon hCG administration in
ovulation- or OHSS-induced rats (Fig. 6b and c).

Detection of tissue factor in follicular �uid samples obtained from women undergoing in vitro fertilization
(IVF)
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As tissue factor expression was stimulated during ovulation and decreased in the OHSS rat model, the
possibility of using tissue factor as a biomarker of female infertility was investigated by determining the
amount of tissue factor in the follicular �uids of women undergoing IVF. No correlation was found
between the tissue factor level and age of the women (Fig. 7a). Interestingly, the tissue factor levels in
follicular �uids collected at oocyte retrieval were correlated with pregnant outcome. Infertile patients who
became pregnant had a signi�cant lower levels of tissue factor in follicular �uids at oocyte retrieval
(447.6 ± 78.25 pg/mL) than those who did not become pregnant (547.2 ± 50.95 pg/mL) (Fig. 7b, P =
0.0301). Tissue factor levels were not different between OHSS (531.4 ± 59.38 pg/mL) and non-OHSS
group (515.0 ± 45.49 pg/mL) (Fig. 7c). The correlation between tissue factor levels and the causes of
infertility was also examined. Tissue factor levels were not different between control group (500.1 ± 52.59
pg/mL) and PCOS (580.0 ± 135.60 pg/mL) or endometriosis group (506.6 ± 114.40 pg/mL) (Fig. 7d).

Discussion
Ovulation resembles the tissue remodeling process of blood coagulation. In this study, we report that
tissue factor, an initiator of the extrinsic coagulation pathway, is induced during ovulation in rats. We also
report that tissue factor expression is correlated with OHSS in rats and humans, which is characterized by
an excessive response to ovulation-inducing hormones as well as massive hemoconcentration [20]. The
expression of TFPI-1 was decreased by hCG, suggesting the potentiation of the tissue factor activity.
Furthermore, the hCG-mediated stimulation of tissue factor expression in the granulosa cells of the
preovulatory follicles required progesterone receptor activation. As the progesterone receptor is the key
transcription factor inducing follicular rupture [29], the tissue factor gene, as a downstream gene for the
progesterone receptor, may be involved in follicular rupture via formation of a �brin clot after the release
of fertilizable oocyte [30]. In contrast to TFPI-1, TFPI-2 expression was stimulated during ovulation. The
increased expression of TFPI-2 mediated by hCG, observed in human and rat preovulatory follicles, may
play a role in the tissue remodeling process that occurs during follicular rupture [13].

It is likely that tissue factor produced by the granulosa cells is the major coagulation factor during
follicular rupture. The ovulatory surge of LH progressively triggers an elevation in ovarian blood �ow and
vascular permeability followed by ovarian hyperemia, edema, and extravasation of blood in preovulatory
follicles, ultimately resulting in the rupture of the follicular wall [1]. Tissue factor was produced 9–12 h
after LH/hCG administration, indicating that tissue damage during follicular rupture may trigger the
expression of tissue factor. Follicular rupture occurs about 12 h after the LH surge in rodents. Tissue
factor may play a role in repairing the damaged follicular wall via formation of a �brin clot after the
release of the oocyte into the oviduct. The present observation, in which the tissue factor gene is a
downstream gene for the progesterone receptor, supports the hypothesis that tissue factor may be the
major ovarian coagulation factor during periovulatory tissue remodeling. Studies on the targeted deletion
of the progesterone receptor gene in mice indicate that the progesterone receptor is speci�cally and
absolutely required for the rupture of the preovulatory follicle and oocyte release [31]. Tissue factor was
also expressed in the cumulus cells and oocytes. The fact that the presence of blood clots in the human
cumulus-oocyte complex was associated with reduced oocyte quality and blastocyst formation [15]



Page 9/19

indicates that tissue factor expressed in the cumulus cells and oocytes may be required for post-
fertilization development.

Tissue factor may stimulate angiogenesis in the corpus luteum by inducing VEGF expression. The
development of the corpus luteum is accompanied by rapid angiogenesis with the comparable rates of
vascular formation in the growing tumors [32]. VEGF is the most remarkable regulator of angiogenesis in
the corpus luteum [32, 33]. Of note, tissue factor, apart from its essential role in the coagulation process,
exerts a role in angiogenesis in the tumor [34], possibly via release of VEGF [35]. Because the corpus
luteum secrets progesterone to maintain intrauterine pregnancy [36], the present observation of
correlation between levels of tissue factor and pregnancy may re�ect a role of tissue factor in the
function of corpus luteum by stimulating angiogenesis via VEGF.

Tissue factor could be used as a marker for OHSS. Several mediators involved in ovulation have been
proposed as factors leading to OHSS such as estrogens, histamine, prostaglandins, cytokines [27] and
the renin-angiotensin [37]. Vascular endothelial growth factor (VEGF) has also been implicated as a prime
causative factor of OHSS progression. Levels of VEGF in serum and follicular �uid may predict the
occurrence, severity, and progression of OHSS [23, 38]. In our study, an increase in the ovarian expression
of Vegf was observed in the OHSS-induced rats. Using this OHSS model, a decrease in the ovarian
expression of tissue factor was observed in OHSS-induced rats, suggesting that tissue factor may be one
of the indicators for the occurrence of OHSS. Changes in the hemostatic system have been reported to be
responsible for an increased thrombotic risk in patients with OHSS [20].

Although the tissue factor levels were correlated with OHSS in rats, we could not observe the correlation
between tissue factor levels in follicular �uid and OHSS patients undergoing in vitro fertilization (IVF).
However, an increase in tissue factor levels in the plasma has been reported in patients with severe OHSS
[26]. These different outcomes may be attributed to the difference in samples, follicular �uid vs. plasma.
The concentration of the tissue factor protein in human follicular �uid has been estimated to be 3.7-fold
higher than that in the plasma [39]. In mammalian ovarian follicular �uid, only the tissue factor-
dependent extrinsic pathway is present [8]; most tissue factors in follicular �uid must be generated locally
by the granulosa cells of preovulatory follicles [39]. Additionally, it must be noted that the samples of
human follicular �uid were obtained from women undergoing massive hCG stimulation during IVF.
Therefore, depending on the measurement of tissue factor levels in plasma or follicular �uid, different
outcomes between OHSS and non-OHSS patients might be produced. Decreased TFPI-1 levels have been
reported in the plasma, but not the follicular �uid, of patients with OHSS [19]. Further studies are needed
to con�rm the possible use of tissue factor as a biomarker for OHSS using a large number of samples.

The lower levels of tissue factor in the follicular �uid collected at oocyte retrieval was observed in infertile
women who became pregnant compared with those who did not become pregnant, suggesting the
possible use of tissue factor as a pregnancy index. Pregnancy itself leads to a hypercoagulable state
secondary to increased concentrations of coagulant factors [14]. Indeed, the expression of coagulation
factors, including antithrombin and �brinogen, is signi�cantly decreased in the chorionic villi of patients
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with recurrent spontaneous abortion [9]. It is thus likely that coagulation factors play a role in maintaining
a normal pregnancy. Tissue factor expression in neutrophils contributes to pregnancy loss induced by
antiphospholipid antibodies in mice [16]. However, concentrations of tissue factor or TFPI-1 in the plasma
of patients with OHSS are not correlated with the outcomes of pregnancy [26]. The present hypothesis of
the predictive role of tissue factor as a pregnancy index should be assessed by ad hoc studies.

In contrast to the expression of tissue factor, TFPI-1 expression decreased continuously after LH/hCG
administration, providing an environment for higher activity of tissue factor. The presence of TFPI-1 has
been reported in human granulosa cells and preovulatory follicular �uid [39]. In contrast, TFPI-2
expression was markedly increased upon LH/hCG administration. Unlike TFPI-1, which inhibits the
activity of tissue factor, the true function of TFPI-2 has not yet been clearly elucidated. TFPI-2 is involved
in blood coagulation due to its ability to inhibit the formation of the tissue factor-factor VIIa complex [40,
41]. TFPI-2 also plays a role in remodeling the extracellular matrix by virtue of being a serine protease
inhibitor [42]. TFPI-2 inhibits the protease activity of plasmin [43] and metalloproteinases [44]. Indeed, it
has been demonstrated that TFPI-2 regulates ovulatory proteolysis by manipulating the activity of
plasmin during the periovulatory period [13]. Therefore, TFPI-2 could have a role in modulating the
remodeling of the extracellular matrix rather than modulating blood coagulation during the periovulatory
period. As the PPARγ plays a role in tissue remodeling during ovulation [45], our �nding that TFPI-2
expression was suppressed by a PPARγ antagonist supports this hypothesis.

Conclusions
In summary, we have shown that tissue factor and TFPI-2 are induced in preovulatory follicles during the
ovulatory process in rat ovaries and provide compelling evidence that tissue factor system can regulate
the ovulatory process via progesterone receptor and PPARγ pathways. In addition, the levels of tissue
factor are higher in ovaries of OHSS-induced rats supporting the hypothesis that tissue factor can be
used as a biomarker for OHSS. The concentration of tissue factor in the follicular �uids was correlated
with pregnancy of patients, but not with OHSS, undergoing IVF. Further investigation is needed on a large
number of patients with infertility to determine the possible role of tissue factor as a marker for OHSS
and pregnancy.
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Table

Table 1 PCR primers used to obtain cDNAs for rat genes  

Gene 
name

Accession  
Number

Primer sets (5'→3') Position (lengths)

Tf NM_013057 F: TGGATATCAACTGATTTCAAGACA 
B: TCATTGGTATGTGTAGTGTTTGTT

120-619 (500)

Tfpi-1 NM_017200 F: AGAATTTATATACGGGGGATGCAGA 
B: TTCACACTGCTTTGACTGGTTGTTA

237-450 (214)

Tfpi-2 NM_173141 F: CACTTGCGGAAATAAGGAGAAAGTT 
B: ACTGGAGCAAAATGATGGGATACTT

252-474 (223)

Vegf NM_031836 F: CAGCTATTGCCGTCCAATTGA 
B: CCAGGGCTTCATCATTGCA

549-811 (263)

b-actin NM_031144 F: GAGACCTTCAACACCCCAGCC 
B: CCGTCAGGCAGCTCATAGCTC

373-734 (362)

  F, Forward; B, Backward    

Figures
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Figure 1

Experimental models showing conventional superovulation and OHSS induction procedures in rats.

Figure 2

Stimulation of tissue factor (Tf) expression by eCG/hCG in ovarian preovulatory follicles. a, The level of
tissue factor mRNA was detected in the isolated granulosa (GC) and theca (TC) cells of the preovulatory
follicles using real-time PCR. Data are expressed as the mean ± SEM of three experiments. *, P < 0.05 vs.
0 h. b, Total lysates (30 µg protein/lane) extracted from the ovaries were analyzed by western blotting
using anti-tissue factor polyclonal antibody (n = 4). Molecular weight is indicated to the left and the size
of the tissue factor protein is indicated to the right using arrows. Protein loading was assessed using
glyceraldehyde-3-phosphate dehydrogenase (Gapdh). c, Immuno�uorescence analysis was performed to
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determine expression of the tissue factor protein in the preovulatory follicles. Fluorescence was analyzed
by confocal microscopy after staining the samples with Alexa Flour 633 �uorescence antibodies (red
color). Nuclei were stained with 4′, 6-diamidino-2-phenylindole (DAPI). Data are representative of four
independently performed experiments. Arrowhead, Oocyte; asterisk, cumulus cells; arrow, theca cells; POF,
preovulatory follicle; GC, granulosa cells; TC, theca cells. Scale bar, 200 µm.

Figure 3

Changes in ovarian gene expression of Tfpi-1 and Tfpi-2 by eCG/hCG. Real-time PCR analysis was
performed to determine the mRNA levels of Tfpi-1 and Tfpi-2 in the ovary (a) and in the granulosa (GC)
and theca cells (TC) of the preovulatory follicles (b). Data are presented as the mean ± SEM of three or
four independently performed experiments. *, P < 0.05 vs. 0 h.

Figure 4

Changes in the ovarian gene expression of tissue factor, Tfpi-1, and Tfpi-2, by ovulation-inhibiting agents
in vivo. Equine CG-primed immature rats were injected with vehicle (0.1% DMSO for control), progesterone
receptor antagonist (RU486, 10 mg/kg), cyclooxygenase inhibitor (Indo; indomethacin, 10 mg/kg),
lipoxygenase inhibitor (NDGA; nordihydroguaiaretic acid, 3 mg/kg), or PPARγ antagonist (GW9662, 2
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mg/kg) 30 min before hCG administration. Ovaries were collected at 6 h for tissue factor (Tf) and Tfpi-2
and, at 12 h, for Tfpi-1, following hCG treatment for real-time PCR analysis. Data are presented as the
mean ± SEM of �ve independently performed experiments. *, P < 0.05 vs. hCG 6 h or 12 h.

Figure 5

Increase in ovarian weight (a) and Vegf expression (b) in OHSS-induced rats. Ovaries were collected from
OHSS-induced rats 48 h after saline or hCG administration to analyze Vegf expression using real-time
PCR. Values are expressed as the mean ± SEM from six independently performed experiments. *, P < 0.05
vs. saline in the OHSS model.

Figure 6
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Expression of tissue factor (Tf; a), Tfpi-1 (b), and Tfpi-2 (c) in the OHSS-induced rats. Ovaries were
collected from the ovulation- and OHSS-induced rats 48 h after saline or hCG administration to analyze
the mRNA levels using real-time PCR. Data are presented as the mean ± SEM from four independently
performed experiments. *, P < 0.05 vs. saline in the OHSS model.

Figure 7

Tissue factor (TF) levels in the human ovarian follicular �uid of women undergoing the IVF procedure.
Follicular �uids were collected from 80 women undergoing IVF. Levels of tissue factor were determined
using ELISA. a, Correlation with age. Pearson correlation analysis was performed to evaluate the
association between tissue factor levels and the patient’s age. b, Correlation with pregnancy. The data
were analyzed by Mann Whitney U test. c, Correlation with OHSS. d, Correlation with infertile patients.
Control group included patients with infertility due to male (n = 22) or tubal factors (n = 27). The data
were analyzed by F- test. The scatter plot with bars represents the mean values of tissue factor levels.
Numbers in parenthesis indicate the number of samples used. OHSS, Ovarian hyperstimulation
syndrome; PCOS, polycystic ovary syndrome.
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