A Novel Drainage Strategy Using Chest Tube Plus Pleural Catheter in Uniportal Upper Lobectomy: A Randomized Study

Fu Yang
Shanghai Jiao Tong University First People's Hospital

Xing Wang
Shanghai Jiao Tong University First People's Hospital

Honglei Xu
Shanghai Tongji University Affiliated Shanghai Pulmonary Hospital

Beatrice Aramini
University of Modena and Reggio Emilia

Yuming Zhu
Shanghai Tongji University Affiliated Shanghai Pulmonary Hospital

Gening Jiang
Shanghai Tongji University Affiliated Shanghai Pulmonary Hospital

Jiang Fan
fan_jiang@tongji.edu.cn
Shanghai Jiao Tong University First People's Hospital

Research Article

Keywords: chest tube, uniportal video-assisted thoracoscopic surgery, upper lobectomy

Posted Date: June 8th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1635613/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Objective: We aims to explored whether one pleural catheter plus single chest tube drainage, may achieve a non-inferior drainage effect when compared to the traditional two chest tubes in uniportal video-assisted thoracoscopic surgery (VATS) for an upper pulmonary lobectomy.

Methods: Patients that underwent an upper pulmonary lobectomy from January to November 2020 were enrolled in this single-center, randomized, open-label, non-inferiority trial. Prior to closure, patients randomized to an intervention group received an improved drainage strategy involving one pleural catheter with one chest tube (24Fr), while traditional double-chest-tube drainage was applied for the control group.

Results: A total of 390 patients entered the study, though 190 were excluded for changing non-uniportal surgical approaches or opting for non-lobectomy resections. Finally, 200 patients were randomized (100 in intervention group and 100 in control group). The baseline demographic and clinical characteristics were comparable between the groups. The incidence of pneumothorax in the intervention and control groups was similar on postoperative day 1 (non-inferiority, 10% vs. 13%, \(P = 0.658 \)). In addition, there were no significant differences in secondary outcomes like incidence of pneumothorax by day 30, postoperative chest tube/pleural catheter removal time, amount of drainage on day 1, total amount of drainage after operation, or postoperative hospitalization. A significantly lower pain score was observed in the intervention group (3.33±0.68 vs. 3.68±0.94, \(P = 0.003 \)).

Conclusions: The new strategy is non-inferior to double-chest-tube drainage after an upper pulmonary lobectomy, offers superior pain control, and is recommended for an upper lobectomy by uniportal VATS.

Trial registration: ClinicalTrials.gov Identifier: NCT04461652, 8th/07/2020.

Introduction

Lung cancer is the leading cause of cancer-related deaths in China (1). Several surgical techniques are currently used as part of the standard of care for early-stage lung cancer, including wedge resection, segmentectomy, lobectomy, and pneumonectomy (2). Lobectomy has been considered the standard care for early-stage non-small cell lung cancer (NSCLC) since randomized trial was carried out by the Lung Cancer Study Group (LCSG) in 1995 (3). Inadequate re-expansion of the residual lung is one of the most important causes of morbidity following lung resection and may instigate postoperative pleural effusion, persistent air leak, or atelectasis. The traditional chest drainage method after a lobectomy is via two drainage tubes: one in the posterior and basilar region to drain fluid and the other directed toward the apex of the thoracic cavity to remove air from the chest (4, 5). Although the two-tube strategy is effective and widely accepted, it is painful for patients. Theoretically, a single-chest-tube drainage strategy can reduce the pain level and discomfort after surgery, as long as the drainage tube is placed below the 7th or 8th intercostal space.
In recent years, the development of uniportal video-assisted thoracic surgery (VATS) has further reduced the trauma associated with a lobectomy, with similar safety and feasibility similar whether it is a two-port or three-port VATS. However, drainage strategy and other issues still need further exploration for the uniportal VATS lobectomy. The incision for uniportal VATS lobectomy is usually placed in the 4th or 5th intercostal space between the midaxillary and anterior axillary lines. Single-tube drainage through a single port has the possibility of inadequate chest drainage, resulting in pneumothorax and poor lung re-expansion as it can hardly balance the apical position and posterior and basilar region. After an upper pulmonary lobectomy, the cavity needs to be filled by means of the full recruitment of the remaining lobes and elevation of the ipsilateral diaphragm, which places higher demand on the success of the strategy of the drainage tube, in theory. Most randomized trials have demonstrated that there is no significant difference in the drainage effect after a lobectomy between patients with a single chest tube and those with double chest tubes by standard thoracotomy or by two- or three-port VATS (6–8); however, no conclusion has been made in relation to uniport VATS lobectomies.

A pleural catheter is a kind of single lumen central venous catheter (CVC, 16Ga × 20cm, ARROW International Inc., USA, Fig. 1), which is routinely used for rehydration or central venous pressure. It was demonstrated that a pleural catheter (CVC) has the equivalent drainage effect and is associated with less pain than a traditional chest tube for selected thoracoscopic wedge resections (9, 10). In this study, we conducted a prospective, randomized, non-inferiority trial to verify the hypothesis that a CVC combined with chest tube drainage after a uniportal VATS upper pulmonary lobectomy dose not increase the incidence of perioperative complications when compared with the traditional double-chest-tube drainage.

Methods

Study design

This prospective, single-center, randomized, open-label, non-inferiority trial was approved by the Institutional Review Board of Shanghai Pulmonary Hospital (L20-289) and registered before patient enrollment at www.clinicaltrials.gov on July 8th, 2020 (registration number: NCT04461652, principal investigator: Jiang Fan). No changes were made to the methods, type of randomization, study outcomes, or eligibility criteria after trial commencement. All participants provided written informed consent before the study.

Participants

We screened adults aged from 18 to 75 years old who were scheduled for uniportal thoracoscopic left or right upper lobectomy at the Shanghai Pulmonary Hospital. All patients learned about the two kinds of operation through preoperative education, and voluntarily joined the research group and signed the ethical agreement. The preoperative exclusion criteria were as follows: (i) preoperative presence of any unstable systemic disease, such as active infection, uncontrolled hypertension, ineffective blood sugar control in diabetes mellitus, recent history of cerebral or myocardial infarction, and so on; (ii) previous ipsilateral thoracic surgery; (iii) preoperative pneumonia or atelectasis as found by imaging examinations;
(iv) coagulation disorders and bleeding tendency; (v) pregnancy or breastfeeding. Just before placing the chest tube(s) for postoperative drainage, a final judgment on registration was performed. Patients were excluded if they required wedge resection or extended lobectomy, exploratory or open-chest surgery, or conversion to pneumonectomy; if severe pleural adhesion was observed during surgery; or if they showed obvious pulmonary/bronchi air leaks during the air-tightness leak test. Finally, the remaining patients were fully registered.

Randomization

This was a two-armed parallel clinical trial with a 1:1 allocation ratio. Prior to closure (before chest tube placing), a member of the research team randomly assigned the patients to the intervention group (improved drainage, ID, CVC plus one chest tube) or control group (double-tube drainage, DD, two chest tubes) via randomization codes that were computer-generated using the PLAN procedure in SAS statistical software (SAS Institute, NC, USA) through simple random sampling. Neither patients nor investigators were blinded to group assignment. The pain assessment team, postoperative management personnel, and follow-up evaluators did not know the grouping of each patient.

Procedure

All participants were scheduled to undergo a uniportal video-assisted thoracoscopic lobectomy. A single port was placed in the 4th or 5th intercostal space. All operations were performed by three surgical teams led by Fan, Zhu, and Wu. Only two types of lobectomies (left upper lobectomy and right upper lobectomy) were approved in this trial.

All patients received anesthesia with endotracheal intubation and were placed in the lateral position. If the issues mentioned above were encountered during surgery, the participants were excluded from the study and received double-chest-tube drainage. On completion of the upper lobectomy, randomization was carried out. After the patients were assigned to the ID group or DD group, the investigators implemented the assigned drainage strategy. In the ID group, one thoracic tube (24-Fr drainage tube) was inserted via an intercostal incision to the thoracic apex, and one CVC (single-lumen central venous catheter, 16Ga × 20cm, ARROW International Inc., USA, Fig. 1) was punctured through the 7th or 8th intercostal space at the posterior axillary line to the cardio-phrenic angle (Fig. 2A, 2C, 2E). In the DD group, two conventional chest tubes (24-Fr) were placed through intercostal incision for drainage (Fig. 2B, 2D); one tube was placed at the bottom and the other was placed at the apex. All surgical incisions were closed using 2 – 0 and 3 – 0 VICRYL continuous sutures (Ethicon, Cincinnati, USA). Patients were extubated and transferred directly to the surgical ward following stabilization in the post-anesthesia care unit. No masking of investigators to treatment allocation was performed.

For analgesia, patient-control intravenous analgesia (PCIA) was used for three days after the operation. Some oral analgesics were also administered based on the patients’ requirements. All patients underwent chest radiography on the morning after the day of surgery. If massive pneumothorax was observed, the following steps were considered: enhanced deep breathing and cough exercises or 8 ~ 10cmH₂O negative
Follow-up chest radiography was carried out every other day until chest tube/CVC removed. The indications for chest tube/CVC removal were as follows in both groups: adequate lung expansion, absence of air leaks, and 200ml/day or less drainage fluid. Chest radiography was also carried out about one month after the surgery to evaluate the postoperative recovery of the patients.

Sample size

The trial was designed to test the hypothesis that the new strategy is not inferior to the traditional method in a uniport VATS upper pulmonary lobectomy with respect to the incidence of pneumothorax (primary outcome). Based on previous observational studies, the probabilities of postoperative pneumothorax with the new method (ID) and traditional method (DD) were about 10% and 6%, respectively. Considering a 25% non-inferiority margin, efficacy analysis estimated that 75 patients in each group were required to achieve a power of 0.99 (via version 15.0; NCSs, Kaysville, UT, USA) with a unilateral α of 0.025. Before dropouts from the groups due to clinical factors or other criteria (e.g., changing surgical methods according to pathological results during operation, combination with another lobectomy, etc.), a total of 195 subjects in each group were required, with 390 as the anticipated case number.

The Consolidated Standards of Reporting Trials flowchart (CONSORT) is shown in Fig. 3.

Primary outcome

All study data were collected by nurses and researchers who were not blinded to the group assignment. Baseline patient characteristics were recorded, along with perioperative details. The primary outcome was to assess the incidence of pneumothorax on day 1 after surgery in both groups. Pneumothorax was defined by a distance of ≥ 3 cm between the apex of the lung and the top of the rib cage on chest radiography (11, 12).

Secondary outcomes

The secondary outcomes for patients’ recovery included visual analog scale (VAS) scores for postoperative pain, postoperative chest tube/CVC removal time, the total volume of pleural effusion on the first day after the operation, and postoperative hospitalization. The perioperative complications were also noted, such as pleural effusion, respiratory infection, or subcutaneous emphysema. Additional clinical outcomes were drainage tube-related complications such as obstructed drainage, chest tube reinsertion, and wound healing.

Postoperative pain was evaluated on days 1 and 3 after surgery using the VAS, where 0 indicates no pain and 10 indicates the most serious pain (13, 14). Pleural effusion was defined as a drainage volume of > 800mL. Respiratory infection was defined by a leukocyte count higher than 10×10^9 /L or lower than 4×10^9 /L, with the body temperature higher than 38.3°C, symptoms of respiratory system-like purulent sputum, and the use of additional antibiotic therapy. The time to postoperative chest tube removal was...
defined as the number of days following surgery to the removal of the chest tube. The length of postoperative hospitalization was defined as the number of days from surgery to discharge. Subcutaneous emphysema was graded into three levels: none, observation required, and intervention required. Wound healing was evaluated by the surgeon and nurses after surgery, and graded as normal, delayed healing, or incision infection, according to the status of the drainage tube incision. Delayed healing and incision infection were classified as unsatisfactory wound healing.

Statistical analyses

The categorical variables were reported as counts and percentages and were compared using the chi-square (\(\chi^2 \)), or Fisher's exact test if two of the frequency cells were smaller than five. The continuous variables were reported as the mean ± standard deviation (SD) and were compared using the Kruskal–Wallis test. For the incidence of pneumothorax (primary outcome), the one-sided 97.5% (1-\(\alpha \)) confidence interval (CI) of the risk difference was compared with the prespecified non-inferiority margin of 25%. The secondary outcomes were two-sided. A P-value less than 0.05 was considered statistically significant. All statistical analyses were performed using the IBM statistical package for social sciences (SPSS) version 22.0 (IBM Corp., Armonk, NY, USA).

Results

Patients general characteristics

According to the inclusion and exclusion criteria, a total of 390 consecutive patients were screened between January and November 2020, with all patients providing written consent. After the operation in the operating room, 190 patients were excluded for changing to non-uniportal VATS surgical approaches, non-lobectomy resections, or other excluded criteria mentioned above. Finally, 200 patients were enrolled and allocated to the ID (n = 100) and DD (n = 100) groups according to the drainage strategies used. In the ID group, 53 patients (53%) underwent a right upper lobectomy while the others had a left upper lobectomy; all of them received the allocated intervention. In the DD group, 60 patients (60%) underwent a right upper lobectomy. The demographic, clinical, operative, and imaging characteristics of both groups were balanced, and are shown in Table 1.
Table 1
Baseline characteristics of patients who received improved drainage strategy (ID group) or double drainage strategy (DD group) after upper pulmonary lobectomy.

<table>
<thead>
<tr>
<th>Variables</th>
<th>ID group (n = 100)</th>
<th>DD group (n = 100)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>58.74 ± 9.39</td>
<td>59.13 ± 9.30</td>
<td>0.768</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td>0.480</td>
</tr>
<tr>
<td>Male</td>
<td>53</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>47</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>Smoking status</td>
<td></td>
<td></td>
<td>0.596</td>
</tr>
<tr>
<td>Never smokers</td>
<td>78</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>Current or ever smokers</td>
<td>22</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>BMI (kg/m2)</td>
<td>23.98 ± 3.05</td>
<td>23.67 ± 3.60</td>
<td>0.511</td>
</tr>
<tr>
<td>Chronic disease</td>
<td></td>
<td></td>
<td>0.420</td>
</tr>
<tr>
<td>Present</td>
<td>29</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Absent</td>
<td>71</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>Operative side</td>
<td></td>
<td></td>
<td>0.392</td>
</tr>
<tr>
<td>Right</td>
<td>53</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Left</td>
<td>47</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

ID, improve drainage; DD, double drainage; BMI, body mass index.

Primary outcome

The detailed data of the primary outcome are presented in Table 2. In the ID group, the incidence of pneumothorax on day 1 after surgery was 10.0% while the incidence of pneumothorax on day 1 after surgery was 13.0% in the DD group (hazard ratio: ID vs DD, 0.97; 95% confidence interval, 0.88–1.07; P = 0.658). Non-inferiority was observed (P = 0.25, one-sided for non-inferiority) as the upper 95% confidence interval of 1.07 was smaller than the prespecified non-inferiority margin of 1.25. There was also no significant difference in pneumothorax after 30 days between both groups (0.00% vs. 2.00%, p = 0.497).
Table 2
Perioperative characteristics of patients who received improved drainage strategy (ID group) or double drainage strategy (DD group) after upper pulmonary lobectomy.

<table>
<thead>
<tr>
<th>variables</th>
<th>ID group (n = 100)</th>
<th>DD group (n = 100)</th>
<th>95% CI</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumothorax (a line ≥ 3cm, 1 day after operation)</td>
<td>10 (10.00%)</td>
<td>13 (13.00%)</td>
<td>-59.34 to 39.14</td>
<td>0.658</td>
</tr>
<tr>
<td>Pneumothorax (a line ≥ 3cm, 30 days after operation)</td>
<td>0 (0.00%)</td>
<td>2 (2.00%)</td>
<td>-0.74 to 0.20</td>
<td>0.686</td>
</tr>
<tr>
<td>Drainage tube blocked</td>
<td>3 (3.00%)</td>
<td>2 (2.00%)</td>
<td>-0.12 to 0.58</td>
<td>0.119</td>
</tr>
<tr>
<td>Pleural effusion (day 30)</td>
<td>25 (25.00%)</td>
<td>24 (24.00%)</td>
<td>-0.01 to 0.37</td>
<td>0.058</td>
</tr>
<tr>
<td>Chest tube reinsertion</td>
<td>0 (0.00%)</td>
<td>2 (2.00%)</td>
<td>-0.61 to 0.41</td>
<td>0.262</td>
</tr>
<tr>
<td>Unsatisfied wound healing</td>
<td>9 (9.00%)</td>
<td>8 (8.00%)</td>
<td>-0.74 to 0.20</td>
<td>0.003</td>
</tr>
<tr>
<td>Amount of drainage on day 1 (ml)</td>
<td>204.60 ± 147.49</td>
<td>194.50 ± 201.46</td>
<td>-310.53 to 35.63</td>
<td>0.003</td>
</tr>
<tr>
<td>Amount of drainage (ml)</td>
<td>881.05 ± 708.65</td>
<td>743.60 ± 517.80</td>
<td>-0.12 to 0.58</td>
<td>0.058</td>
</tr>
<tr>
<td>Duration of drainage (days)</td>
<td>4.42 ± 1.99</td>
<td>4.15 ± 1.35</td>
<td>-0.74 to 0.20</td>
<td>0.058</td>
</tr>
<tr>
<td>Postoperative hospitalization (days)</td>
<td>5.22 ± 2.20</td>
<td>5.12 ± 1.38</td>
<td>-0.01 to 0.37</td>
<td>0.003</td>
</tr>
<tr>
<td>VAS score (day 1)</td>
<td>3.33 ± 0.68</td>
<td>3.68 ± 0.94</td>
<td>-0.61 to 0.41</td>
<td>0.058</td>
</tr>
<tr>
<td>VAS score (day 3)</td>
<td>2.27 ± 0.58</td>
<td>2.45 ± 0.74</td>
<td>-0.74 to 0.20</td>
<td>0.058</td>
</tr>
</tbody>
</table>

ID, improved drainage; DD, double drainage; 95% CI, 95% confidence interval; VAS, visual analog scale

Secondary outcomes

Postoperative complications

Table 2 provides the results for additional postoperative complications. No significant differences were identified between the two groups in terms of drainage tube blocks, pleural effusion in the 30 days after the operation, chest tube reinsertion after drain removal, wound healing, amount of drainage, duration of drainage, and postoperative hospitalization. Thirty days after the operation, 25 patients (25.00%) had pleural effusion in the ID group, while 24 patients (24.00%) had pleural effusion in the DD group. No one in the ID group needed chest tube reinsertion because of pleural effusion or pneumothorax. Two patients (2%) in the DD group required chest tube reinsertion because of pleural effusion. There were no statistically significant differences in the amount/duration of drainage between the two groups.
The VAS pain score was significantly lower in the ID group than in the DD group on the first day after surgery (3.33 ± 0.68 vs 3.68 ± 0.94, \(P = 0.003\)). On the third day after surgery, no significant difference was detected in the VAS pain scores between the groups, although the VAS scores in the ID group tended to be lower than those in the DD group (2.27 ± 0.58 vs 2.45 ± 0.74, \(P = 0.058\)).

Discussion

Inappropriate re-expansion of the residual lungs after a lobectomy is one of the most important causes of complication after surgery. Sufficient re-expansion is essential to avoid atelectasis, persistent air leakage, postoperative hemothorax, acute respiratory insufficiency, and hypoxemia (15). The classical and widely accepted practice is to use two drainage tubes for complete drainage of the pleural cavity after a pulmonary lobectomy. One tube is placed into the posterior and basilar region to drain fluid, while the other tube is placed through the anterior axillary line, directed toward the apex, to remove air from the chest (4, 5).

Although drainage with two chest tubes is effective and widely accepted, it is painful for patients. Theoretically, single-chest-tube drainage causes less pain and discomfort for patients compared with double-tube drainage but has the possibility of insufficient drainage. In recent years, more and more thoracic surgeons have tried the drainage strategy of using one chest tube after a pulmonary lobectomy. Several studies have reported comparisons of chest drainage approaches with one or two chest tubes after a pulmonary lobectomy (16–20); however, most of the patients in the studies received pulmonary lobectomies via standard thoracotomy. As such, the previous research cannot perfectly represent patients treated by VATS, especially by uniportal VATS. The incision for a uniportal VATS lobectomy is usually placed in the 4th or 5th intercostal space. Single-tube drainage through a single port can lead to inadequate chest drainage, resulting in pneumothorax and poor lung recruitment. If the tube is placed from the uniport toward the apical position, pleural fluid located in the posterior and basilar region cannot be easily drained. On the other hand, if it is placed from the uniport into the posterior and basilar region, the air in the apex cannot be easily drained, especially in the case of an upper pulmonary lobectomy.

In the present study, a new strategy of drainage (ID) was introduced with one chest tube plus a CVC for the upper pulmonary lobectomy. To the best of our knowledge, this study is the first prospective randomized clinical trial to compare an improved drainage strategy with routine double-chest-tube drainage after an upper pulmonary lobectomy by uniportal VATS. We randomly assigned 200 patients to either the ID or DD group. The analysis results demonstrated that the clinical outcome of the improved drainage strategy was non-inferior to that of routine double-chest-tube drainage, as determined by the occurrence of pneumothorax on day 1 after surgery as the primary endpoint. One month later, there was no significant difference in the incidence of pleural effusion between the two groups. Moreover, there were no significant differences in the amount/duration of drainage or the incidence of perioperative events. The significant difference between the two groups was the VAS pain score, which was
significantly lower in the ID group. We recorded the patients’ pain intensities twice (on days 1 and 3 after surgery). On the first day, the mean pain score was 3.33 in the ID group, while it was 3.68 in the DD group (p = 0.003). On the third day, the pain score tended to be lower in the ID group, although the difference was not significant (p = 0.058). These findings are in agreement with the results of previous studies (6, 8, 21), which have shown lesser postoperative pain with one chest tube. Accordingly, we believe that the use of one chest tube plus a CVC, as an improved drainage strategy for patients undergoing a uniportal VATS lobectomy, presents a safe and feasible strategy during the procedure in clinical practice.

Our present study differs from previous studies that have compared a single chest tube with two chest tubes in its study population and method. All of our study population received a uniportal upper lobectomy; as such, our finding is that the improved drainage strategy may be the optimal choice for the upper lobectomy, in particular.

Limitation

We acknowledge that the present trial has certain limitations that should be addressed. Firstly, this was a single-center study. The single-institution setting renders observations more susceptible to the potential effects of institution-specific practices. Second, in our study, it was difficult to accurately assess the pleural effusion on the first day after surgery as some patients received supine chest radiography in the medical intensive care unit. Therefore, we compared the pleural effusion one month after surgery between the two groups. Third, we also recognize that the lack of blinding may have influenced the results to a degree that is difficult to quantify.

Conclusions

In conclusion, the improved drainage strategy with one chest tube plus a CVC is a safe procedure for patients after a uniportal VATS upper pulmonary lobectomy and is likely to be less painful for patients.

Abbreviations

NSCLC, non-small cell lung cancer; CVC, central venous catheter; ID, improved drainage; DD, double-tube drainage; SD, standard deviation; CI, confidence interval.

Declarations

Ethics approval and consent to participate

This trial was approved by the Institutional Review Board of Shanghai Pulmonary Hospital (L20-289). All methods of the study were carried out according to the principles of the declaration of Helsinki. Written consent to participate was obtained from participant and/ or their legal guardian(s).

Consent for publication
Availability of data and materials

The datasets used and analyzed during the current study are not publicly available due to privacy issues but are available from the corresponding author on reasonable request.

Competing interests

The authors declare that there is no conflict of interest.

Funding

National Natural Science Foundation of China (81870008) and Shanghai Municipal Health Commission (201840175).

Authors’ contributions

FY performed statistical analysis and drafted the work. XW organized the figures and tables. HX collected the data. BA checked the results of the statistical analysis. YZ performed the data check. GJ substantively revised the draft. JF contributed to conception and approved it for publication.

Acknowledgments

Not applicable

References

Figures

Figure 1

Single-lumen central venous catheter, 16Ga × 20cm, ARROW International Inc., USA
Figure 2

Improved drainage used CVC plus one chest tube and double drainage used two chest tubes after upper pulmonary lobectomy

A. Schematic diagram showing the CVC and chest tube in the improved drainage

B. Schematic diagram showing the two chest tubes in the double drainage

C. Insertion of the CVC plus one chest tube

D. Insertion of the two chest tubes through incision
E. Location of the CVC in the thoracic cavity

Figure 3

Consolidated Standards of Reporting Trials (CONSORT) flow diagram

ID, improved drainage; DD, double drainage