A Rare Case of Human Urogenital Myiasis Caused by *Chironomus crassicaudatus* (Diptera: Chironomidae) from Kolkata, India

Kokila Banerjee
Drs. Tribedi and Roy Diagnostic Laboratory, Kolkata, India

Arindam Dutta
RG Stone Urology and Laparoscopy Hospital

Subhendu Roy
Drs. Tribedi and Roy Diagnostic Laboratory, Kolkata, India

Short Report

Keywords: Urogenital myiasis, *Chironomus crassicaudatus*, larvae, infestation

Posted Date: May 4th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1579871/v1

License: Creative Commons Attribution 4.0 International License. [Read Full License](https://creativecommons.org/licenses/by/4.0/)
Abstract

Infestation by the Dipteran insect larvae is one of the public health problems in tropical countries, including India. Calliphorid flies are reported to cause various types of myiases, including urogenital myiasis. Besides, non-myiasis-producing flies also occasionally invade human or animal tissues and cause myiasis. For the first time, we report here, an uncommon type of myiasis of the urogenital system due to an infestation by *Chironomus* larvae. A 19-year-old female patient from a poor socio-economic background from Kolkata, India attended the outpatient department with a complaint of passing worms in her urine with one-to-five larvae, several times a day, for four weeks. Another member of the family had a similar complaint. The larvae isolated from the patient were identified to be *Chironomus crassicaudatus* (Diptera: *Chironomidae*). It was probable that *Chironomid* flies breeding in and around the dwellings had infested the urethra. The patient was successfully treated with albendazole. Implementing overall environmental and personal hygienic living conditions, eliminating fly breeding habitats, and avoiding sharing of a common toilet facility are important measures to avoid such kind of fly infestation.

Introduction

Myiasis is a condition where dipterous fly larvae infest the body of both human and other vertebrates. While growing, the larvae feed on living, dead, or necrotic host tissues (Zumpt 1965). Clinically, this syndrome is categorized into the following types: dermal, nasal, oral, aural, intestinal, rectal, and urogenital myiasis, depending on the site of infestation (Zumpt 1965). Based on the mode of egg-laying behavior of the adult female flies, the syndrome is classified into obligatory, accidental, or facultative myiasis (Spradbery 1991). In obligatory myiasis, adult female flies are attracted to open wounds or natural openings having putrefying discharge or odor. The flies deposit eggs, which upon hatching; the larvae migrate interiorly and consume necrotic or healthy tissues. Ultimately, the eggs drop to the ground along with feces or urine during pupation (Herms and James 1961). In accidental myiasis, certain flies, whose larvae are free-living, accidentally deposit eggs on food. When such infested food is improperly cooked and consumed, the larvae get access to the intestine and cause intestinal myiasis (Udgaonkar et al. 2012). In facultative myiasis, adult flies invade diseased human or animal tissues (Herms and James 1961).

The larvae of certain dipteran flies are free-living. When their population density becomes high or breeding habitat gets scarce, they invade wounds and natural openings of human or animal hosts having a putrefying odor, often because of bacterial infection (Sima et al. 2016). The eggs then gain access to wounds or natural openings. The larvae after hatching continue their life cycle on the living host; a condition known as pseudo myiasis. The severity of infestation in the vertebrate hosts depends on the parasite species (Punhani et al. 2009). Identification of the species of larvae that cause myiasis is essential. There are several reports of different types of myiases caused by *Calliphorid, Sarcophagid*, and *Gastrophilid* flies (Salimi et al. 2010). However, for the first time, we present a case of urogenital myiasis, incidentally caused by larvae of the *Chironomus* fly.
Case Report

A 19-year-old female patient from Kolkata, India presented with a history of passing one-to-five worms multiple times a day in her urine for the preceding four weeks. She belonged to low socioeconomic status and was dwelling in an unhygienic slum having a sharing community toilet facility. She had no history of abdominal pain, vomiting, fever, loss of appetite, abnormal bowel habits, or weight loss. She also had no complaint of genital itching, irritation, pain, or abnormal frequency of micturition. Interestingly, another lady in her family had a similar medical history.

On examination, no gross abnormality was detected in the body or the external genitalia. The personal hygiene of the patient was very poor. Ultrasound examination of the kidneys and urinary bladder revealed no abnormalities. However, a routine urine microscopic examination revealed the presence of some larvae. The larvae were isolated, washed with 0.9% normal saline, preserved in 70% alcohol, and sent for further examination. The larvae were transferred into a test tube containing 2 ml of 10% sodium hydroxide solution and heated till bubbles appeared and fatty tissues were dissolved. The larvae were then isolated, transferred onto a clean microscopic slide, mounted using Hoyer's uid, and examined under a using a compound microscope (Zeiss, German). The larvae were identified to be those of *Chironomus crassicaudatus* (Diptera: Chironomidae) (Mason 1968, Stewart and Loch 1972, John 2001).

The presence of frontoclypeal apotome and medial labral sclerite anterior to the apotome, as well as the broad multi-toothed comb-like structure of the pecten epipharyngis further indicated the unique features of *Chironomus*. Besides, the pre-mandibles with a bifid nature and a pair of ventral tubules on the eleventh body segment also confirmed the generic characteristics of *Chironomus*. The mentum in the mouthpart was found with a trifid median tooth and six lateral teeth on either side. The mandibles had three inner teeth, of which the first two were darker and larger than the third one. The anteromedial margin of the ventromental plate had fine teeth. The inner apex of the ventromental plate was caudated i.e., slightly curved towards the apex. In addition to the ventromental plate, the pecten epipharyngis was provided with both larger and smaller teeth (Fig. 1). The patient was, thus, diagnosed with urogenital myiasis. Tablet albendazole was administered (400 mg once a week for 4 weeks) and she was completely cured.

Discussion

To the best of our knowledge, this is the first case of urogenital myiasis caused by the larvae of *Chironomus crassicaudatus*. The flies of the species *Chironomids* and *Psychodids* co-exist with human and breed on soiled moist surfaces and low-lying water bodies. They also oviposit on soiled toilets and the free-living larvae feed on organic debris. Although several species of flies of the genera *Musca*, *Sarcophaga*, *Lucilia*, *Wholfahrtia*, and *Calliphora* cause urinary myiasis, *Fannia scalaris* (Diptera: Fanniidae) larva is the most common. Uncommon urogenital myiasis caused by insects other than the actual myiasis-producing flies, such as the larvae of *Psychoda albipennis* (Diptera: Psychodidae) (Güven et al 2008), *Clogmia albipunctata* (Diptera: Psychodidae) (El-Badry 2014), and *Megaselia scalaris*
(Diptera: Phoridae) (Ghavami 2015) has been reported in the literature. Antiparasitic agents (albendazole, mebendazole, or tiabendazole) are usually effective for the treatment of these patients (Francesconi and Lupi 2012) like in our case.

Members of the *Chironomidae* family of flies are known as non-biting midges and resemble mosquitoes. They have a wide distribution, representing both terrestrial and aquatic environments, and can thrive in a wide range of environmental conditions, oxygen concentration, and vegetations. Although *Chironomids* family of flies have a vast distribution, information on its taxonomy is meager because they are difficult to identify. The female flies breed in almost all aquatic or semi-aquatic habitats and feed on sugar-rich food, including nectar and pollen (Nagell and Landahl 1978). The larvae of most of the species practice anhydrobiosis, a condition wherein organisms adapted to survive in a dry state (Wharton 2015). Due to this ability, the larvae that emerge from the eggs in the urethra continue their life cycle further by feeding on the microbiota and other commensals that are found in the urethra.

Thus, to conclude, we present a rare case of human urogenital myiasis caused by *Chironomus crassicaudatus* (Diptera: *Chironomidae*) from Kolkata, India. Implementing overall environmental and personal hygienic living conditions, eliminating fly breeding habitats, and avoiding sharing of a common toilet facility are important measures to avoid such kind of fly infestation.

Declarations

Compliance with ethical standards

Disclosure of potential conflicts of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

Not applicable.

Consent for publication

Informed consent from the patient was obtained for publication of this case report.

Funding

No funding was received to assist with the preparation of this manuscript.

Availability of data and material

All data related to this manuscript are present within the text.

Authors' contributions
AD treated the patient, KB and SR diagnosed this case, KB drafted the manuscript, SR provided expert inputs. All authors have read and approved the final version of the manuscript.

References

Figures
Figure 1

Detailed morphological features of *Chironomus crassicaudatus* under a compound microscope (Zeiss, German). Digital photomicrographs were obtained using a low-LED microscope (Leica, German) (10X and 40X magnification).

1. **A.** Frontoclypeal apotome, **B.** Medial labral sclerite.

2. **A.** Labral sclerite.

3. **A.** Pectan epipharyngis with a multi-toothed comb.

4. **A.** Pectan epipharyngis with a multi-toothed comb, **B.** Mentum, **C.** Premandible, **D.** Mandible with two dark inner teeth, **E.** Ventromental plate.

5. **A.** Paired ventral tubules.

6. **A.** Mandible with two dark inner teeth, **B.** Mandible with a pale inner tooth.

7. **A.** The inner apex of ventromental plate directed caudad, **B.** Anteromedial margin of ventromental plate with fine teeth.

8. **A.** Pectan epipharyngis with numerous smaller teeth and larger teeth.